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Nanoscale shift of the intensity distribution
of dipole radiation
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The energy flow lines (field lines of the Poynting vector) for radiation emitted by a dipole are in general curves,
rather than straight lines. For a linear dipole the field lines are straight, but when the dipole moment of a
source rotates, the field lines wind numerous times around an axis, which is perpendicular to the plane of
rotation, before asymptotically approaching a straight line. We consider an elliptical dipole moment, repre-
senting the most general state of oscillation, and this includes the linear dipole as a special case. Due to the
spiraling near the source, for the case of a rotating dipole moment, the field lines in the far field are displaced
with respect to the outward radial direction, and this leads to a shift of the intensity distribution of the radia-
tion in the far field. This shift is shown to be independent of the distance to the source and, although of nano-
scale dimension, should be experimentally observable. © 2009 Optical Society of America

OCIS codes: 080.1235, 080.4865, 260.2110.
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. INTRODUCTION
n the short wavelength approximation (the geometrical
ptics limit), light appears to travel along straight lines
rom a source to an observer. These optical rays are the
rthogonal trajectories of the wavefronts, and they coin-
ide, in this approximation, with the field lines of the
oynting vector, representing the flow pattern of the elec-
romagnetic energy [1]. We shall consider radiation emit-
ed by a localized source near the origin of coordinates,
nd we shall assume a time-harmonic source, oscillating
ith angular frequency �, so that the time-averaged
oynting vector S�r� is independent of time. The field

ines of the Poynting vector for an exact solution of Max-
ell’s equations will in general be curves. In the far field,
ach curve approaches asymptotically a straight line,
eminiscent of an optical ray. However, when a field line is
urved close to the source, it may be expected that this
as an effect on the field line distribution in the far field.
igure 1 shows a field line of the Poynting vector for the
adiation emitted by a dipole, with a dipole moment that
otates counterclockwise in the xy plane. The scale in the
gure is such that one wavelength corresponds to 2�.
ear the dipole, the field line swirls around the z axis,
nd in the far field it approaches the straight line l. Due
o the rotation near the source, the asymptotic line l is
isplaced with respect to the line m, which is parallel to l,
ut starts at the origin of coordinates. Therefore, it ap-
ears as if the radiation comes from a point in the xy
lane, which does not coincide with the location of the
ource [2]. The spatial extend of the vortex in Fig. 1 is less
han or about a wavelength, depending on the direction of
bservation and the state of oscillation of the dipole. The
ortex structure of the field line of S�r� near the source
as an effect in the far field, and it can be anticipated that
he displacement shown for a single field line in Fig. 1
1084-7529/09/020395-8/$15.00 © 2
hould lead to an observable shift of the intensity distri-
ution of the radiation at a large distance.

. POYNTING VECTOR FOR A DIPOLE
he dipole moment d�t� of an oscillating electric dipole
an be written as

d�t� = do Re��e−i�t�, �1�

ith do real and vector � normalized as � ·�*=1. The time-
armonic electric field is

E�r,t� = Re�E�r�e−i�t�, �2�

ith E�r� being the complex amplitude; the magnetic field
s represented similarly. For a dipole located at the origin
f coordinates, the fields are [3]

E�r� =
doko

3

4��o
�� − �� · r̂�r̂ + �� − 3�� · r̂�r̂�

i

q�1 +
i

q�� eiq

q
,

�3�

B�r� = −
doko

3

4��oc
� � r̂�1 +

i

q� eiq

q
, �4�

ith ko=� /c, and we have set q=kor for the dimensionless
istance between the field point r and the location of the
ipole. The Poynting vector

S�r� =
1

2�o
Re�E�r� � B�r�*�, �5�

an be evaluated, and the result is
009 Optical Society of America
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�r� =
3Po

8�r2��1 − �r̂ · ���r̂ · �*��r̂ −
2

q�1 +
1

q2�Im��r̂ · ���*�� ,

�6�

ith

Po =
cko

4do
2

12��o
, �7�

hich equals the power emitted by the dipole. For a mag-
etic dipole, the electric and magnetic fields are different,
ut the resulting Poynting vector, Eq. (6), is the same.
Vector � represents the state of oscillation of the dipole.
hen � is real, we have d�t�=do� cos��t�, and therefore

he dipole moment oscillates back and forth along vector �
linear dipole). The Poynting vector from Eq. (6) simplifies
o

