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Nanoscale shift of the intensity distribution
of dipole radiation

Jie Shu, Xin Li, and Henk F. Arnoldus*

Department of Physics and Astronomy, Mississippi State University,
P.O. Drawer 5167, Mississippi State, Mississippi 39762-5167, USA
*Corresponding author: arnoldus@ra.msstate.edu

Received October 9, 2008; revised December 3, 2008; accepted December 5, 2008;
posted December 12, 2008 (Doc. ID 102571); published January 29, 2009

The energy flow lines (field lines of the Poynting vector) for radiation emitted by a dipole are in general curves,
rather than straight lines. For a linear dipole the field lines are straight, but when the dipole moment of a
source rotates, the field lines wind numerous times around an axis, which is perpendicular to the plane of
rotation, before asymptotically approaching a straight line. We consider an elliptical dipole moment, repre-
senting the most general state of oscillation, and this includes the linear dipole as a special case. Due to the
spiraling near the source, for the case of a rotating dipole moment, the field lines in the far field are displaced
with respect to the outward radial direction, and this leads to a shift of the intensity distribution of the radia-
tion in the far field. This shift is shown to be independent of the distance to the source and, although of nano-
scale dimension, should be experimentally observable. © 2009 Optical Society of America

OCIS codes: 080.1235, 080.4865, 260.2110.

1. INTRODUCTION

In the short wavelength approximation (the geometrical
optics limit), light appears to travel along straight lines
from a source to an observer. These optical rays are the
orthogonal trajectories of the wavefronts, and they coin-
cide, in this approximation, with the field lines of the
Poynting vector, representing the flow pattern of the elec-
tromagnetic energy [1]. We shall consider radiation emit-
ted by a localized source near the origin of coordinates,
and we shall assume a time-harmonic source, oscillating
with angular frequency o, so that the time-averaged
Poynting vector S(r) is independent of time. The field
lines of the Poynting vector for an exact solution of Max-
well’s equations will in general be curves. In the far field,
each curve approaches asymptotically a straight line,
reminiscent of an optical ray. However, when a field line is
curved close to the source, it may be expected that this
has an effect on the field line distribution in the far field.
Figure 1 shows a field line of the Poynting vector for the
radiation emitted by a dipole, with a dipole moment that
rotates counterclockwise in the xy plane. The scale in the
figure is such that one wavelength corresponds to 2.
Near the dipole, the field line swirls around the z axis,
and in the far field it approaches the straight line /. Due
to the rotation near the source, the asymptotic line / is
displaced with respect to the line m, which is parallel to /,
but starts at the origin of coordinates. Therefore, it ap-
pears as if the radiation comes from a point in the xy
plane, which does not coincide with the location of the
source [2]. The spatial extend of the vortex in Fig. 1 is less
than or about a wavelength, depending on the direction of
observation and the state of oscillation of the dipole. The
vortex structure of the field line of S(r) near the source
has an effect in the far field, and it can be anticipated that
the displacement shown for a single field line in Fig. 1
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should lead to an observable shift of the intensity distri-
bution of the radiation at a large distance.

2. POYNTING VECTOR FOR A DIPOLE

The dipole moment d(¢) of an oscillating electric dipole
can be written as

d(t) =d, Re(ge '), (1)

with d, real and vector £ normalized as &-£*=1. The time-
harmonic electric field is

E(r,t) = Re[E(r)e™"], 2

with E(r) being the complex amplitude; the magnetic field
is represented similarly. For a dipole located at the origin
of coordinates, the fields are [3]

d k3 i i\ |e“
E(r)= e—(e-v)r+[e-3(-D)F]—|1+—| r—,
4me, q q q
(3)
o2 i\e
B(r)=- eXPl1l+—|—, (4)
4dreyc q/ q

with k,=w/c, and we have set g =k,r for the dimensionless
distance between the field point r and the location of the
dipole. The Poynting vector

