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Electric dipole power emission near an ENZmedium
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ABSTRACT
Power emission by an electric dipole near an interface is considered. We derive explicit expressions
for the emitted power for any state of oscillation of the dipole, without making use of the mate-
rial properties of the substrate, and we derive an expression for the power crossing the interface.
It is shown that the power naturally splits in contributions from travelling and evanescent incident
waves. Only the part with the evanescent waves contributes to the transmitted power. We then con-
sider an epsilon-equal-zero material and obtain explicit expressions for the power. It is shown that
only travelling waves contribute, and that no power crosses into the material. When the slightest
amount of absorption is present in the medium, the evanescent waves kick in, and in such a way
that the emitted power diverges when the distance between the dipole and the interface becomes
small.
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1. Introduction

A particle with an oscillating electric dipole moment will
emit electromagnetic radiation. The energy emission rate
of the particle is not only determined by the state of oscil-
lation of the dipole moment, but also by its environment.
Reflected radiation by, for instance, a nearby interface,
influences the emission rate. Such alterations of the emis-
sion rate have been observed experimentally for Rydberg
atoms in a cavity (1) and in between parallel mirrors
(2). Similarly, the fluorescence emission rate of molecules
near a substrate is affected by the material, as was exper-
imentally confirmed in the celebrated experiments by
Drexhage (3). Numerous theoretical approaches have
been presented (4,5). The angular spectrum approach
(6,7) is based on Weyl’s representation of the scalar
Green’s function, but also Sommerfeld’s representation,
involving a Bessel function, is widely used (8,9). Theo-
retical predictions have been verified experimentally for
dipoles near a conducting surface (10,11), and exten-
sions to wave guide structures have been studied (12).
For atoms,molecules, nano- andmicroparticles, the elec-
tric dipole moment will provide the dominant mode of
radiation. When such a small particle is irradiated by
a laser beam of angular frequency ω, an electric dipole
moment will be induced. With d the complex amplitude
of the oscillating dipole moment, the emitted power is
given by (13)
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Po = ω4

12πεoc3
d∗ · d, (1)

when the particle is surrounded by free space only. We
shall set d = doû, with do > 0 and û∗ · û = 1. Then the
amplitude do is determined by the laser power, and the
polarization û of the dipole moment is determined by
the polarization of the laser electric field. When û is real,
apart from a possible overall phase factor, the oscillation
is linear. When û is complex, the dipole moment rotates,
and traces out an ellipse in a plane.

In general, the time-averaged emitted power by an
oscillating electric dipole is given by (14)

P = 1
2ωIm[d∗ · E(ro)], (2)

with E(ro) the complex amplitude of the electric field
at the location ro of the dipole. This field is the field
by the dipole itself, the source field, and, for instance,
the field reflected by an interface. If we only consider
the source field, expression (2) reduces to Po from
Equation (1) (14). When the particle is located near an
interface, the reflected electric field adds to E(ro), and the
power acquires an additional term due to the reflected
field.

We shall consider the power emitted by an electric
dipole near the surface of an epsilon-near-zero (ENZ)
material. Suchmaterials are usuallymetamaterials. These
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artificial media are sub-wavelength structures that effec-
tively act as a continuum for the frequency range under
consideration. By tailoring the structures, in principal
any values of the (relative) permittivity ε and (relative)
permeability μ can be obtained. However, such media
also occur naturally in nature. For instance, a metal near
the plasmon resonance has a permittivity with a real part
almost zero, and a small imaginary part. The permit-
tivity is a function of the frequency, and this leads to
dispersion of a wave packet or pulse. This is the basis
for the generation of slow light. For the present problem,
we consider a dipole oscillating at a single frequency. An
ENZ medium is a material with ε ≈ 0 and μ = 1. The
first demonstrations of metamaterial ENZmedia were in
the microwave and terahertz regions (15–19), and later
ENZ materials for the visible part of the spectrum were
constructed (20–22). ENZ materials are nearly impene-
trable for radiation. When a plane wave is incident upon
the interface, the wave in the material is evanescent, and
does not propagate into the medium (23). An exception
is when the wave is under (near) normal incidence. Then
an oscillating electric field penetrates the material, but it
has no spatial dependence. This phenomenon is called
‘static optics’. It can be used for letting radiation tunnel
(or funnel) through the material without loss of phase
information (24–29). It also allows for the construction
of an angular filter (30–33). Another prediction is that the
force between the dipole and the ENZ surface is repulsive
(34–37), leading to possible levitation of the particle. A
line source near an epsilon-near-zerometamaterial inter-
face has been predicted to produce a strongly directed
beam (38), and epsilon-near zero substrates have been
shown to significantly enhance second harmonic gener-
ation (39), as compared to ordinary dielectrics or metals.
We shall show that the presence of an ENZ interface
greatly affects the power emission rate. An interesting
aspect of this problem is that it can be solved analytically,
whereas for other media one has to resort to a numerical
approach.

