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ABSTRACT

We consider a radiating electric dipole, located near the joint of two orthogonal mirrors. The field lines of energy flow in the neighborhood
of the dipole have an intriguing structure due to interference between the dipole radiation and the reflected light by the mirrors. Numerous
singularities and vortices appear in the sub-wavelength region between the dipole and the surfaces. We present a method to find the loca-
tions of the vortices and singularities without regard to the details of the flow pattern. The radiation field induces a surface current density
in the mirrors. The direction of the current is predominantly in the radial direction for a linear dipole, but it alternates between outgoing
and incoming across singular curves. We show that the field line pattern expands with a phase velocity larger than the speed of light. For a
circular dipole, there appears a spiral which runs inward. The current initially flows in along this spiral. Then the current leaves again along
an outgoing spiral, which spirals inside the incoming spiral. Current can flow from one mirror to the other, and we show that the current

always crosses the intersection line at a 90° angle.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5140744

I. INTRODUCTION

The rapid development of nanotechnology and nano-photonics
over the last few decades have made it paramount to study optical
phenomena on a scale of a wavelength or even smaller. Ray diagrams
cannot account for the interactions between nanoparticles and, for
instance, a nearby substrate. Radiative emission rates of atoms, mole-
cules, and microparticles are affected by a nearby material medium,
as was observed for the first time by Drexhage' in his landmark
experiments with molecular dyes deposited on a dielectric material.
The influence on molecular emission rates was studied theoretically
in Ref. 2, and the predictions correspond very well with the experi-
mental results. The recent advances in metamaterial design have
opened an entirely new field of nano-optics. Negative-index-
of-refraction materials have been predicted to possibly have the
ability of focusing light tighter than the diffraction limit,” and
epsilon-near-zero metamaterials may provide a way to optically
levitate a nanoparticle, provided it is located well within an optical
wavelength from the interface with the material.*™

Of particular interest is the flow pattern of electromagnetic
energy in a nano-size system. The simplest and most important

source of electromagnetic radiation is the field emitted by an oscil-
lating electric dipole. Already a free dipole can have an interesting
radiation pattern in the optical near field. If the dipole moment
rotates, as in a Am = + 1 electronic transition in an atom or as for
a microparticle irradiated by a circularly polarized laser beam, the
energy emerges from the dipole as a vortex.”” Within a wavelength
from the dipole, the field lines of energy flow swirl around the axis
through the center of the circle (perpendicular to the plane of rota-
tion), and at larger distances, the field lines become straight, like
optical rays. This leads to a shift of the dipole image in the far field
due to the rotation near the source.” This prediction has been con-
firmed experimentally.'’

The simplest substrate is a perfectly conducting mirror. The
emission rate of a nearby molecule changes due to the presence
of the substrate'”'” and atomic levels shift due to the nearby
metal.'>"* Also of interest is the behavior of small particles in
between two parallel mirrors. Level shifts and altered emission rates
have been predicted,"”™" and suppression of spontaneous emission
rates by atoms in between parallel mirrors has been confirmed
experimentally.”*° The energy flow pattern of dipole radiation
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near a mirror has numerous vortices and singularities,”” and it was
found that the vortices are arranged on four optical vortex strings.”®
When the dipole is placed in between parallel mirrors, intricate flow
patterns are found,”” and it is predicted that radiation emerges from

the dipole as a set of four vortices.”

Here, we shall consider an electric dipole located near the
junction of two mirrors, as depicted in Fig. 1. The mirrors meet at
a 90° angle, and the coordinate system is as shown. The dipole is
located in the yz plane, and the mirrors are joint at the x axis. This
setup was also considered in Ref. 31, where the spontaneous emis-
sion rate of an atom in this configuration was computed with a

quantum electrodynamical approach.