1
S(r) = —Re[E(r) X B(r)"], (5)
2,

can be evaluated, and the result is

© 2009 Optical Society of America
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Fig. 1. Field line of the Poynting vector for a rotating dipole mo-
ment in the xy plane. At a large distance the field line approaches
the line /. Line m is parallel to line /, but it starts at the origin of
coordinates. The rotation of the field line near the source leads to
an effective displacement of the field line in the far field, as com-
pared to an optical ray that would emanate from the location of
the dipole. We use dimensionless coordinates x=~k.x, y=Fky, and

z=ksz.
3P, 2 1
S(r) = 2{[1 —(®-e)(F-e)]F - —<1 + _2>Im[(f‘ : 8)8*]},
87r q q
(6)
with
ckid?
°= 127T80, ™

which equals the power emitted by the dipole. For a mag-
netic dipole, the electric and magnetic fields are different,
but the resulting Poynting vector, Eq. (6), is the same.

Vector € represents the state of oscillation of the dipole.
When ¢ is real, we have d(¢)=d,& cos(wt), and therefore
the dipole moment oscillates back and forth along vector &
(linear dipole). The Poynting vector from Eq. (6) simplifies
to

o

8ar?

S(r) = [1-(@-e)?]P. (8)

At any field point r the Poynting vector is in the r direc-
tion, and consequently the field lines of the vector field
S(r) are straight lines in the radial direction. For an ob-
servation direction along the dipole axis, e.g., r=+¢, we
have S(r)=0, which expresses the fact that no energy is
emitted along the dipole axis. This makes the dipole axis
a singular line of the field line pattern.

When we have e=—(e,+ie,)/ \5, the dipole moment vec-
tor d(¢) has a constant magnitude and rotates with angu-
lar frequency o in the xy plane, and in the counterclock-
wise direction when viewed down the positive z axis. Such
electric dipole radiation is emitted by an atom in a Am=
-1 electronic transition [4]. The rotation of the dipole mo-
ment gives a swirling of the field lines of S(r) around the
z axis in the neighborhood of the dipole [5], as illustrated
in Fig. 1. In Eq. (6), this rotation comes from the term
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with Im[ (- £)€*]. Since the term is proportional to 1/gq, it
vanishes in the far field, and only the contribution propor-
tional to  in S(r) survives. Therefore, it may seem that
since in the far field we have S(r) «r, the field lines of S(r)
should run in the radial direction. However, near the di-
pole a field line spirals around the z axis, so when it ap-
proaches a straight line in the far field, it is offset as com-
pared to a field line that would emanate from the site of
the dipole. This gives a displacement of the field lines in
the far field, and hence a possible shift in the intensity
distribution in the far field.

3. ANGULAR DISTRIBUTION
OF THE EMITTED POWER

The power flowing through a surface element dA, located
at point r, into the direction of the unit normal fi on dA, is
equal to dP=S(r)-ndA. We now consider dA as part of a
sphere with radius r,, and with the origin of coordinates
as its center. Then the unit normal n is equal to r at any
point, and we have dA =r§dQ, with d{) the solid angle cor-
responding to the surface element dA. The emitted power
per unit solid angle is then

dpP
a0 riS(r) - £, )

and with Eq. (6) this yields

dP 3P,
E_ 8w

[1-(@-&)(r-e¥)]. (10)

Vector 1 has the significance of the observation direction,
and in terms of angles # and ¢ of a spherical coordinate
system this vector is

T = (e, cos ¢ + e, sin ¢)sin 6+ e, cos 6. (11)

Therefore, dP/d() in Eq. (10) gives the radiation pattern
as a function of 6 and ¢, given a particular value of vector
e. When integrated over a 47 solid angle, the total emit-
ted power is P,.

The right-hand side of Eq. (10) is independent of the ra-
dius r, of the sphere, and this may suggest that power
simply flows radially outward, as for the case of a linear
dipole, and as in the geometrical optics limit of light
propagation. We see from Fig. 1 that the field lines of the
Poynting vector wind around the z axis near the dipole,
and the power flows out of the dipole along such field
lines. The outward power flow dP/d() for a given observa-
tion direction (6, ¢) shows no sign of this rotation of the
field lines in the near field for any r,. The term with
Im[(¥- &)e*] in Eq. (6) is responsible for the rotation of the
field lines. With Eq. (9) we see that the contribution of
this term becomes proportional to Im[(¢-&)(¥-£*)], and
this is zero.