2. Electric dipole near an interface

We first consider the more general case of an electric
dipole located a distance H away from the interface with
a material, as illustrated in Figure 1. The dipole is located
on the z-axis, and we take the surface as the xy plane.
The dipole is embedded in a medium with permittiv-
ity ε1 and permeability μ1, both assumed to be positive
That assumption is not really a necessary restriction at
this point, but we shall see below that it provides a huge
computational advantage. The index of refraction is then
n1 = (ε1μ1)

1/2. Themedium can be a half-infinite mate-
rial, or a more complicated stratified structure. We shall

Figure 1. Thefigure shows schematically the setupunder consid-
eration. The dipole is located a distance H below an interface with
a material medium. Partial waves in the angular spectrum can be
travelling, indicated by arrows, or evanescent in the z-direction,
indicated by dashed lines. Due to boundary conditions, eachwave
vector must have the same parallel component k||. The transmit-
ted wave vector shown is for a semi-infinite medium, but that is
only for illustration.

for now only assume that the reflection of a plane wave
can be accounted for by the Fresnel reflection coefficients
Rs and Rp for s and p polarized radiation, respectively.

The electric field, emitted by the dipole, is the source
field, and it can be represented by an angular spectrum of
plane waves. We have (40)

Es(r) = iμ1kodo
8π2εo

∑
σ=s,p

∫
d2k||

eik||·r

v1

× (û · eσ ,i)eσ ,ieiv1(h+koz) , −H < z < 0. (3)

We have set h = koH for the dimensionless distance
between the particle and the surface. For each k|| this is
a plane wave, and the integral runs over the k|| plane,
which is the xy plane. The wave vector of a partial wave is
ki = k|| + kov1ez, and these waves are the incident plane
waves on the surface. Here, v1 is the dimensionless z
component of the wave vector. First, we set

α = k||
ko

, (4)

for the dimensionless magnitude of k||. From the disper-
sion relation it then follows that

v1 =
⎧⎨
⎩

√
n21 − α2, 0 ≤ α < n1

i
√

α2 − n21, n1 < α < ∞
. (5)

For α < n1, the z component of the incident wave vec-
tor is real, and the plane wave is a travelling wave.With θi
the angle of incidence, we have α = n1 sin θi. For α > n1,
the z component of the incident wave is positive imagi-
nary, and the wave decays exponentially in the positive
z-direction, which is the direction towards the surface.
These are the evanescent waves of the incident field.
This is schematically depicted in Figure 1. For α = 0, we
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have normal incidence, and for α � n1 we have graz-
ing incidence. Borderline is α = n1, for which v1 = 0.
We then get a division by zero on the right-hand side
of Equation (3). We shall see below that this singularity
is integrable, and can be transformed away by a proper
change of variables. The polarization vectors of an inci-
dent wave are

es,i = ez × k̂||, (6)

ep,i = 1
n1

(αez − v1k̂||), (7)

given k̂|| = k||/k||, the unit vector in the k|| direc-
tion. The corresponding magnetic field follows, in gen-
eral, from the electric field as <script type= "math/tex;
mode=display"id= "MathJax-Element-46 ">

B(r) = − i
ω

∇ × E(r). (8)

</script>The field from Equation (3), together with the
corresponding magnetic field, is the incident field on
the interface. The reflection of each partial wave can be
accounted for by a Fresnel reflection coefficient. We thus
find the angular spectrum of the reflected electric field to
be

Er(r) = iμ1kodo
8π2εo

∑
σ=s,p

∫
d2k||

eik||·r

v1

× (û · eσ ,i)eσ ,rRσ eiv1(h−koz) , z < 0. (9)

The wave vector of a partial reflected wave is kr = k|| −
kov1ez, which only differs from ki in the sign of its z com-
ponent. If the incident wave is travelling, then so is the
reflected wave. When the incident wave is evanescent, so
is the reflected wave, but this wave decays into the direc-
tion away from the surface, as it should be. The polariza-
tion vector es,r is the same as es,i from Equation (6). For
p polarization, vector ep,r follows from Equation (7) by
replacing v1 by −v1. The reflected magnetic field follows
from Er(r) as in Equation (8).