1. DIPOLE RADIATION

An electric dipole, oscillating at angular frequency o, has a

dipole moment

d(t) = d,Re(ie "),

If the unit vector u is real, the oscillation is linear. For @ complex,
the dipole moment vector d(t) will, in general, trace out an ellipse in
a plane. For the complex amplitudes of the emitted and reflected

electric and magnetic fields, we shall split off factors as

B() = Ce®,  B(®) = b(e), @)
with
Kd,
é’ = FEO’

¥

FIG. 1. Shown is the setup of an electric dipole d(f) located near the junction of
two perpendicular mirrors. Vector H is the position vector of the dipole with
respect to the origin of coordinates, and the dipole is located in the yz plane.
The mirrors have the x axis in common.

uta=1. (1)

3)
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where k, = w/c is the wavenumber in free space. In this way, e(r)
and b(r) are dimensionless, and overall constants are accounted for
by the single parameter {. We also introduce dimensionless coordi-
nates X =kox, y=koy, andz=k,z, and in terms of these
coordinates, a dimensionless distance of 27 represents an actual dis-
tance of an optical wavelength. The complex amplitudes of the elec-
tric and magnetic fields are’

e*{ﬁ—(“ﬁ)“—i—[ﬁ—3(A~ﬁ)A]i(l—l—i>}é (4)
q-wq q ‘Iq q 7

b:(QXﬁ)(1+é>§. (5)

Here, q = k,r is the dimensionless position vector of the field point
with respect to the location of the dipole, and g = |q|, q = q/g.

lll. THE IMAGE SYSTEM

For a dipole near a mirror, some of the emitted radiation
reflects at the mirror, and the total field is the sum of the dipole field
and the reflected field. The reflected electric and magnetic fields are
identical to the fields produced by an image dipole below the mirror.
This dipole is located at the same distance below the mirror as the
dipole is above the mirror. The dipole moment of the image has its
parallel component reversed, as compared to the dipole moment of
the source dipole. Hence, if we write & = @, + @ for the dipole
moment polarization vector of the source, then a =, — ﬁ” is the
dipole moment polarization vector of the image. This is an exact sol-
ution of Maxwell's equation and it fully takes retardation into
account. The situation is more complicated for the setup with the
two mirrors shown in Fig. 1. Let us write @ = (iLy, iy, i;) for the
Cartesian components of the source dipole unit vector and indicate
this as ;. Let the image in the xz plane be @,. Reversing the parallel
component of @, gives @y = (—il, il,, —ii;). But, there is also an
image in the xy plane @y = (—il, —il,, i1;). This image produces a
field in the vertical mirror, which needs to be compensated for by the
image of 14 in the vertical mirror. This is @3 = (@, —it,, —ii;). The
image system is summarized in Fig. 2. Another way of looking at
this is that the two lower dipoles are the images of the two top
dipoles, and the two dipoles on the left are the images of the two
dipoles on the right.

The electric and magnetic fields of the four dipoles are given
by Egs. (4) and (5), respectively, with the appropriate vector @, and
vector q is taken as the position vector of the field point with
respect to the particular dipole. When we set h = k,H = (0, hy, h,),
we have

q =&y —hy,z—h), (6)
@ =&%y+h,z—h,), (7)
q=&y+h,z+h), (8)
q =%y —hy,z+h), ©)

as can be seen from the figure. The total electric and magnetic fields
are then the sums of the four individual electric and magnetic fields.
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FIG. 2. The figure shows the locations of the image dipoles and their dipole
moment polarization vectors. The angles ¥ shown are for a linear source dipole
oscillating in the yz plane, under an angle y with the positive z axis.

IV. FIELD LINES OF ENERGY FLOW

Electromagnetic energy flows along the field lines of the (time
averaged) Poynting vector

1

S(r) = 2

Re[E(r) xB(r)]. (10)

o

We introduce the dimensionless Poynting vector ¢ = 2u,cS/{* so
that

o = Re(e*x b), (11)

which is now considered a function of the dimensionless field point
coordinates (¥, ¥, z), or equivalently, a function of q. We parame-
trize a field line of the vector field & by q(u), with u being a dummy
variable. The x coordinate of a point on the field line through a
given point (X,, ¥, Zo) is then the solution of

d _ _ _ _
2 ) = ox(&(w), y(w), 2(w)), (12)

and similar equations hold for the yandZz coordinates. This set of
three equations can be solved numerically for a given initial point
(Xos ¥o» Zo). The field lines run into the direction of increasing u.
Near the dipole, the fields e, and b, (fields of the source dipole)
diverge, which may give numerical problems. Field lines are only
determined by the directions of the vectors of the vector field, so if
we multiply ¢ by any positive function f of X, y, andz, the field
lines remain the same. A good choice seems to be f = ¢;.