4. INTENSITY DISTRIBUTION
OF THE RADIATION ON A PLANE

The angular distribution of the emitted power does not re-
veal the possible circulation of the field lines in the near
field, no matter the radius r, of the sphere. Figure 2
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Fig. 2. Several field lines in the xy plane of the Poynting vector
for the case of a counterclockwise rotating circular dipole in the
xy plane. A bundle of field lines, as in the figure, determines the
intensity distribution on an image plane (line y=4). The bold
field line is approximately perpendicular to the image plane, and
runs asymptotically into the observation direction (6,, ¢,), which
is (7/2,7/2) in this illustration.

shows several field lines of the Poynting vector for a di-
pole rotating in the xy plane, and we clearly notice an
asymmetry in the field line distribution, for instance
along the line y=4 (in dimensionless units, as in Fig. 1),
which is due to the spiraling behavior of the field lines. To
possibly observe the rotation of the field lines, we consider
the intensity distribution of the radiation over an image
plane, rather than over a sphere. We take the image plane
as a tangent plane of a sphere with radius r,, and the in-
tersection point will be represented by vector r,. There-
fore, the position of the plane is determined by angles
(6,,,), and by its perpendicular distance r, to the origin.
The unit vectors ey, and e, lie in the image plane, as
shown in Fig. 3, and they define a rectangular coordinate
system (\,u) in which the coordinate axes are along the
unit vectors. A point r in the image plane can then be rep-
resented as

r=r,+\e, +ue,. (12)

The unit normal vector on the image plane is 1, for ev-
ery point in the plane. The intensity I (power per unit
area) at point r in the plane depends on the location of the
plane, specified by r,, and on the coordinates (A, u) of the
point with respect to the origin of the plane at r,. The in-
tensity distribution over the plane is therefore

I(rg;N\, u) =8(r) - 1, (13)

with S(r) given by Eq. (6). We introduce dimensionless co-
ordinates A=k,\, m=Fk,u in the image plane. Since &, is
the wavenumber, a dimensionless distance of 27 repre-
sents one wavelength. Similarly, g,=%.r, is the dimen-
sionless distance between the dipole and the image plane,
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Fig. 3. Image plane is spanned by the unit vectors ey, and ey,
and A and u are the corresponding Cartesian coordinates in the
plane. Field lines of the Poynting vector that cross this plane de-
termine the intensity profile, formed on the plane. The bold field
line runs asymptotically in the ¥, direction, and crosses the plane
at the location given by the displacement vector g, with respect
to the origin of the plane. This is the same q, as in Fig. 1. Angle
v is the angle between the observation direction (6,, ¢,), repre-
sented by r,, and the angular location of the field point r in the
observation plane, as seen from the site of the source.

and for point r in the plane we have

q=\g:+ N+ 1%, (14)

as the dimensionless distance between this point and the
position of the dipole. From Eq. (12) we obtain

1 _
r= ;(qof‘o"' )\e60+,ae¢0)7 (15)

and therefore we have ©-¥,=¢,/q. The intensity distribu-
tion then becomes

Al 13
I\, w) =1, — 1-@F-e)F-e)-—|1+—
q Qo q

XIm[(E - &)(&, - e*)]} , (16)
with
. 3P, 1
o= (17)

(o]

In Eq. (16), ¥ is given by Eq. (15) and r, follows from Eq.
(11) with (6, ¢) replaced by (6,, ¢,).

The contribution 1- (- £)(£- &%) in Eq. (16) is essentially
dP/dQ, as can be seen from Eq. (10), and this part corre-
sponds to the energy flow in the radial direction. The term
in braces containing Im[(¥- £)(&,- €*)] arises due to the ro-
tation of the field lines. The overall factor (g,/q)? has two
contributions: A factor (g,/q)? comes from S(r), Eq. (6),
being proportional to 1/72, and a factor q,/q results from
r-1r,=q,/q, e.g., from projecting the radial outflow onto a
plane rather than a sphere. In other words, the factor
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q,/q accounts for the fact that the field lines are not per-
pendicular to the observation plane, as can be seen in
Fig. 2.