3. Power emission

The emitted power by the dipole is given by Equation (2),
with E(ro) = Es(ro) + Er(ro), and ro = −Hez. For the
power, we write

P = Ps + Pr, (10)

in obvious notation. The power due to the source field
cannot be directly computed from the expression for
Es(r) in Equation (3), since this expression only holds for

−H < z < 0. A much simpler approach is given in Ref.
(14). We then immediately find

Ps = μ1n1Po, (11)

with Po the emitted power in free space (Equation 1). The
embedding medium gives an extra factor of μ1n1.

To compute Pr, we set ro = −Hez in Equation (9).
An immediate simplification is that exp(ik|| · ro) = 0.We
then adopt polar coordinates (k||, φ̂) in the k|| plane, and
we change variables from k|| to α as in Equation (4). We
then have k̂|| = ex cos φ̂ + ey sin φ̂, and the polarization
vectors can be expressed in terms of α and φ̂. The Fres-
nel coefficients only depend onα. The integrals over φ̂ are
then elementary.We split the dipolemoment polarization
vector û in its perpendicular and parallel components
with respect to the surface:

û = û⊥ + û||. (12)

We then obtain for the emitted power

P = μ1n1Po[(û∗
⊥ · û⊥)w⊥(h) + (û∗

|| · û||)w||(h)]. (13)

This expression involves the two functions

w⊥(h) = 1 + 3
2n31

Re
∫ ∞

0
dα

α3

v1
e2ihv1Rp(α), (14)

w||(h) = 1 + 3
4n31

Re
∫ ∞

0
dα

α

v1
e2ihv1

× [n21Rs(α) − v21Rp(α)]. (15)

The attractive result (13–15) holds for any dipole polar-
ization û, and no use has been made of any properties
of the reflection coefficients (apart from the fact that they
are rotationally symmetric around the z-axis, so they only
depend on α). The terms ‘1’ on the right-hand sides give
Ps from Equation (11), since û∗

⊥ · û⊥ + û∗
|| · û|| = 1.

4. Travelling and evanescent contributions

The integration range 0 ≤ α < n1 in Equations (14) and
(15) represents the contribution from the travelling inci-
dent waves in the angular spectrum. Similarly, the range
n1 < α < ∞ accounts for the evanescent dipole waves.
We split the functions accordingly:

wγ (h) = 1 + wγ (h)tr + wγ (h)ev , γ = ⊥, ||. (16)

For the travelling parts, wemake the substitution, similar
as in Ref. (38):

n1u =
√
n21 − α2 (tr) (17)
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This yields the new representations

w⊥(h)tr = 3
2
Re

∫ 1

0
du eiβu(1 − u2)Rp, (18)

w||(h)tr = 3
4
Re

∫ 1

0
du eiβu(Rs − u2Rp). (19)

Here we introduced

β = 2n1h, (20)

and the dependence on h only enters through β . As com-
pared to Equations (14) and (15), the 1/v1 singularity
has disappeared, and so has the v1 in the exponent. The
Fresnel coefficients are now evaluated at

α = n1
√
1 − u2 (tr). (21)

For the evanescent contributions, we set

n1u =
√

α2 − n21 (ev), (22)

so that for the Fresnel coefficients we need to take

α = n1
√
1 + u2 (ev). (23)

We then obtain the new representations

w⊥(h)ev = 3
2

∫ ∞

0
du e−βu(1 + u2)ImRp, (24)

w||(h)ev = 3
4

∫ ∞

0
du e−βuIm(Rs + u2Rp). (25)

Interestingly, only the imaginary parts of the Fresnel coef-
ficients come into these representations. We will see the
significance of this for ENZ media in Section 9.

It is worthwhile noticing that the clean splitting in
tr+ ev is a result of our assumption that there is no damp-
ing in the embedding medium. If ε1 or μ1 would have
an imaginary part, then n1 would be complex, and so it
would not be on the line of integration. Furthermore, we
shall see in the next section that the travelling and evanes-
cent parts of the emitted power have distinct physical
interpretations.