Due to boundary conditions, near the surface of a mirror, the
electric field is perpendicular to the mirror surface, and the mag-
netic field is parallel to the surface. Therefore, near a mirror, a field
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line of energy flow is parallel to the mirror surface. This should be
so because energy cannot penetrate a perfectly conducting material.

V. DIPOLE AND FIELD LINES IN THE YZ PLANE

In this section, we shall consider a dipole oscillating or rotat-
ing in the yz plane so that i, = 0. It can then be checked from
Egs. (4) and (5) that, for a field point in the yz plane, the electric
field is in the yz plane, and the magnetic field only has an x compo-
nent. The corresponding Poynting vector at such a point is then in
the yz plane. Therefore, if a field line goes through a point in the yz
plane, it stays in the yz plane. The field lines are 2D curves, whereas,
in general, they will be 3D curves. For a linear dipole, we set

@ = (0, siny, cosy), (13)

so this corresponds to a dipole oscillating back and forth along
vector @, which makes an angle y with the positive z axis.

A typical energy flow pattern is shown in Fig. 3, where
y = /3, hy = 10, and h, = 5. The field lines start at the location
of the dipole. Far away from the dipole and the mirrors, field lines
become straight. Near the intersection corner of the mirrors, the field
lines need to bend so that they become parallel to the mirror surfaces.
This leads to an intricate flow pattern with singularities and optical
vortices. Figure 4 shows an enlargement of the flow pattern near the
corner. The black circle is the center of the vortex, and the two white
circles are singularities where field lines split. Figure 5 shows an
enlargement of the flow lines in the neighborhood of the dipole.
There are two vortices and three other singularities. Interestingly,

TR

FIG. 3. Shown is the energy flow pattern for a linear dipole, oscillating under
60° with the z axis.
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in Fig. 3.

FIG. 5. The figure shows an enlargement near the dipole of the flow line
pattern in Fig. 3.
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FIG. 6. Shown is a 3D field line near the top vortex in Fig. 5.

there are field lines that seem to start at the center of the upper
vortex and end at the center of the lower vortex. Clearly, energy
cannot be created at the center of the top vortex, and then accumulate
at the lower vortex. The divergence of the Poynting vector is zero, so
the field has no sources and sinks outside the dipole. All energy
comes out of the dipole and eventually flows away to infinity. The
explanation of this phenomenon is illustrated in Fig. 6. Figure 6
shows a 3D field line near the top vortex. The dipole is just outside
the picture, located at (0, 10, 5). The incoming field line is well off
the yz plane. Near the center of the vortex in the yz plane, it swirls
around and then it leaves. The outgoing branch stays very close to
the yz plane, although that cannot be seen directly from the graph.
Field lines cannot cross, so, in particular, the field line shown in the
figure cannot cross the yz plane.

In Fig. 7, the dipole is symmetrically placed with respect to
the mirrors, and it oscillates under an angle of 7/4 with the positive
z axis. The 45° line is a singular line, and it can be shown that this
is due to the vanishing of the magnetic field. Field lines come out
of the dipole, bend to the dipole axis, and then stop at the diagonal
line. In this figure, the dipole is located at h), =h, =1.5. If we
increase the distance to the origin by taking h, = h, = 4, then the
field lines start at the diagonal singular line in the region above the
dipole but still end on the singular line in the region between the
dipole and the mirror. If we increase the distance further to
hy, = h, = 6, two vortices appear in the region between the dipole
and the mirrors. This is shown in Fig. 8. When the dipole is close
to the mirrors, some field lines that come out of the dipole return
to the dipole at the other side. These closed loop field lines are
shown in Fig. 9.