An intensity distribution I,(g,/q)? in the image plane
would be a single peak at the origin, and rotational sym-
metric around the normal vector r,. If we set g,/q=cos v,
then vy (see Fig. 3) is the angle between vectors r and r,,
as seen from the location of the dipole. The angular half-
width at half-maximum of the image on the plane, as
viewed from the site of the dipole, then follows from
(q./q)®>=1/2, and this is y=37°. This peak will be altered
due to the angular dependence of the emitted power in
the radial direction and due to possible rotations of the
field lines.

As an example, let us consider a linear dipole along the
y axis, so £=e,. Since ¢ is real, the field lines of the Poyn-
ting vector are in the radial direction, without any curv-
ing. We take the image plane perpendicular to the y axis,
and therefore £ coincides with the observation direction
;. Equation (16) can then be simplified to

I(ro;\, p) =1, cos® ysin® y, (18)

where vy is the angular location of a point on the image
plane, as illustrated in Fig. 3. The intensity in the obser-
vation direction (y=0) is zero, and therefore the intensity
has a minimum at the origin of the image plane. The in-
tensity is rotational symmetric around r,, and conse-
quently the maximum of the distribution has the shape of
a ring. Figure 4 shows the intensity distribution for this
case. The angular width of the ring is given by cos y
= \e“%, which gives y=39°, and the radius of the ring in
the image plane is qo\s’Z—/?;.

5. ELLIPTICAL DIPOLE MOMENT

Features of the intensity distribution like the ring in Fig.
4 are of macroscopic nature in the sense that they scale
with the distance g, between the dipole and the image
plane. The structure of the intensity profile is a result of
the angular distribution of the emitted power, dP/dQ). On

1

Fig. 4. Graph of the intensity distribution in an image plane
perpendicular to the y axis, for a dipole moment which oscillates
linearly along the y axis. The dimensionless distance between the
plane and the dipole is g,=2, and the dimensionless radius of the
ring is 1.63.
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the other hand, the swirling of the field lines, as in Fig. 2,
can only affect the intensity on a nanoscale, since the spa-
tial dimension of the vortex is of the order of a wavelength
of the radiation. We shall now consider the effect of the
rotation of the field lines on the intensity distribution in
detail.

For an arbitrary complex-valued vector &, the dipole
moment d(¢) in Eq. (1) traces out an ellipse in a plane
[6,7]. We take this plane as the xy plane and parametrize
vector € as

B real. (19)

£=—

ﬁ(ﬂex +iey),
\V

For >0 (B<0) the dipole moment rotates in the coun-
terclockwise (clockwise) direction, when viewed down the
z axis, and for B=+1 the ellipse reduces to a circle. For
B=0 the oscillation becomes linear along the y axis. The
unit vector 1 into the direction of a point on the image
plane involves the unit vectors that span the plane, ac-
cording to Eq. (15). Explicitly we have

ey = (e, cos ¢, + e, sin ¢y)cos 0, — e, sin 0, (20)

e, =—¢€, sin ¢, + €, cos ¢, (21)

and the intensity becomes
7.\
I(re;\, 1) =Io<_) {1 —(F-&)(r- &)
q

1( 1) 28 } 09
-—|1+—|——7using, |. 22
a9\ q*) B +1

The last term in square brackets comes from the rotation
of the field lines. We notice that this term is proportional
to the coordinate x in the image plane, and this indicates
that the peak in the intensity distribution will be shifted
along the u axis. We also see that for >0, as in Fig. 2,
the shift is in the negative u direction, and for <0 the
shift is in the positive direction. For a linear dipole (B
=0), the shift vanishes, and for an observation direction t,
perpendicular to the plane of rotation of the dipole (6,=0
or ), the shift is zero for any B. The displacement term
has an overall factor of 1/(q,q), which is O(1/ qg) in the far
field (g,— ), and it may seem that at a large distance
from the source, the shift of the peak should disappear.
We shall see in Section 6 that this is not the case.