5. Power through the interface

Conservation of energy implies that the emitted power P
by the dipole either radiates away into the region z < 0,
where it ends up in the far field, or it passes through the
surface. We shall write

P = P⊥ + P1, (26)

and here P⊥ represents the part that crosses the interface,
whereas P1 is the part that propagates to the far field in

medium 1. In this section, we derive an expression for
P⊥, without any assumptions yet about thematerial of the
medium.

The flow of energy is accounted for by the time-
averaged Poynting vector S(r). In the embedding med-
ium, the region z < 0, this vector is

S(r) = 1
2μoμ1

Re[E(r)∗ × B(r)]. (27)

The power passing through the surface z = 0 is then

P⊥ =
∫
xy plane

S(x, y, 0) · ez dA. (28)

With a vector identity this can be written as

P⊥ = 1
2μoμ1

Re
∫
xy plane

E(x, y, 0)∗ · [B(x, y, 0) × ez]dA.

(29)
Both the electric and the magnetic fields are the sums

of the source field and the reflected field. With Equa-
tions (3) and (9) we find

E(x, y, 0) = iμ1kodo
8π2εo

∑
σ=s,p

∫
d2k||

eik||·r

v1
eiv1h

× (û · eσ ,i)[eσ ,i + Rσ (α)eσ ,r]. (30)

The magnetic field follows from Equation (8), and after
working out the cross products between ez and the polar-
ization vectors we find

B(x, y, 0) × ez = iμ1kodo
8π2εo

n1
c

∫
d2k||

eik||·r

v1
eiv1h

×
{
v1
n1

(û · es,i)[1 − Rs(α)]es,i

− (û · ep,i)[1 + Rp(α)]k̂||
}
. (31)

The right-hand sides of Equations (30) and (31) are
then substituted into Equation (9). We are then left with
a product of two angular spectra, whichmay seem daunt-
ing. However, the dependence on x and y only enters
through the exponentials exp(ik|| · r), and orthogonality
comes to the rescue:

∫
xy plane

ei(k||−k||′)·rdA = 4π2δ(k|| − k||′). (32)

When integrated over the xy plane, there is no coupling
between different k|| modes of E and B. As in Section 3,
we adopt polar coordinates (k||, φ̂) in the k|| plane. The φ̂

dependence only enters through the various polarization
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vector, and the integrations over φ̂ are easy. The result
simplifies considerably:

P⊥ = 3μ1

8n21
PoRe

∫ ∞

0
dα

α

v1
e−2hImv1{n21[1 + Rs(α)]

× [1 − Rs(α)∗](û∗
|| · û||) + [1 + Rp(α)]

× [1 − Rp(α)∗][v21(û
∗
|| · û||) + 2α2(û∗

⊥ · û⊥)]}.
(33)

At this point, it is advantageous to split the α integral in
its travelling and evanescent parts. We make use of the
fact that v1 is real for travelling waves and imaginary for
evanescent waves, as shown in Equation (5). After some
regrouping, we finally obtain

P⊥ = μ1n1Po
{ 1
2 + (û∗

⊥ · û⊥)[w⊥(h)ev − z⊥]

+ (û∗
|| · û||)[w||(h)ev − z||]

}
. (34)

Here we introduced the functions

z⊥ = 3
4n31

∫ n1

0
dα

α3

v1
|Rp(α)|2, (35)

z|| = 3
8n31

∫ n1

0
dα

α

v1
[n21|Rs(α)|2 + v21|Rp(α)|2]. (36)

The result (34) has an interesting interpretation. The ½
gives half of Ps from Equation (11). This term represents
the fact that half the radiation thatwould be emittedwith-
out the interface is emitted towards the interface. The
terms with z⊥ and z|| represent the part that is reflected
back into the region z < 0. They give a negative contri-
bution, and they only depend on the absolute value of the
Fresnel reflection coefficients. These functions are inde-
pendent of h, and they only contain travelling waves, as
can be seen from the integration limits. The functions
w⊥ and w|| represent interference between source waves
and reflected waves. Oddly enough, only the evanescent
parts of these functions contribute to the transmission
of power through the interface. This also implies that
the travelling parts of these functions represent emitted
power that travels directly to the far field in z < 0.