VI. LOCATIONS OF VORTICES AND SINGULARITIES

The energy flow field line pattern is mainly determined by the
vortices and singularities in the field of the Poynting vector. At the
center of a vortex or any other singularity, the Poynting vector van-
ishes, leaving the direction of ¢ undetermined. At the center of a
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FIG. 7. Shown is the energy flow diagram for a dipole oscillating under 45° with

81 zlauiSiand sy mimeuicaly plced itiirespectli e MiTors, FIG. 8. The same dipole of Fig. 7 is now further away from the origin of coordi-

nates, and two vortices appear.

__________ -
\\\\\\\\\\ \\\Q

vortex, the magnetic field vanishes.”” In the yz plane, the complex — |
amplitude of the magnetic field is along the x axis, so for b to Z
vanish, both the real parts and the imaginary part of b, have to be

zero at the same point in the yz plane. We solve Reb, =0 1
and Imb, = 0 numerically. The solution of each equation can be
represented by a set of curves in the yz plane. We use solid curves
for the solutions of Reb, = 0 and dashed curves for the solutions of
Imb, = 0. At the intersection of a solid curve and a dashed curve,
the magnetic field is zero, and this indicates the center of a vortex.
Figure 10 shows the solutions of Reb, =0 and Imb, = 0 for the
field line pattern in Fig. 5, so for y = a/3, hy =10, and h, = 5.
The two black circles indeed correspond to the locations of the two
vortices in Fig. 5.

At any singularity, ¢ = 0. Since ¢ is in the yz plane and real,
we set 0, = 0and o, = 0 to find all singularities. The solutions of
oy = 0 are represented by sets of solid curves, and the solutions of
o, =0 are indicated by dashed curves. At any intersection
between a solid curve and a dashed curve, we must have a singu-
larity. Figure 11 shows the singularities for the flow lines in Fig. 5.
In the middle of the graph are four singularities, and comparison
with Fig. 10 then tells us which singularities are centers of vortices
(black circles) and which are other singularities (white circles). At
these other singularities, we have points where field lines split,
and it can be shown that at these points e*x b is imaginary. On
the z axis, the Poynting vector is necessarily along the z axis, so
the z axis is a solid curve. Similarly, the y axis is a dashed curve.
In Fig. 11, the solid curve coming down from the dipole hits the y
axis, so this curve ends at a singularity on the y axis. We see from

FIG. 9. The dipole oscillates horizontally and is close to the corner. Field lines
come out of the dipole at the bottom, and some return the dipole at the top.
These are closed loops of energy flow.
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FIG. 10. The intersections between a solid curve and a dashed curve are FIG. 11. The intersections between a solid curve and a dashed curve are
points where the magnetic field vanishes, and these are the singular points at points where the Poynting vector vanishes, and these are the singular points of
the centers of vortices. the flow line pattern.

Fig. 5 that this is indeed a point where field lines split at the
mirror surface. 15
Most of the vortices and singularities appear in the area

between the dipole and the corner of the two mirrors. Such flow o
patterns can be very complicated, and field line graphs are some- Z
times not able to show sufficient detail, unless enlargements are
made, as in Fig. 4. We consider again a dipole located at
h, =10, h, = 5, but now we take

10

1
a=—=(0,1,1. (14)
V2 .-
'¢ . ~ N\
This is a dipole moment, rotating counterclockwise in the yz ) dlpOle N
'

plane. Figure 12 shows the locations of the vortices, and Fig. 13
shows all singularities. Clearly, without considering the locations 5
of the vortices first with Fig. 12, we could never have been able to
determine the nature of the singularities in Fig. 13.

.

VII. FIELD LINES IN THE PLANE OF THE HORIZONTAL
MIRROR

We now consider field lines of the Poynting vector in the xy |
plane. This vector is parallel to the surface at any point in the xy 15
plane, so the field lines are 2D curves in the xy plane for any state y
of oscillation @ of the dipole moment. A typical example is shown
in Fig. 14. As compared to the view in Fig. 1, we now have the

FIG. 12. Shown are the locations of vortices for a rotating dipole moment.
joint x axes to the right, so we look “over the edge, from the left” in 9 dp
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FIG. 13. Shown are the locations of singularities for a rotating dipole moment.