The first part in square brackets in the expression (22)
for I(ry;\, ) comes from dP/d(), and for an elliptic dipole
we find explicitly:

1
(- e)i-e")= ?m[ﬁz(ﬁ cos ¢, — i sin ¢b,)
+(psin ¢, + i cos ¢b,)]. (23)

Here we have introduced the abbreviation

p=q,sin 6, + X\ cos 6,. (24)
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6. EXTREMUM IN THE INTENSITY PROFILE
IN THE FAR FIELD FOR A CIRCULAR
DIPOLE

When the dipole moment rotates in a circle, we have S
==+1, and the expression for the intensity distribution on
a plane simplifies considerably. From Eqs. (22) and (23)
we obtain

3
9 L,
I(I‘O;)\,,LL)=IO - 1—_2(P +,LL)
q 2q

B 1
_E ]_+(F ﬁsin@o . (25)

The dependence on the observation direction ¢, has dis-
appeared, as could be expected for a circular dipole. The
last term in square brackets comes from the curving of
the field lines near the dipole, as in Figs. 1 and 2, and this
term is proportional to u. The displacement q, of the field
lines in the far field is in the u direction, and we expect a
corresponding shift of the intensity distribution in the im-
age plane. When considering the u dependence of

I(ry;\, w) for fixed X\, the dependence on & enters through
the parameter ¢, Eq. (14), and explicitly as u? and 7 in
Eq. (25). Without the rotation of the field lines, u only en-
ters as u? and since this is symmetric in 7 the profile
would be symmetric in the u direction around =0 in the
image plane. In particular, the point ©=0 would be either
a local maximum or minimum, and hence any shift of this
local extremum would be a reflection of the circulation of
the field lines in the optical near field.

To find the extrema of the intensity distribution, we
first consider the dependence of I(r,;\, 1) on u, for a given

\. Setting ol/dn=0 yields

sin 6,

5 _
ﬁ{‘l— Pl +52)} =-p——(?+\2-31?), (26)

[}

and here we have also assumed detection in the far field,
for which q,> 1. For detection along the z axis (6,=0 or )
we have sin 6,=0, and a solution is ©=0. To find the gen-
eral solution, we recall that an extremum in the far field
should scale with g,, so that angle yin Fig. 3 remains con-
stant. When we divide Eq. (26) by q,, then the left-hand
side becomes constant for g, large, and the right-hand
side vanishes as O(1/q,). It can be shown by inspection
that the factor in square brackets on the left-hand side is
positive, and therefore we find from Eq. (26) that u/q,

=0 for any given \. Since there is only one solution, the
extremum is a maximum in the u direction. Similarly,

A/ aN=0 yields

_ 5\ 4NG

- 3N+ ——(u*+p°) —pcos b,=—-p sin 6,, (27)
2q od

for q,>1. For detection along the z axis (6,=0 or ) we

have p=N\ cos 6,, and we see that N=0 is a solution of Eq.
(27). Also for detection in the xy plane, for which 6,=7/2,

we find that A=0 is a solution. When we divide Eq. (27) by
q,, then the right-hand side goes to zero, and the remain-

ing equation can be solved for \/q, for any given u/q, and
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6,. The equation has one solution, and therefore the ex-

tremum in the X direction is a maximum.
It follows from the previous paragraph that the inten-

sity distribution has a single peak in the Az plane. When
we indicate the coordinates of the location of the peak by
(Xp,ﬁp), then we have u,/q,=0. With u,/q,=0, Eq. (27)
becomes an equation for )_\p/ q,, after division by q,. When
we set a:)_\p/qo, Eq. (27) yields

Ea(sin 6, + a cos 0,)% = (1+ o?)[sin 6, cos 6, + (3 + cos? 6,)],

(28)

which is a cubic equation for «, given the observation
angle 6,. The solution of this equation is shown in Fig. 5.
We see that « is relatively small for all 6,, so that a rea-
sonable approximation is obtained by setting =0,
@®=0. This yields

sin(26,)

~— 29
* 7sin% 6, -8 (29)

which is shown as the dashed curve in the figure. The

shift of the maximum in the \ direction is negative (posi-
tive) for 0< 6, < /2 (w/2<6,< ).