For the functions z⊥ and z|| we can make the same
change of variables as in Equation (17). This yields the
simpler-looking forms

z⊥ = 3
4

∫ 1

0
du(1 − u2)|Rp|2, (37)

z|| = 3
8

∫ 1

0
du(|Rs|2 + u2|Rp|2). (38)

The Fresnel coefficients are here evaluated at α from
Equation (21).

6. Emitted power near an ε = 0medium

We now consider the case where the medium is an ε = 0
material. We then have ε = 0, μ = 1, and we shall also
assume μ1 = 1 for the embedding medium. The Fresnel
reflection coefficients for such a medium are (23)

Rs(α) = 1
n21

(v1 − iα)2, (39)

Rp(α) = −1, (40)

with v1 given by Equation (5). For a travelling wave, we
have α = n1 sin θi, with θi the angle of incidence. Then
v1 = n1 cos θi, and v1 − iα = n1 exp(−iθi). Therefore

Rs(α) = e−2iθi (tr), (41)

and we have |Rs(α)| = 1. For evanescent waves, Rs(α) is
real and limited by

− 1 < Rs(α) < 0 (ev). (42)

Figure 2 represents Rs(α) pictorially in the complex
plane.

For evanescent waves, Rs and Rp are real, and with
Equations (24) and (25) we immediately find

w⊥(h)ev = w||(h)ev = 0. (43)

Evanescent waves do not contribute to the emitted
power. With Rp = −1, the integral in Equation (18) can
be computed, and we find

w⊥(h) = 1 + 3
β2

(
cosβ − 1

β
sinβ

)
. (44)

Figure 2. Shown is the reflection coefficient for swaves. For trav-
elling waves, Rs(α) lies on the unit circle, and its phase angle is
twice the angle of incidence, measured clockwise. For evanescent
waves, Rs(α) is negative.
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Figure 3. The figure shows the two functions that determine the
power emission near an ENZ interface, for n1 = 1.

For the integral in Equation (19), we use Equation (39)
for Rs, and we then obtain

w||(h) = 1 + 3
2β

[
sinβ + 3

β

(
cosβ − 1

β
sinβ

)]

+ 3π
4β

J2(β), (45)

with J2(β) a Bessel function. Expressions (44) and (45)
are parameter free functions of β , and the graphs are
shown in Figure 3 as a function of h. Both w⊥(h) and
w||(h) level off to unity for h large, as it should be, since
for h large the effect of the interface should disappear.

7. Behaviour for h small

Expressions (44) and (45) seem to have negative powers
of β , which suggests that these functions diverge for β ,
or h, small. Figure 3, however, shows that the functions
are finite for h = 0. In order to study the behaviour for β

small, we set Rp = −1 in Equation (18), which gives

w⊥(h)tr = −3
2

∫ 1

0
du (1 − u2) cos(βu). (46)

Then we expand cos(βu) in a series, and integrate
term-by-term. The first term in the series cancels the 1
on the right-hand side of Equation (16), and we find

w⊥(h) = −6
∞∑
k=1

k + 1
(2k + 3)!

(−β2)k. (47)

The first few terms are

w⊥(h) = 1
10β

2 − 1
280β

4 + . . . , (48)

and in particular w⊥(0) = 0. With some more effort, we
find

w||(h) = 1 + 6
∞∑
k=1

k(k + 1)
(2k + 3)!

(−β2)k

+ 3πβ

∞∑
k=0

1
4k+2k!(k + 2)!

(−β2)k, (49)

with the first few terms being

w||(h) = 1 + 3π
32 β − 1

10β
2 + . . . , (50)

from which w||(0) = 1, as in the graph.

8. Power crossing the ε = 0 interface

An interesting question is whether any energy passes
through the interface. The general expression for P⊥ is
given by Equation (34). We already found w⊥(h)ev =
w||(h)ev = 0 for the ε = 0 medium, so it remains to find
z⊥ and z||, defined by Equations (35) and (36). Only trav-
elling waves contribute, and therefore we have |Rs| = 1
and |Rp| = 1. From the representations (37) and (38) we
readily find

z⊥ = z|| = 1
2 , (51)

and therefore

P⊥ = 0. (52)

No energy is transferred through the interface into the
ε = 0 material.