Fig. 1. The dashed white circle is the projection of the dipole onto
the xy plane. For Fig. 14, we have h, = 3, h, = 1, and the dipole

moment rotates counterclockwise in the xy plane.

The dark line at the bottom of the figure is the x axis, so the
second mirror is perpendicular to this and upwards. It seems that
field lines are coming out of the x axis on the left and end on the x
axis on the right. In the Appendix, explicit expressions for the electric

and magnetic field amplitudes for a field point in the xy plane are
given. When we set y = 0, we have ¢, = ¢, and with Eq. (A1) this
gives e = 0, and, therefore, ¢ = 0. The x axis is a singular line and
field lines can end or start there. The magnetic field on the x axis is

. ,‘ql
b = de,(h.ii, — hyii;) (1 + é) eq—z, (15)
1

which is along the x axis. We can also see this as follows. At the
surface of a perfect conductor, e has to be perpendicular to the
surface. The mirrors are joint at the x axis, so e has to be perpendicu-
lar to both surfaces. This is only possible if e is zero. Similarly, b has
to be parallel to the surface of a perfect conductor. At the junction,
this is only possible if b is along the x axis. From e = 0, we have
o = 0, no matter what b is.

Just like for field lines in the yz plane, we can here draw
curves with o, = 0 (solid lines) and o, = 0 (dashed lines). An
example is shown in Fig. 15, where y = 7/3, h}, =5, andh, = 3.
Since the dipole oscillates in the yz plane, the figure is symmetric
between left and right. Here, we have the peculiar situation that on
the top part of the Q-shaped figure the solid and dashed lines coin-
cide. Therefore, this part is a singular curve, and it can be seen that

ARTICLE scitation.org/journalljap
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FIG. 14. The figure shows field lines of the Poynting vector for a dipole
moment, rotating in the xy plane.

the field lines change their direction across this curve. On the lower
part of the Q-shaped figure, the solid and dashed lines separate,
and the field lines cross the solid curves vertically (hard to see in
the figure) and they cross the dashed curves horizontally. Since the
magnetic field is not zero on the Q-shaped curve, these are singu-
larities where e*x b is imaginary. There is both an electric field and
a magnetic field, but e* and b are out of phase, just so as to make
the Poynting vector zero.

Another interesting case is shown in Fig. 16. Here, we have
y = /2, so the dipole oscillates horizontally in the yz plane, paral-
lel to the lower mirror. We have h, = h; = 10. It can be shown
from Eq. (A1) that e is along the z axis, b is along the x axis, and
therefore the Poynting vector is along the y axis everywhere. We
have o, = 0 everywhere, and so the “solid line” is the entire mirror
surface. Consequently, all points on a dashed curve do not only
have o, =0, but also o, = 0. Therefore, the dashed curves are sin-
gular curves, and we see from the figure that the field lines change

their direction across these curves.

N\

AR

.

S==" S~—=_"F
fo P
-5 0 5 x

FIG. 15. The figure shows field lines of the Poynting vector in the xy plane for
a dipole oscillating in the yz plane, under an angle of 60° with the z axis.
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T field line pattern, and we see that the current density changes its
y direction across a singular curve. For a point on the x axis, we have
‘ q1 = ¢z, and we see from Eq. (19) that this gives I = 0. Therefore,
-

15
j ' [ the x axis is a singular line.
~ ~le o e - When ¢ increases, the current density vector I(r, t) oscillates
10:1 Rl T ;.‘:‘ cabal=m" l: 10 back and forth in the x direction at a given field point r. This means
“ro e\ that the singular curves I, = 0 in Fig. 17 change their shape when
~) 1. time passes. Field lines run from one curve to the next one, and the
= - D - directions alternate across each curve. So, if we can find how the
curves move with time, then the field lines just stay between the
1 1 l l l l moving curves as in Fig. 17. We shall consider the curves at field
L l 0 )? points with y > 1, so at least several wavelengths away from the verti-
-10 —D 0 10 cal mirror. We also assume y > h, so the field point is at least several
wavelengths away from the location of the dipole. This corresponds to
FIG. 16. Shown are field lines of the Poynting vector in the xy plane for a the top part of the pattern in Fig. 17. From Eq. (6), we have
dipole oscillating parallel to the horizontal mirror and perpendicular to the verti-

cal mirror.
111 = A /pz + h2 - Zhyf, (20)