S�r� =
3Po

8�r2 �1 − �r̂ · ��2�r̂. �8�

t any field point r the Poynting vector is in the r̂ direc-
ion, and consequently the field lines of the vector field
�r� are straight lines in the radial direction. For an ob-
ervation direction along the dipole axis, e.g., r̂= ±�, we
ave S�r�=0, which expresses the fact that no energy is
mitted along the dipole axis. This makes the dipole axis
singular line of the field line pattern.
When we have �=−�ex+ iey� /	2, the dipole moment vec-

or d�t� has a constant magnitude and rotates with angu-
ar frequency � in the xy plane, and in the counterclock-
ise direction when viewed down the positive z axis. Such
lectric dipole radiation is emitted by an atom in a �m=
1 electronic transition [4]. The rotation of the dipole mo-
ent gives a swirling of the field lines of S�r� around the
axis in the neighborhood of the dipole [5], as illustrated

n Fig. 1. In Eq. (6), this rotation comes from the term

ig. 1. Field line of the Poynting vector for a rotating dipole mo-
ent in the xy plane. At a large distance the field line approaches

he line l. Line m is parallel to line l, but it starts at the origin of
oordinates. The rotation of the field line near the source leads to
n effective displacement of the field line in the far field, as com-
ared to an optical ray that would emanate from the location of
he dipole. We use dimensionless coordinates x̄=kox, ȳ=koy, and
=koz.
ith Im��r̂ ·���*�. Since the term is proportional to 1/q, it
anishes in the far field, and only the contribution propor-
ional to r̂ in S�r� survives. Therefore, it may seem that
ince in the far field we have S�r�� r̂, the field lines of S�r�
hould run in the radial direction. However, near the di-
ole a field line spirals around the z axis, so when it ap-
roaches a straight line in the far field, it is offset as com-
ared to a field line that would emanate from the site of
he dipole. This gives a displacement of the field lines in
he far field, and hence a possible shift in the intensity
istribution in the far field.

. ANGULAR DISTRIBUTION
F THE EMITTED POWER

he power flowing through a surface element dA, located
t point r, into the direction of the unit normal n̂ on dA, is
qual to dP=S�r� · n̂dA. We now consider dA as part of a
phere with radius ro, and with the origin of coordinates
s its center. Then the unit normal n̂ is equal to r̂ at any
oint, and we have dA=ro

2d�, with d� the solid angle cor-
esponding to the surface element dA. The emitted power
er unit solid angle is then

dP

d�
= ro

2S�r� · r̂, �9�

nd with Eq. (6) this yields

dP

d�
=

3Po

8�
�1 − �r̂ · ���r̂ · �*��. �10�

ector r̂ has the significance of the observation direction,
nd in terms of angles 	 and 
 of a spherical coordinate
ystem this vector is

r̂ = �ex cos 
 + ey sin 
�sin 	 + ez cos 	. �11�

herefore, dP /d� in Eq. (10) gives the radiation pattern
s a function of 	 and 
, given a particular value of vector
. When integrated over a 4� solid angle, the total emit-
ed power is Po.

The right-hand side of Eq. (10) is independent of the ra-
ius ro of the sphere, and this may suggest that power
imply flows radially outward, as for the case of a linear
ipole, and as in the geometrical optics limit of light
ropagation. We see from Fig. 1 that the field lines of the
oynting vector wind around the z axis near the dipole,
nd the power flows out of the dipole along such field
ines. The outward power flow dP /d� for a given observa-
ion direction �	 ,
� shows no sign of this rotation of the
eld lines in the near field for any ro. The term with
m��r̂ ·���*� in Eq. (6) is responsible for the rotation of the
eld lines. With Eq. (9) we see that the contribution of
his term becomes proportional to Im��r̂ ·���r̂ ·�*��, and
his is zero.