It should be noted, however, that this does not neces-
sarily imply that no energy penetrates the material. It can
very well be that energy crosses into the material locally,
but then returns somewhere close by back to the region
z < 0. Such sub-wavelength back-and-forth oscillations
of energy have been predicted for a regular dielectric-
dielectric interface when the medium is thinner than the
embedding medium of the dipole (41). The fact that P⊥
vanishes only implies that the net energy flow across the
interface is zero.

9. Role of damping

A medium with ε exactly equal to zero is most likely not
possible to construct with metamaterial technology. The
functions w⊥(h) and w||(h) shown in Figure 3 are uni-
versal functions representing the power emission near an
interface, with ε identically equal to zero. For arbitrary
ε, these functions can be obtained by numerical integra-
tion of the representations given in Equations 18, 19, 24
and 25. A typical example of w⊥(h) is shown by the solid
curve in Figure 4 for ε = 0.1 ∗ i. The dashed curve is the
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Figure 4. Shown is the function w⊥(h) for ε = 0.1 ∗ i (solid
curve) and ε = 0 (dashed curve).

same as the solid curve in Figure 3. Themost striking fea-
ture is that w⊥(h) diverges for h → 0 for ε 
= 0. For an
ENZ material, ε is close to zero, but not exactly equal to
zero. Apparently, this makes a big difference.

The travelling part ofw⊥(h) is given by Equation (18).
The integral is over a finite range, and is therefore finite.
This implies that the diverging behaviour for h small
has to come from the evanescent contribution from
Equation (24). With ε the permittivity of the medium
and ε1 the permittivity of the embedding medium of the
dipole, the Fresnel reflection coefficient for p waves is

Rp = εv1 − ε1v
εv1 + ε1v

. (53)

Here, v1 is given by Equation (5), and since we are con-
sidering the evanescent range, α > n1, this parameter is
positive imaginary. The parameter v is defined similarly

v =
√
n2 − α2. (54)

Here, n = √
ε is the index of refraction of thematerial,

which is complex, in general. This v is the dimensionless z
component of the plane wave that is transmitted into the
medium. For an ε = 0 material we have v = iα, and this
makes Rp real. Therefore, ImRp = 0, and w⊥(h)ev = 0.

Let us now consider what happens when ε 
= 0. In
Equation (54), α > n1, since we are considering the
region where the incident waves are evanescent. Assume
first that ε is real and positive, like for an ordinary dielec-
tric. If ε < ε1, then n < n1, and v1 is positive imaginary,
since α > n1. Then the transmitted wave is evanescent,
Rp is real, ImRp = 0, and w⊥(h)ev = 0. For ε > ε1 we
introduce the parameter

uo =
√

ε

ε1
− 1, (55)

which is positive. For 0 ≤ u < uo the transmitted wave
is travelling, v is real, |Rp| = 1, ImRp 
= 0. For u > uo,

Figure 5. The graph shows the imaginary part of Rp as a function
of u for ε1 = 2 and ε = 5 + 2 ∗ i.

Figure 6. The graph illustrates that the approximation of w⊥(h)
by the term shown on the right-hand side of Equation (58) is
excellent at small distances.

the transmitted wave is evanescent, and ImRp = 0. So, in
this case, the integral over u in Equation (24) runs to uo,
rather than infinity, and this gives a finite contribution to
w⊥(h)ev.

Apparently, when ε > 0 the contribution of w⊥(h)ev
to w⊥(h) is either zero or finite. We now consider the
situation where ε has a positive imaginary part, respon-
sible for damping in the material. Then ImRp 
= 0 for
all u, and the integral in Equation (24) runs to infinity.
The part u2 exp[−βu] of the integrand has a maximum
at u = 2/β , and that maximum is 4/(e2β2). For β (and
h) small, this maximum moves to high u values, and the
peak height increases as 1/β2. This function is multi-
plied by ImRp. This function is shown in Figure 5 for
ε1 = 2 and ε = 5 + 2 ∗ i. We see that ImRp levels off
to a constant, already for moderate values of u. Since
u2 exp[−βu] gives themain contribution from the region
u ∼ 2/β , we can replace ImRp(u) by ImRp(∞) as a good
approximation for β small. For u large, we have v ≈ v1,
and we find with Equation (51)

Rp(∞) = ε − ε1

ε + ε1
. (56)
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Taking the imaginary part and using that ε is small then
gives

ImRp(∞) = 2
ε1
Imε. (57)