VIl. CURRENT DENSITY IN THE MIRRORS with p = (x +j/2)1/2 as the dimensionless distance to the origin. Far
away this becomes

The magnetic field induces a surface current density in the
horizontal mirror according to ¥
Q1 %ﬁ—hy;), (21)
1
i(r, t) = —e, x B(r, 1), (16)

Ho and in the same way, we find

with B(r, ) being the magnetic field just above the surface. Unlike _

the time-averaged Poynting vector, the current density varies with G =p+ hy%, (22)
time, and its time average is zero. We define the dimensionless P

current density I(r, t) = i(r, t)/i,, with i, = {/(1,c). We then have

I(r, t) = Re[e, x b(r)e !]. (17) — 30
The field b at the surface is given by Eq. (A2), and we obtain y 25
immediately =\
2 N - LY\ i@
I(r, t) = ?Re (qu”uz +hay)| 1 +q_ P 20
1 1
—3Re[(q it, + hoiy + 2(hy i —hﬁ)e)(1+i)ei(qz_?)} o —
q% 1| Uz z4| yhz zWy)Cy % > 15 —
(18) <
I gy -
which is now a function of %, ¥ and the dimensionless time vari- 10|t \— f"._» —>
able t = wt. In the figures, we shall draw solid lines for the solu- .t
tions of I, = 0 and dashed lines for the solutions of I, = 0. T — >
As a first example, we set = e,. Equation (18) then simpli- 5t
fies to “
1 1 ‘4—‘ =
I(r, t) = ZhZex{—2 [cos(ql —t) — —sin(q; — ?)] 0 L=
X h X o -15 -10 -5 O 5 10_15
-= [cos(qz — 1) — —sin(gq, — ?)] } (19) X
9 92

FIG. 17. The figure shows field lines of the current density in the horizontal
mirror at t =0 for a dipole oscillating along the x direction. The dipole is
located at (0, 10, 5).

The current density is in the positive or negative x direction, and
the field line diagram is shown in Fig. 17 for t = 0. Also shown are
the solid lines, representing I, = 0. These are singular curves of the
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This gives for the current density
I(r, t) =~ 4—hze sin (h 2) [sin(ﬁ -1+ 1cos(ﬁ - ?)} (23)
o T \Up p '

For a singular curve, the term in square brackets vanishes. This term
only depends on p, for a given £. If we set p = R for a solution, then
the corresponding singular curve is a semi-circle with dimensionless
radius R. So, these radii are solutions of

cot(R —f) = —R, (24)

and this makes R a function of £. When we differentiate Eq. (24) with
respect to £, we obtain

1
—=1+=. (25)

The left-hand side is the rate of increase of R, so this is the dimension-
less speed at which this R grows. This is the radial speed at which the
corresponding circle expands. We can see this as a current density
wave on the xy plane so that this speed is the phase velocity of the
expanding wave. Going back to real variables (rather than dimension-
less variables) then gives for the phase velocity of the expanding waves

= (1 e ) (26)
Voh — C,
P RZ

with ¢ being the speed of light. Clearly, the phase velocity is larger
than the speed of light, and for large R, it approaches the speed of
light. This means that circles with a small radius move faster than
circles far away. This can be understood from Eq. (24). When we
graph the left-hand side and the right-hand side as a function of
R, the solutions are at the intersections of the two graphs. For
large R, the intersections are as good as at the locations of the
asymptotes of the cotangent, so the solutions are approximately
R =nr. At smaller distances, the values of R are somewhat
smaller, and so the spacing between the solutions is bigger.
Therefore, a wave front (singular curve) with smaller R has to
cover more distance in the same time than a wave front with large
R, and, therefore, it must have a larger phase velocity. This also
shows that the singular curves are approximately 7 apart, and this
is half an optical wavelength.