. INTENSITY DISTRIBUTION
F THE RADIATION ON A PLANE

he angular distribution of the emitted power does not re-
eal the possible circulation of the field lines in the near
eld, no matter the radius r of the sphere. Figure 2
o
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hows several field lines of the Poynting vector for a di-
ole rotating in the xy plane, and we clearly notice an
symmetry in the field line distribution, for instance
long the line ȳ=4 (in dimensionless units, as in Fig. 1),
hich is due to the spiraling behavior of the field lines. To
ossibly observe the rotation of the field lines, we consider
he intensity distribution of the radiation over an image
lane, rather than over a sphere. We take the image plane
s a tangent plane of a sphere with radius ro, and the in-
ersection point will be represented by vector ro. There-
ore, the position of the plane is determined by angles
	o ,
o�, and by its perpendicular distance ro to the origin.
he unit vectors e	o

and e
o
lie in the image plane, as

hown in Fig. 3, and they define a rectangular coordinate
ystem �� ,�� in which the coordinate axes are along the
nit vectors. A point r in the image plane can then be rep-
esented as

r = ro + �e	o
+ �e
o

. �12�

The unit normal vector on the image plane is r̂o for ev-
ry point in the plane. The intensity I (power per unit
rea) at point r in the plane depends on the location of the
lane, specified by ro, and on the coordinates �� ,�� of the
oint with respect to the origin of the plane at ro. The in-
ensity distribution over the plane is therefore

I�ro;�,�� = S�r� · r̂o, �13�

ith S�r� given by Eq. (6). We introduce dimensionless co-
rdinates �̄=ko�, �̄=ko� in the image plane. Since ko is
he wavenumber, a dimensionless distance of 2� repre-
ents one wavelength. Similarly, qo=koro is the dimen-
ionless distance between the dipole and the image plane,

ig. 2. Several field lines in the xy plane of the Poynting vector
or the case of a counterclockwise rotating circular dipole in the
y plane. A bundle of field lines, as in the figure, determines the
ntensity distribution on an image plane (line ȳ=4). The bold
eld line is approximately perpendicular to the image plane, and
uns asymptotically into the observation direction �	o ,
o�, which
s �� /2 ,� /2� in this illustration.
nd for point r in the plane we have

q = 	qo
2 + �̄2 + �̄2, �14�

s the dimensionless distance between this point and the
osition of the dipole. From Eq. (12) we obtain

r̂ =
1

q
�qor̂o + �̄e	o

+ �̄e
o
�, �15�

nd therefore we have r̂ · r̂o=qo /q. The intensity distribu-
ion then becomes

I�ro;�,�� = Io�qo

q �
3�1 − �r̂ · ���r̂ · �*� −

2

qo
�1 +

1

q2�
�Im��r̂ · ���r̂o · �*��� , �16�

ith

Io =
3Po

8�ro
2 . �17�

n Eq. (16), r̂ is given by Eq. (15) and r̂o follows from Eq.
11) with �	 ,
� replaced by �	o ,
o�.

The contribution 1− �r̂ ·���r̂ ·�*� in Eq. (16) is essentially
P /d�, as can be seen from Eq. (10), and this part corre-
ponds to the energy flow in the radial direction. The term
n braces containing Im��r̂ ·���r̂o ·�*�� arises due to the ro-
ation of the field lines. The overall factor �qo /q�3 has two
ontributions: A factor �qo /q�2 comes from S�r�, Eq. (6),
eing proportional to 1/r2, and a factor qo /q results from

ˆ · r̂o=qo /q, e.g., from projecting the radial outflow onto a
lane rather than a sphere. In other words, the factor

ig. 3. Image plane is spanned by the unit vectors e	o
and e
o

,
nd � and � are the corresponding Cartesian coordinates in the
lane. Field lines of the Poynting vector that cross this plane de-
ermine the intensity profile, formed on the plane. The bold field
ine runs asymptotically in the r̂o direction, and crosses the plane
t the location given by the displacement vector qd with respect
o the origin of the plane. This is the same qd as in Fig. 1. Angle

is the angle between the observation direction �	o ,
o�, repre-
ented by r̂o, and the angular location of the field point r in the
bservation plane, as seen from the site of the source.
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o /q accounts for the fact that the field lines are not per-
endicular to the observation plane, as can be seen in
ig. 2.
An intensity distribution Io�qo /q�3 in the image plane