7. SHIFT OF THE PEAK IN THE FAR FIELD
FOR A CIRCULAR DIPOLE

The peak in the intensity distribution is located at )_\p

=aq, along the \ axis in the image plane, where a follows
from Fig. 5, given angle 6,. The location of the peak is a
consequence of the angle dependence of dP/d(), and is in-
dependent of the rotation of the field lines near the origin
of coordinates. The position scales with the distance g, be-
tween the image plane and the dipole, such that the view-
ing angle 7y is independent of ¢,. In the u direction, the
maximum appears at u,/q,=0, and this leaves the possi-
bility that w, is finite, rather than zero. When we set
#,/q,=0 and Xp/q(,:a in Eq. (26), we obtain an equation
for ,. The solution is

04
a /\\
N
02} / N
J N
0.0 + t 4 g
1 2 3 o
N ]
02} N f
N
\\/
041

Fig. 5. Solid curve shows a, the solution of Eq. (28), as a func-
tion of 6,, and the dashed curve is the approximation given by
Eq. (29).



400 J. Opt. Soc. Am. A/Vol. 26, No. 2/February 2009

2 sin 6,

fip=— L+ a?)? 5 (80)

8(1 + a?) - 5(sin 6, + a cos 6,

which is independent of q,, and represents the shift of the
maximum in the far field. For a given 6,, « follows from
Eq. (28), and hence the shift of the peak along the u axis
is a function of the observation angle 6, only (apart from
the overall B=+1). Figure 6 shows the far-field intensity
distribution for #,=7/2 with B=1. The maximum along
the u-axis is located at u,=-2/3.

The shift of the peak, u,, is zero for 6,=0, 7 and maxi-
mum for 6,=7/2, and the maximum shift at 6,==/2 is
|| =2/3. Figure 7 shows the behavior of the shift as a
function of 4, for f=1. The shift is due to the rotation in
the field lines of the Poynting vector, and we see from Fig.
2 that the shift is expected to be negative for a dipole mo-
ment which rotates counterclockwise in the xy-plane. The
right-hand side of Eq. (30) changes sign with 3, and there-
fore for a clockwise rotating dipole moment the shift is
positive. When the dipole radiation is emitted by an atom
in a laser beam, the rotation direction of the dipole mo-
ment can be reversed by changing the helicity of the driv-
ing laser from left-circular to right-circular polarized, or
vice versa, for instance by inserting a half-wave-plate.
The peak in the intensity would then shift over 4/3 in di-
mensionless units, and this corresponds to a distance of
2N\/(3), with \ being the wavelength of the radiation. Al-
though this shift is of nanoscale size, it should be observ-
able in experiment. In this fashion, the swirling of the
field lines of the Poynting vector in the near field could be
observed by a measurement in the far field.

All field lines of the Poynting vector run radially out-
ward in the far field, but they are displaced with respect
to an optical ray that would emanate from the exact site
of the dipole, as illustrated in Fig. 1. For a given observa-
tion direction (6,, ¢,), there is one field line that runs ex-
actly into that direction, and this field line intersects the
observation plane under a right angle (bold field line in
Fig. 2). The displacement vector of this field line is a vec-
tor in the corresponding observation plane, and this vec-

Fig. 6. Graph shows the far-field intensity distribution for a ro-
tating dipole with B=1 for observation along the xy plane. The
maximum is located on the u axis at u,=-2/3.
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2t

Fig. 7. Shift u, of the peak in the intensity distribution and the
displacement u, of the central field line as a function of the ob-
servation angle 6,, both for a circular dipole with S=1. For g=-1
both functions change sign.

tor is along the u axis. If we write qg=/fi4€, , then the dis-
placement of this field line is given by [8]

2 sin 6,

n,=—B———. 31

Md B 9_ sin2 00 ( )
Both u, and py are shown in Fig. 7, and we see that the
displacement of the field line is larger than the shift of the
peak in the corresponding intensity distribution. The in-
tensity profile is determined by a bundle of field lines, as
depicted in Fig. 2, and the direction of the central field
line does not necessarily coincide exactly with the location
of an extremum in the intensity pattern.