Then the integral in Equation (24) is easily computed. For
Imε 
= 0 this is then the dominant term for β small. We
thus obtain

w⊥(h) = 6
ε1β3 Imε + . . . , (58)

and along similar lines we find

w||(h) = 3
ε1β3 Imε + . . . . (59)

Figure 6 shows w⊥(h) for ε1 = 5 and ε = 0.1 ∗ i. This is
the solid curve, obtained by numerical integration. The
dashed curve is the approximation by the term shown
on the right-hand side of Equation (58). We see from the
graph that this approximation is excellent for small values
of h. This also shows thatw⊥(h)will always be dominated
by this diverging term for β small, no matter how small
the imaginary part of ε is. For decreasing values of Imε,
the curve moves closer to the vertical axis, but only for
Imε ≡ 0 do we get w⊥(0) = 0, as in Figure 3.

10. Conclusions

The power emitted by an electric dipole embedded in
a medium is given by Ps in Equation (11). When an
interface is present, some radiation is reflected back to
the dipole, and this gives an induced power emission
Pr. The total emitted power P is given by Equation (13)
in terms of the functions w⊥(h) and w||(h) from Equa-
tions (14) and (15). These functions depend explicitly on
the dimensionless distance h between the dipole and the
interface, and implicitly on the material parameters of
the medium through the Fresnel reflection coefficients
Rs and Rp for s and p polarized plane waves, respec-
tively. It is advantageous to split these functions in con-
tributions from travelling and evanescent incident plane
waves, as shown in Section 4. Then the singularity 1/v1
can be removed by appropriate changes of variables. Also,
when considering the total power transmitted through
the interface, only the evanescent parts of w⊥(h) and
w||(h) contribute, as shown in Equation (34).

The functions w⊥(h) and w||(h) can be obtained in
closed form for an ε = 0 interface, as shown in Section 6.
Only the travelling parts of these functions contribute
to the power emission, and the total power crossing the
interface is zero. In Section 9, we have shown that even
the smallest imaginary part in ε of an ENZmaterial leads
to a diverging behaviour of the power when the distance

between the dipole and the surface becomes small. This is
due to the contribution from the evanescentwaves, which
is zero for a material with ε identically equal to zero.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

(1) Goy, P.; Raimond, J.M.; Gross, M.; Haroche, S. Phys. Rev.
Lett. 1983, 50, 1903–1906.

(2) Hulet, R.G.; Hilfer, E.S.; Kleppner, D.Phys. Rev. Lett. 1985,
55, 2137–2140.

(3) Drexhage, K.H. Progress in Optics, North Holland: Ams-
terdam, 1974; pp 163–232.

(4) Chance, R.R.; Prock, A.; Silbey, R.Adv. Chem. Phys. 1978,
39, 1–65.

(5) Ford, G.W.; Weber, W.H. Phys. Rep. 1984, 113, 195–287.
(6) Sipe, J.E. Surf. Sci. 1981, 105, 489–504.
(7) Novotny, L. J. Opt. Soc. Am. A 1997, 14, 91–104.
(8) Sullivan, K.G.; Hall, D.G. J. Opt. Soc. Am. B 1997, 14,

1149–1159.
(9) Sullivan, K.G.; Hall, D.G. J. Opt. Soc. Am. B 1997, 14,

1160–1166.
(10) Holland, W.R.; Hall, D.G. Phys. Rev. Lett. 1984, 52,

1041–1044.
(11) Grunlke, R.W.; Holland, W.R.; Hall, D.G. Phys. Rev. Lett.

1986, 56, 2838–2841.
(12) Holland, W.R.; Hall, D.G. Opt. Lett. 1985, 10, 414–416.
(13) Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley:

New York, 1998; p. 412.
(14) Novotny, L.; Hecht, B. Principles of Nano-optics; Cam-

bridge University Press: Cambridge, 2007.
(15) Edwards, B.; Alù, A.; Young, M.E.; Silveirinha, M.G.;

Engheta, N. Phys. Rev. Lett. 2008, 100, 033903(4).
(16) Lobato-Morales, H.; Murthy, D.V.B.; Corona-Chávez, A.;

Olvera-Cervantes, J.L.; Guerrero-Ojeda, L.G. IEEE Trans.
Microw. Theory Tech. 2011, 59, 1863–1868.