ould be a single peak at the origin, and rotational sym-
etric around the normal vector r̂o. If we set qo /q=cos �,

hen � (see Fig. 3) is the angle between vectors r and ro,
s seen from the location of the dipole. The angular half-
idth at half-maximum of the image on the plane, as
iewed from the site of the dipole, then follows from
qo /q�3=1/2, and this is �=37°. This peak will be altered
ue to the angular dependence of the emitted power in
he radial direction and due to possible rotations of the
eld lines.
As an example, let us consider a linear dipole along the

axis, so �=ey. Since � is real, the field lines of the Poyn-
ing vector are in the radial direction, without any curv-
ng. We take the image plane perpendicular to the y axis,
nd therefore � coincides with the observation direction

ˆo. Equation (16) can then be simplified to

I�ro;�,�� = Io cos3 � sin2 �, �18�

here � is the angular location of a point on the image
lane, as illustrated in Fig. 3. The intensity in the obser-
ation direction ��=0� is zero, and therefore the intensity
as a minimum at the origin of the image plane. The in-
ensity is rotational symmetric around r̂o, and conse-
uently the maximum of the distribution has the shape of
ring. Figure 4 shows the intensity distribution for this

ase. The angular width of the ring is given by cos �
	3/5, which gives �=39°, and the radius of the ring in

he image plane is qo	2/3.

. ELLIPTICAL DIPOLE MOMENT
eatures of the intensity distribution like the ring in Fig.
are of macroscopic nature in the sense that they scale
ith the distance qo between the dipole and the image
lane. The structure of the intensity profile is a result of
he angular distribution of the emitted power, dP /d�. On

ig. 4. Graph of the intensity distribution in an image plane
erpendicular to the y axis, for a dipole moment which oscillates
inearly along the y axis. The dimensionless distance between the
lane and the dipole is qo=2, and the dimensionless radius of the
ing is 1.63.
he other hand, the swirling of the field lines, as in Fig. 2,
an only affect the intensity on a nanoscale, since the spa-
ial dimension of the vortex is of the order of a wavelength
f the radiation. We shall now consider the effect of the
otation of the field lines on the intensity distribution in
etail.
For an arbitrary complex-valued vector �, the dipole
oment d�t� in Eq. (1) traces out an ellipse in a plane

6,7]. We take this plane as the xy plane and parametrize
ector � as

� = −
1

	2 + 1
�ex + iey�,  real. �19�

or �0 ��0� the dipole moment rotates in the coun-
erclockwise (clockwise) direction, when viewed down the
axis, and for = ±1 the ellipse reduces to a circle. For
=0 the oscillation becomes linear along the y axis. The
nit vector r̂ into the direction of a point on the image
lane involves the unit vectors that span the plane, ac-
ording to Eq. (15). Explicitly we have

e	o
= �ex cos 
o + ey sin 
o�cos 	o − ez sin 	o, �20�

e
o
= − ex sin 
o + ey cos 
o, �21�

nd the intensity becomes

I�ro;�,�� = Io�qo

q �
3
1 − �r̂ · ���r̂ · �*�

−
1

qoq
�1 +

1

q2� 2

2 + 1
�̄ sin 	o� . �22�

he last term in square brackets comes from the rotation
f the field lines. We notice that this term is proportional
o the coordinate �̄ in the image plane, and this indicates
hat the peak in the intensity distribution will be shifted
long the �̄ axis. We also see that for �0, as in Fig. 2,
he shift is in the negative �̄ direction, and for �0 the
hift is in the positive direction. For a linear dipole �
0�, the shift vanishes, and for an observation direction r̂o
erpendicular to the plane of rotation of the dipole (	o=0
r �), the shift is zero for any . The displacement term
as an overall factor of 1/ �qoq�, which is O�1/qo

2� in the far
eld �qo→��, and it may seem that at a large distance
rom the source, the shift of the peak should disappear.

e shall see in Section 6 that this is not the case.
The first part in square brackets in the expression (22)

or I�ro ;� ,�� comes from dP /d�, and for an elliptic dipole
e find explicitly:

�r̂ · ���r̂ · �*� =
1

q2

1

2 + 1
�2��̄ cos 
o − �̄ sin 
o�2

+ ��̄ sin 
o + �̄ cos 
o�2�. �23�

ere we have introduced the abbreviation

�̄ = q sin 	 + �̄ cos 	 . �24�
o o o
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. EXTREMUM IN THE INTENSITY PROFILE
N THE FAR FIELD FOR A CIRCULAR
IPOLE
hen the dipole moment rotates in a circle, we have 
±1, and the expression for the intensity distribution on
plane simplifies considerably. From Eqs. (22) and (23)
e obtain

I�ro;�,�� = Io�qo

q �
3
1 −

1

2q2 ��̄2 + �̄2�

−


qoq
�1 +

1

q2��̄ sin 	o� . �25�

he dependence on the observation direction 
o has dis-
ppeared, as could be expected for a circular dipole. The
ast term in square brackets comes from the curving of
he field lines near the dipole, as in Figs. 1 and 2, and this
erm is proportional to �̄. The displacement qd of the field
ines in the far field is in the �̄ direction, and we expect a
orresponding shift of the intensity distribution in the im-
ge plane. When considering the �̄ dependence of
�ro ;� ,�� for fixed �̄, the dependence on �̄ enters through
he parameter q, Eq. (14), and explicitly as �̄2 and �̄ in
q. (25). Without the rotation of the field lines, �̄ only en-

ers as �̄2 and since this is symmetric in �̄ the profile
ould be symmetric in the �̄ direction around �̄=0 in the

mage plane. In particular, the point �̄=0 would be either
local maximum or minimum, and hence any shift of this

ocal extremum would be a reflection of the circulation of
he field lines in the optical near field.

To find the extrema of the intensity distribution, we
rst consider the dependence of I�ro ;� ,�� on �̄, for a given
. Setting �I /��̄=0 yields

�̄
4 −
5

2q2 ��̄2 + �̄2�� = − 
sin 	o

qoq
�qo

2 + �̄2 − 3�̄2�, �26�

nd here we have also assumed detection in the far field,
or which qo�1. For detection along the z axis (	o=0 or �)
e have sin 	o=0, and a solution is �̄=0. To find the gen-
ral solution, we recall that an extremum in the far field
hould scale with qo, so that angle � in Fig. 3 remains con-
tant. When we divide Eq. (26) by qo, then the left-hand
ide becomes constant for qo large, and the right-hand
ide vanishes as O�1/qo�. It can be shown by inspection
hat the factor in square brackets on the left-hand side is
ositive, and therefore we find from Eq. (26) that �̄ /qo

0 for any given �̄. Since there is only one solution, the
xtremum is a maximum in the �̄ direction. Similarly,
I /��̄=0 yields

− 3�̄ +
5�̄

2q2 ��̄2 + �̄2� − �̄ cos 	o = − 
4�̄�̄

qoq
sin 	o, �27�

or qo�1. For detection along the z axis �	o=0 or �) we
ave �̄= �̄ cos 	o, and we see that �̄=0 is a solution of Eq.
27). Also for detection in the xy plane, for which 	o=� /2,
e find that �̄=0 is a solution. When we divide Eq. (27) by

o, then the right-hand side goes to zero, and the remain-
ng equation can be solved for �̄ /q for any given �̄ /q and
o o
o. The equation has one solution, and therefore the ex-
remum in the �̄ direction is a maximum.

It follows from the previous paragraph that the inten-
ity distribution has a single peak in the �̄�̄ plane. When
e indicate the coordinates of the location of the peak by

�̄p , �̄p�, then we have �̄p /qo=0. With �̄p /qo=0, Eq. (27)
ecomes an equation for �̄p /qo, after division by qo. When
e set �= �̄p /qo, Eq. (27) yields

5

2
��sin 	o + � cos 	o�2 = �1 + �2��sin 	o cos 	o + ��3 + cos2 	o��,

�28�

hich is a cubic equation for �, given the observation
ngle 	o. The solution of this equation is shown in Fig. 5.
e see that � is relatively small for all 	o, so that a rea-

onable approximation is obtained by setting �3�0,
2�0. This yields

� �
sin�2	o�

7 sin2 	o − 8
, �29�

hich is shown as the dashed curve in the figure. The
hift of the maximum in the �̄ direction is negative (posi-
ive) for 0�	o�� /2 �� /2�	o���.