8. FAR FIELD INTENSITY PATTERN
FOR AN ELLIPTICAL DIPOLE

In the most general state of oscillation of a dipole, the di-
pole moment vector traces out an ellipse, and the plane of
this ellipse is taken as the xy plane. The ellipticity is rep-
resented by parameter 8 in Eq. (19). For =0 the dipole
moment oscillates linearly along the y axis. For f=+1 it
rotates along a circle, and for B— % the oscillation be-
comes linear along the x axis. We shall consider an obser-
vation plane perpendicular to the y axis, so that 6,=¢,
=1/2. For this example, the intensity becomes

I(rgN\p) =1 &31—1 20 +qn
oA ) =1, q _q2(182+1) IBILL +4q,

q 1
+2ﬁﬁ—(1+—2>}}. (32)
9o q

For B=0 the profile has a minimum at A\=z=0 and a ring-
shaped maximum, as shown in Fig. 4. For =0 we have a
linear dipole, and the field lines of the Poynting vector
run in the radial direction, without any curving. There-
fore, there is no shift x, of the extremum (the hole in this
case) in the far field. For B=+1, the extremum is a peak

at A=0 and near z=0, as shown in Fig. 6 for f=1. The
shift of the peak in the u direction is u,=-24/3.

Possible extrema along the N axis follow from setting
oI/ x=0, p=0, and we also let ¢,> 1 for the far field. This
yields =0 and
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X [2-3p°
.~ + 35+ 1) 1Bl < \2/3. (33)

When | 8| < \/2/3, we obtain two solutions \/q,, in addition
to the solution A=0. This corresponds to two maxima and
a minimum at \=0. When |8|>2/3, we only have x=0,
and therefore this must be a maximum. Similarly, ex-
trema along the u axis follow from setting dI/du=0 and
X=0. This gives

5 28
ﬁ[5ﬁ2 +3- ﬁ(qi + ﬁzrﬂ)] =-—I(g5-3p%. (34)
[}
When dividing by q,, the right-hand side vanishes in the
far field. We then obtain the solutions u/qg,=0 and
I 2-5p°
R

9 3

. 1Bl <25, (35)

We also find either two maxima and a minimum or one
maximum, depending on the value of |3].

For =0 we have a minimum in both the A and & di-
rections at the origin of the image plane, as shown in Fig.
4, and the maximum has the shape of a ring. When |3 in-
creases, the locations of the maxima along the coordinate
axes change according to Eqs. (33) and (35). These func-
tions of |8 are shown in Fig. 8, and we see that the di-
mension of the hole decreases both along the A and &
axes. Since the decrease along the u axis is faster than
along the \ axis, the ring distorts. The dimension of the
hole shrinks in both directions, and the hole becomes
shallower. When |g| approaches the value of \2/5, the
maxima along the u axis approach the origin of coordi-
nates, and for |8>\2/5 we only have a maximum at
@/q,=0. When || increases further towards |8|=42/3,
also the maxima along the \ axis approach the origin, and
for |B|> \2/3 we have a maximum at X=0. Therefore, for
0<|B|</2/5 the intensity profile has a hole near the ori-
gin. For \2/5 <|B|</2/3 the region around the origin has
the appearance of a saddle point, and for |8|>2/3 we
have a single peak, as for =1 in Fig. 6.

1.0

05

peak

"B

0.0

-0.5

-1.0 |

Fig. 8. Location of the maxima along the coordinate axes in the
Az plane as a function of |5]. For | 8] < \2/5 there are two maxima
along both axes, and there is a hole in the middle. For |B|
>/2/3 there is a single peak near the origin of coordinates. In
the region indicated by the double-headed arrow there is a mini-

mum along the X direction and a maximum along the z direction
near the origin.
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Fig. 9. The shift u, for =0 of either the hole or the peak with
respect to the origin of coordinates. In the transition region

V275 < B<\2/3, there is neither a hole nor a peak in the inten-
sity distribution.