Equation (15) gives the complex amplitude of the magnetic
field on the x axis. With Eq. (17), we then find for the current
density on the x axis,

I(r, t) = eyizRe {(hzily — hyit;) (1 + i) eiq‘} , 27)
qi q1

and we see that it is in the positive or negative y direction.
Therefore, the current density flows toward the intersection of the
mirrors or away from it, and under 90°. The current density is only
zero on the x axis if & = e, as in the example above. Figure 18
shows the field lines of the current density for y = 60° at t=0.
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FIG. 18. Shown are field lines of the current density in the horizontal mirror for
y =3 and t = 0. The dipole is located at (0, 9, 7).

When time progresses, the singular curves expand, similar to the
case of the linear dipole along the x axis. At some locations on the
x axis, the current flows toward the x axis, and at other places, it
flows away from it. Due to the scale of the figure, it cannot be seen
what happens in the neighborhood of x = 0. An enlargement is
shown in Fig. 19, and we see that, in this region, the current flows
in the positive y direction. Obviously, current cannot be created at
the x axis, and the only possibility is that it flows toward the xy
plane along the vertical mirror. For the current density in the verti-
cal mirror, just above the x axis, we find

I, ) = —e, Re {(hzay — hyit,) <1 + i) efq'} . (@8)
q q1

1

Here, the term in square brackets is the same as in Eq. (27),
so when the current from Eq. (27) flows away from the x axis,
then the current from Eq. (28) flows toward the x axis. The
current flowing down the vertical mirror hits the x axis under
90°. Then, it makes a 90° turn and continues flowing away in
the xy plane, initially under 90°. Figure 20 shows the current
density in the xz plane for the same parameters as in Figs. 18
and 19. The view here is that x goes to the right, and z goes
up, so we look at the vertical mirror from behind, which is from
the left in Fig. 1.

Finally, we consider a dipole moment rotating in the xy plane.
For such a dipole, the polarization vector is @ = (1, i, 0)/+/2. The
current density in the xy plane is shown in Fig. 21, where we took
the dipole to be located at (0,10,5). There are no singularities or
vortices for this case. A close inspection of the graph shows that

J. Appl. Phys. 127, 083101 (2020); doi: 10.1063/1.5140744
Published under license by AIP Publishing.

127, 083101-9


https://aip.scitation.org/journal/jap

10

A Wrmeeantl el S i £ /&/A/A\\\\.///Z

M=

22222 = £ T e

2 EEg, A
. = 57~ 52

~ &5 2EET o BN
- Q

S g5 g &8 o

S = 252 -

e R

N e ] o .
P 2
/.u/r /V/V/r/m..mm =

SN

=3 v

lll'/”.\\.
> lU'HVm (@)

- s Ny

~ T

a “«‘\vﬁ

5a il -
53 7 T T A =]
—uuw. o _ 0 ol

2z

o~
(o} o Qo



https://aip.scitation.org/journal/jap

Journal of
Applied Physics

AN

=

)))\)\\%:4/5’ \
L5

AR

FIG. 23. Shown is an enlargement of a part of Fig. 21, in the neighborhood of
the dipole. The field lines going down in the top-left of the figure form the end of
the incoming spiral. At the dipole, they continue as the beginning of the outgoing
spiral, running to the left under the dipole in the lower part of the diagram.

X

0
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and returns near X = 5 on the right. The curve spirals in until it
passes through the projection of the dipole (dashed circle), and
then it reverses its direction to a clockwise rotation. At out near
X =10 it leaves the picture and then it continues inside the view
to out on the left. Finally, it leaves the picture at out on the right.
The clockwise outgoing spiral runs in between the counterclock-
wise incoming spiral, and as such the whole picture is one curve,
except that near the vertical mirror on the x axis we imagine that
it “continues” outside the horizontal mirror. All field lines of the
current density come in approximately over the incoming spiral.
At some point along the incoming spiral, a field line makes turn,
either left or right, and catches up with the outgoing spiral. Then,
the field line continues spiraling outward along this outgoing
spiral. An enlargement of this splitting along the spiral in left
and right going field lines is shown in Fig. 22, and Fig. 23 shows
an enlargement of the transition from incoming to outgoing at the
location of the dipole.