. SHIFT OF THE PEAK IN THE FAR FIELD
OR A CIRCULAR DIPOLE
he peak in the intensity distribution is located at �̄p

�qo along the �̄ axis in the image plane, where � follows
rom Fig. 5, given angle 	o. The location of the peak is a
onsequence of the angle dependence of dP /d�, and is in-
ependent of the rotation of the field lines near the origin
f coordinates. The position scales with the distance qo be-
ween the image plane and the dipole, such that the view-
ng angle � is independent of qo. In the �̄ direction, the

aximum appears at �̄p /qo=0, and this leaves the possi-
ility that �̄p is finite, rather than zero. When we set

¯ p /qo=0 and �̄p /qo=� in Eq. (26), we obtain an equation
or �̄p. The solution is

ig. 5. Solid curve shows �, the solution of Eq. (28), as a func-
ion of 	o, and the dashed curve is the approximation given by
q. (29).
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�̄p = − �1 + �2�3/2
2 sin 	o

8�1 + �2� − 5�sin 	o + � cos 	o�2 , �30�

hich is independent of qo, and represents the shift of the
aximum in the far field. For a given 	o, � follows from
q. (28), and hence the shift of the peak along the �̄ axis

s a function of the observation angle 	o only (apart from
he overall = ±1). Figure 6 shows the far-field intensity
istribution for 	o=� /2 with =1. The maximum along
he �̄-axis is located at �̄p=−2/3.

The shift of the peak, �̄p, is zero for 	o=0, � and maxi-
um for 	o=� /2, and the maximum shift at 	o=� /2 is

�̄p=2/3. Figure 7 shows the behavior of the shift as a
unction of 	o for =1. The shift is due to the rotation in
he field lines of the Poynting vector, and we see from Fig.
that the shift is expected to be negative for a dipole mo-
ent which rotates counterclockwise in the xy-plane. The

ight-hand side of Eq. (30) changes sign with , and there-
ore for a clockwise rotating dipole moment the shift is
ositive. When the dipole radiation is emitted by an atom
n a laser beam, the rotation direction of the dipole mo-

ent can be reversed by changing the helicity of the driv-
ng laser from left-circular to right-circular polarized, or
ice versa, for instance by inserting a half-wave-plate.
he peak in the intensity would then shift over 4/3 in di-
ensionless units, and this corresponds to a distance of

� / �3��, with � being the wavelength of the radiation. Al-
hough this shift is of nanoscale size, it should be observ-
ble in experiment. In this fashion, the swirling of the
eld lines of the Poynting vector in the near field could be
bserved by a measurement in the far field.

All field lines of the Poynting vector run radially out-
ard in the far field, but they are displaced with respect

o an optical ray that would emanate from the exact site
f the dipole, as illustrated in Fig. 1. For a given observa-
ion direction �	o ,
o�, there is one field line that runs ex-
ctly into that direction, and this field line intersects the
bservation plane under a right angle (bold field line in
ig. 2). The displacement vector of this field line is a vec-
or in the corresponding observation plane, and this vec-

ig. 6. Graph shows the far-field intensity distribution for a ro-
ating dipole with =1 for observation along the xy plane. The
aximum is located on the �̄ axis at �̄ =−2/3.
p
or is along the �̄ axis. If we write qd= �̄de
o
, then the dis-

lacement of this field line is given by [8]

�̄d = − 
2 sin 	o

2 − sin2 	o
. �31�

oth �̄p and �̄d are shown in Fig. 7, and we see that the
isplacement of the field line is larger than the shift of the
eak in the corresponding intensity distribution. The in-
ensity profile is determined by a bundle of field lines, as
epicted in Fig. 2, and the direction of the central field
ine does not necessarily coincide exactly with the location
f an extremum in the intensity pattern.