(17) Torres, V.; Orazbayev, B.; Pacheco-Peña, V.; Teniente, J.;
Beruete, M.; Navarro-Cía, M.; Ayza, M.S.; Engheta, N.
IEEE Trans. Antennas Propag. 2015, 63, 231–239.

(18) Massaouti, M.; Basharin, A.A.; Kafesaki, M.; Acosta,
M.F.; Merino, R.I.; Orera, V.M.; Economou, E.N.; Souk-
oulis, C.M.; Tzortzakis, S. Opt. Lett. 2013, 38, 1140–
1142.

(19) Pacheco-Peña, V.; Engheta, N.; Kuznetsov, S.; Gentselev,
A.; Beruete, M. Phys. Rev. App. 2017, 8, 034036(10).

(20) Schwartz, B.T.; Piestun, R. J. Opt. Soc. Am. B 2003, 20,
2448–2453.

(21) Maas, R.; Parsons, J.; Engheta, N.; Polma, A. Nat. Photon.
2013, 7, 907–912.

(22) Vesseur, E.J.R.; Coenen, T.; Caglayan, H.; Engheta, N.;
Polman, A. Phys. Rev. Lett. 2013, 110, 013902(5).

(23) Xu, Z.; Arnoldus, H.F. OSA Contin. 2019, 2, 722–735.
(24) Silveirinha, M.G.; Engheta, N. Phys. Rev. Lett. 2006, 97,

157403(4).
(25) Silveirinha, M.G.; Engheta, N. Phys. Rev. B 2007, 76,

245109(17).
(26) Alù, A.; Engheta, N. Phys. Rev. B 2008, 78 (3), 035440(6).
(27) Powell, D.A.; Alù, A.; Edwards, B.; Vakil, A.; Kivshar, Y.S.;

Engheta, N. Phys. Rev. B 2009, 79, 245135(5).



JOURNAL OF MODERN OPTICS 2051

(28) Edwards, B.; Alù, A.; Silveirinha, M.G.; Engheta, N. J.
Appl. Phys. 2009, 105, 044905(4).

(29) Alù, A.; Engheta, N. IEEE Trans. Antennas Propag. 2010,
58, 328–339.

(30) Enoch, S.; Tayeb, G.; Sabouroux, P.; Guérin, N.; Vincent,
P. Phys. Rev. Lett. 2002, 89, 213902(4).

(31) Alù, A.; Silveirinha, M.G.; Salandrino, A.; Engheta, N.
Phys. Rev. B 2007, 75, 155410(13).

(32) Wang, B.; Huang, K.-M. Progr. Electr. Res. 2010, 106,
107–119.

(33) Alekseyev, L.V.; Narimanov, E.E.; Tumkur, T.; Li, H.; Bar-
nakov, Y.A.; Noginov, M.A. Appl. Phys. Lett. 2010, 97,
131107(3).

(34) Girón-Sedas, J.A.; Mejía-Salazar, J.R.; Granade, J.C.;
Oliveira, O.N. Phys. Rev. B 2016, 94, 245430(5).

(35) Rodríguez-Fortuño, F.J.; Picardi, M.F.; Zayats, A.V. Phys.
Rev. B 2018, 97, 205401(9).

(36) Rodríguez-Fortuño, F.J.; Vakil, A.; Engheta, N. Phys. Rev.
Lett. 2014, 112, 033902(5).

(37) Arnoldus, H.F.; Xu, Z. J. Opt. Soc. Am. B 2019, 36,
F18–F24.

(38) Lovat, G.; Burghignoli, P.; Capolino, F.; Jackson, D.R.;
Wilton, D.R. IEEE Trans. Ant. 2006, 54, 1017–
1030.

(39) Rocco, D.; Vincenti, M.A.; De Angelis, C. Appl. Sci. 2018,
8, 2212(10).

(40) Arnoldus, H.F.; Berg, M.J. J. Mod. Opt. 2015, 62, 244–
254.

(41) Arnoldus, H.F.; Berg, M.J.; Li, X. Phys. Lett. A 2014, 378,
755–759.


	1. Introduction
	2. Electric dipole near an interface
	3. Power emission
	4. Travelling and evanescent contributions
	5. Power through the interface
	6. Emitted power near an = 0 medium
	7. Behaviour for h small
	8. Power crossing the = 0 interface
	9. Role of damping
	10. Conclusions
	Disclosure statement
	References