VIl. CONCLUSIONS

We have considered an oscillating electric dipole near the
corner of two orthogonal mirrors, as depicted in Fig. 1. The
electric and magnetic fields in the space between the mirrors are
identical to the fields by the dipole and three mirror images, as
shown in Fig. 2. We have studied the field lines of energy flow
in the yz plane for a dipole moment oscillating or rotating in
the yz plane. The field lines have very intricate structures,

ARTICLE scitation.org/journalljap

depending on the state of oscillation of the dipole and the dis-
tances to each of the mirrors. Numerous vortices and singulari-
ties appear. It was shown that field lines that seem to end at the
center of a vortex are part of a 3D bundle of field lines that
approach the dipole and then swirl away after passing near the
center of the vortex. The flow line patterns are largely deter-
mined by the presence of singularities and vortices in the flow
field. We have shown that the locations of vortices can be found
by solving for the points where the magnetic field complex
amplitude vanishes. On solid curves in the figures, the real part
of the magnetic field amplitude vanishes, and on dashed curves,
the imaginary part is zero. Any intersection of a solid curve
with a dashed curve then signifies the location of a vortex.
Similarly, by considering curves where the y (solid curves) and z
(dashed curves) components of the Poynting vector are zero,
any intersection of a solid curve and a dashed curve represents a
singularity. By comparison with a graph showing where the
magnetic field vanishes for the same parameters, we know
which intersections indicate centers of vortices. The remaining
singularities are points in the flow pattern where field lines split
in different directions or where field lines end.

The dipole and its images induce a surface current density
in the mirrors. Equation (18) gives an explicit expression for this
current density in the horizontal mirror (xy plane). We now
draw curves in the current flow diagrams where the x component
(solid curves) or the y component (dashed curves) of the surface
current density is zero. At an intersection between a solid curve
and a dashed curve, we have a singularity on the flow diagram.
We see in Fig. 18 that the dashed and solid curves are as good as
identical, except close to the vertical mirror. For a linear dipole,
field lines run approximately radially outward or inward, and a
field line changes direction every time it crosses a singular curve.
It was shown that the singular curves expand with time, with a
phase velocity greater than the speed of light. In between singular
curves, the current density keeps its direction (inward or
outward), so the entire picture expands rapidly, with new singu-
lar curves being produced at the location of the projection of the
dipole onto the xy plane. Current flowing to the intersection of
the mirrors hits the intersection line under 90°, and it continues
to flow in the vertical mirror.

For a dipole moment rotating in the xy plane, the current
density also changes direction across curves, but these are not sin-
gular curves, and they are not closed curves. Field lines come in
along an in-spiraling curve, and then suddenly deviate to the left or
the right. They catch up with another arm of the same spiral, and
this part of the spiral runs outward, in between the curves of the
incoming part of the spiral. The spiral expands in time with a
phase velocity larger than the speed of light, and the current flow
field line pattern expands with it.

APPENDIX: FIELDS IN THE xy PLANE

The complex amplitude of the electric field of each of the four
dipoles is given by Eq. (4), with q’s given by Egs. (6)-(9) and @’s
are shown in Fig. 2. The total field is the sum of the four. For a
field point in the xy plane, we have g, = q; and g3 = ¢, and with
some manipulations we find
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e=2e {u + (g @k {u 130 ﬁ)h]i<1+i>}ei£
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_ 2ez{uz Jr—z(q1 - 2yu},)hz + |:uZ +—2(q1 S — 2yuy)hzj| — <1 +—>}— (A1)
93 9z 92 92 q2

Here, the reference to the image dipoles has disappeared, except
that the distance g, is still there. The electric field complex ampli-
tude is in the z direction, so perpendicular to the surface, as it
should be. For the magnetic field complex amplitude, we find

2 N N i ;
b= __zez X (ql,Huz + hzuH)(l +_> e
4 q

2 R R . R i\
+?ez X (qy itz + hoty + 2(hyit; — ity ey) (1 + ;) et (A2)
2 2

for a field point in the xy plane. We see that b is in the xy plane, as
it should be. Here, we have

q=&y- hy, 0), (A3)

iy = (@b, i1y, 0). (A4)
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