. FAR FIELD INTENSITY PATTERN
OR AN ELLIPTICAL DIPOLE

n the most general state of oscillation of a dipole, the di-
ole moment vector traces out an ellipse, and the plane of
his ellipse is taken as the xy plane. The ellipticity is rep-
esented by parameter  in Eq. (19). For =0 the dipole
oment oscillates linearly along the y axis. For = ±1 it

otates along a circle, and for → ±� the oscillation be-
omes linear along the x axis. We shall consider an obser-
ation plane perpendicular to the y axis, so that 	o=
o
� /2. For this example, the intensity becomes

I�ro;�,�� = Io�qo

q �
3�1 −

1

q2�2 + 1�
2�̄2 + qo
2

+ 2�̄
q

qo
�1 +

1

q2��� . �32�

or =0 the profile has a minimum at �̄= �̄=0 and a ring-
haped maximum, as shown in Fig. 4. For =0 we have a
inear dipole, and the field lines of the Poynting vector
un in the radial direction, without any curving. There-
ore, there is no shift �̄p of the extremum (the hole in this
ase) in the far field. For = ±1, the extremum is a peak
t �̄=0 and near �̄=0, as shown in Fig. 6 for =1. The
hift of the peak in the �̄ direction is �̄p=−2 /3.

Possible extrema along the �̄ axis follow from setting
I /��̄=0, �̄=0, and we also let qo�1 for the far field. This
ields �̄=0 and

ig. 7. Shift �̄p of the peak in the intensity distribution and the
isplacement �̄d of the central field line as a function of the ob-
ervation angle 	o, both for a circular dipole with =1. For =−1
oth functions change sign.
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�̄

qo
= ±	 2 − 32

3�2 + 1�
,  � 	2/3. �33�

hen �	2/3, we obtain two solutions �̄ /qo, in addition
o the solution �̄=0. This corresponds to two maxima and
minimum at �̄=0. When �	2/3, we only have �̄=0,

nd therefore this must be a maximum. Similarly, ex-
rema along the �̄ axis follow from setting �I /��̄=0 and
=0. This gives

�̄
52 + 3 −
5

q2 �qo
2 + 2�̄2�� = −

2

qoq
�qo

2 − 3�̄2�. �34�

hen dividing by qo, the right-hand side vanishes in the
ar field. We then obtain the solutions �̄ /qo=0 and

�̄

qo
= ±	2 − 52

3
,  � 	2/5. �35�

e also find either two maxima and a minimum or one
aximum, depending on the value of .
For =0 we have a minimum in both the �̄ and �̄ di-

ections at the origin of the image plane, as shown in Fig.
, and the maximum has the shape of a ring. When  in-
reases, the locations of the maxima along the coordinate
xes change according to Eqs. (33) and (35). These func-
ions of  are shown in Fig. 8, and we see that the di-
ension of the hole decreases both along the �̄ and �̄

xes. Since the decrease along the �̄ axis is faster than
long the �̄ axis, the ring distorts. The dimension of the
ole shrinks in both directions, and the hole becomes
hallower. When  approaches the value of 	2/5, the
axima along the �̄ axis approach the origin of coordi-
ates, and for �	2/5 we only have a maximum at
/qo=0. When  increases further towards =	2/3,
lso the maxima along the �̄ axis approach the origin, and
or �	2/3 we have a maximum at �̄=0. Therefore, for
� �	2/5 the intensity profile has a hole near the ori-
in. For 	2/5� �	2/3 the region around the origin has
he appearance of a saddle point, and for �	2/3 we
ave a single peak, as for =1 in Fig. 6.

ig. 8. Location of the maxima along the coordinate axes in the
�̄ plane as a function of . For   �	2/5 there are two maxima
long both axes, and there is a hole in the middle. For  
	2/3 there is a single peak near the origin of coordinates. In

he region indicated by the double-headed arrow there is a mini-
um along the �̄ direction and a maximum along the �̄ direction

ear the origin.
At the center of the profile we have minimum, a maxi-
um, or a transition between the two, and at the location

f this extremum we have �̄=0 and �̄ /qo=0. Just as for
he circular dipole, the condition �̄ /qo=0 leaves open the
ossibility that �̄ is finite. In Eq. (34) we let �̄ /qo→0. We
hen obtain for the coordinates of the extremum around
he origin of the image plane