At the center of the profile we have minimum, a maxi-
mum, or a transition between the two, and at the location

of this extremum we have \=0 and 1/q,=0. Just as for
the circular dipole, the condition u/q,=0 leaves open the
possibility that u is finite. In Eq. (34) we let u/q,— 0. We
then obtain for the coordinates of the extremum around
the origin of the image plane

_ B 2p
A, =0, Mp:Z——5B2‘ (36)
The finite shift x, is again a result of the rotation in the
field lines near the source. Figure 9 shows u, as a func-
tion of B for B positive. For 0< < \2/5 the extremum is a
hole, and Eq. (36) represents the shift of the hole with re-
spect to the origin. We see from the figure that the shift of
the hole is in the positive u direction. In the region
B> \s’2—/3, the extremum is a peak, and the shift is in the
negative direction. For B negative, the hole shifts in the
negative direction and the peak shifts in the positive di-
rection. For a circular dipole we have |8|=1 and the mag-
nitude of the shift of the peak is equal to |z,/=2/3, as in
Fig. 6. This shift increases with decreasing |8|, and at
|8|=1/2/3 the magnitude of the shift is | Hp|= \3/2. This is a
factor of 1.84 larger than the shift for a circular dipole.
The shift of the hole for |8/<2/5 can be extremely large,
but the depth and sharpness of the hole decrease with in-
creasing shift.

9. INTENSITY IN THE NEAR FIELD

Thus far we have considered the intensity distribution in
the far field. With contemporary experimental techniques
[9,10] it has become feasible to detect electromagnetic ra-
diation with nanoscale resolution very close to a source.
In these experiments the electric field vector is measured,
including its direction, within a fraction of a wavelength
from the source. From these measurements, a field line
pattern for the electric field can be obtained, and it should
be possible to construct the field lines of the Poynting vec-
tor from these data. Figure 10 shows a typical intensity
distribution on an image plane in the near field for a ro-
tating dipole moment. The positive peak at the left-hand
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0.00

Fig. 10. Near-field intensity distribution for a dipole with 8=1,
observed in an image plane perpendicular to the y axis (6,=¢,
=/2), shows a positive and a negative extremum. This is due to
the fact that the field lines of the Poynting vector cross the plane
in the outward direction at the negative u side, and re-enter the
image plane at the positive u side. This profile is a result of the
numerous rotations of the field lines around the z axis close to
the source, as shown in Fig. 2.

side comes from the field lines passing through the plane
in the outward direction, and the negative peak on the
right represents field lines passing the plane in the oppo-
site direction. This image is a direct consequence of the
spiraling of the field lines near the source. A field line can
pass through the plane on the left, and then this same
field line can cross the image plane again in the opposite
direction on the right.

10. CONCLUSIONS

The field lines of the Poynting vector for dipole radiation
swirl around an axis in the near field, and approach a
straight line in the far field, except for a linear dipole for
which the field lines are straight at all distances to the
source. This vortex structure, shown in Fig. 1, has the di-
mension of an optical wavelength or less, so it manifests
itself in the near field. However, as also shown in Fig. 1, it
leads to an asymptotic displacement of the field lines in
the far field. To observe indirectly the existence of the vor-
tex in the near field, we consider the intensity distribu-
tion in the far field, and as suggested in Fig. 2, we antici-
pate that the displacement of the field lines due to the
vortex in the near field will yield a shift of the intensity
profile in the far field.
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We have considered the intensity distribution on a
plane in the far field for a dipole with an elliptical dipole
moment, rotating in the xy plane. In the image plane we
define a rectangular coordinate system (\,u), associated
with the spherical-coordinate angles (6,, ®,) of the loca-
tion of the image plane, as illustrated in Fig. 3. For a cir-
cular dipole, the intensity distribution is a single peak in
the image plane. The maximum along the \ axis is located

at Xp=aq0 (in dimensionless coordinates), where « is a
function of the angle 6, of the image plane, as shown in
Fig. 5. The location of this maximum scales with q,, which
is the dimensionless distance between the dipole and the
image plane. Therefore, the position of this maximum
along the A axis is simply a result of the non-uniformity of
the emitted power per unit solid angle. The position of the
maximum along the u axis is given by Eq. (30), and this
position does not scale with g,. It is a finite shift of the
peak, resulting from the displacement of the field lines of
the Poynting vector, and it is due to the presence of the
vortex in the near field. In this fashion, a near field phe-
nomenon is reflected in a far field intensity profile, and
therefore it should be possible to verify the existence of
the vortex through a far field measurement.
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