�̄p = 0, �̄p =
2

2 − 52 . �36�

he finite shift �̄p is again a result of the rotation in the
eld lines near the source. Figure 9 shows �̄p as a func-
ion of  for  positive. For 0��	2/5 the extremum is a
ole, and Eq. (36) represents the shift of the hole with re-
pect to the origin. We see from the figure that the shift of
he hole is in the positive �̄ direction. In the region
�	2/3, the extremum is a peak, and the shift is in the
egative direction. For  negative, the hole shifts in the
egative direction and the peak shifts in the positive di-
ection. For a circular dipole we have =1 and the mag-
itude of the shift of the peak is equal to �̄p=2/3, as in
ig. 6. This shift increases with decreasing , and at

=	2/3 the magnitude of the shift is �̄p=	3/2. This is a
actor of 1.84 larger than the shift for a circular dipole.
he shift of the hole for �	2/5 can be extremely large,
ut the depth and sharpness of the hole decrease with in-
reasing shift.

. INTENSITY IN THE NEAR FIELD
hus far we have considered the intensity distribution in

he far field. With contemporary experimental techniques
9,10] it has become feasible to detect electromagnetic ra-
iation with nanoscale resolution very close to a source.
n these experiments the electric field vector is measured,
ncluding its direction, within a fraction of a wavelength
rom the source. From these measurements, a field line
attern for the electric field can be obtained, and it should
e possible to construct the field lines of the Poynting vec-
or from these data. Figure 10 shows a typical intensity
istribution on an image plane in the near field for a ro-
ating dipole moment. The positive peak at the left-hand

ig. 9. The shift �̄p for �0 of either the hole or the peak with
espect to the origin of coordinates. In the transition region
2/5��	2/3, there is neither a hole nor a peak in the inten-
ity distribution.
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ide comes from the field lines passing through the plane
n the outward direction, and the negative peak on the
ight represents field lines passing the plane in the oppo-
ite direction. This image is a direct consequence of the
piraling of the field lines near the source. A field line can
ass through the plane on the left, and then this same
eld line can cross the image plane again in the opposite
irection on the right.

0. CONCLUSIONS
he field lines of the Poynting vector for dipole radiation
wirl around an axis in the near field, and approach a
traight line in the far field, except for a linear dipole for
hich the field lines are straight at all distances to the

ource. This vortex structure, shown in Fig. 1, has the di-
ension of an optical wavelength or less, so it manifests

tself in the near field. However, as also shown in Fig. 1, it
eads to an asymptotic displacement of the field lines in
he far field. To observe indirectly the existence of the vor-
ex in the near field, we consider the intensity distribu-
ion in the far field, and as suggested in Fig. 2, we antici-
ate that the displacement of the field lines due to the
ortex in the near field will yield a shift of the intensity

ig. 10. Near-field intensity distribution for a dipole with =1,
bserved in an image plane perpendicular to the y axis �	o=
o
� /2�, shows a positive and a negative extremum. This is due to

he fact that the field lines of the Poynting vector cross the plane
n the outward direction at the negative �̄ side, and re-enter the
mage plane at the positive �̄ side. This profile is a result of the
umerous rotations of the field lines around the z axis close to
he source, as shown in Fig. 2.
rofile in the far field.
We have considered the intensity distribution on a
lane in the far field for a dipole with an elliptical dipole
oment, rotating in the xy plane. In the image plane we

efine a rectangular coordinate system �� ,��, associated
ith the spherical-coordinate angles �	o ,
o� of the loca-

ion of the image plane, as illustrated in Fig. 3. For a cir-
ular dipole, the intensity distribution is a single peak in
he image plane. The maximum along the � axis is located
t �̄p=�qo (in dimensionless coordinates), where � is a
unction of the angle 	o of the image plane, as shown in
ig. 5. The location of this maximum scales with qo, which

s the dimensionless distance between the dipole and the
mage plane. Therefore, the position of this maximum
long the � axis is simply a result of the non-uniformity of
he emitted power per unit solid angle. The position of the
aximum along the � axis is given by Eq. (30), and this

osition does not scale with qo. It is a finite shift of the
eak, resulting from the displacement of the field lines of
he Poynting vector, and it is due to the presence of the
ortex in the near field. In this fashion, a near field phe-
omenon is reflected in a far field intensity profile, and
herefore it should be possible to verify the existence of
he vortex through a far field measurement.
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