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When light is incident on a mirror, it induces a current density on its surface. This surface current density
emits radiation, which is the observed reflected field. We consider a monochromatic incident field with an ar-
bitrary spatial dependence, and we derive an integral equation for the Fourier-transformed surface current
density. This equation contains the incident electric field at the surface as an inhomogeneous term. The inci-
dent field, emitted by a source current density in front of the mirror, is then represented by an angular spec-
trum, and this leads to a solution of the integral equation. From this result we derive a relation between the
surface current density and the current density of the source. It is shown with examples that this approach
provides a simple method for obtaining the surface current density. It is also shown that with the solution of
the integral equation, an image source can be constructed for any current source, and as illustration we con-
struct the images of electric and magnetic dipoles and the mirror image of an electric quadrupole. By applying
the general solution for the surface current density, we derive an expression for the reflected field as an inte-
gral over the source current distribution, and this may serve as an alternative to the method of images.
© 2008 Optical Society of America

OCIS codes: 080.1235, 260.2110.
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. INTRODUCTION
he reflection of light by objects of all shapes has been the
ubject of numerous studies [1]. Mie’s theory of scattering
y a dielectric sphere [2] is still the subject of current re-
earch due to its applications in the field of nanoparticles,
nd the diffraction by a half-plane [3,4] has the attractive
eature that its solution can be obtained in closed form (in
erms of Fresnel integrals). When the object has a slightly
ore complex shape, like a wedge [5–7], it becomes in-

reasingly more difficult to analyze the reflected field. A
ommon approach to reflection and diffraction problems is
o consider the general solution of Maxwell’s equations in-
ide and outside the object with respect to a suitable basis
et, and then apply the boundary conditions at the inter-
ace. This method, known as the method of moments [8],
eads to a set of linear equations for the expansion coeffi-
ients, and this set can be solved numerically. In a differ-
nt approach, integral equations for the electric or mag-
etic field are derived [9] that have the incident field as
n inhomogeneous term. Such equations, which exist in
any different forms, can be solved numerically for any

iven shape of the object. A prime example is the diffrac-
ion through a slit, for which the existence of optical vor-
ices in the neighborhood of the slit have been predicted
10,11].

When light is incident on an object, it induces a current
ensity in the material. This current density emits radia-
ion, which is observed as the reflected field outside the
bject. When the material of the object is a perfect con-
uctor, all current density is at the surface, and this fea-
ure allows for a different approach to the problem. For
his case, an integral equation for the surface current
1084-7529/08/040930-8/$15.00 © 2
ensity can be derived, and it has the incident magnetic
eld at the surface as an inhomogeneous term. This equa-
ion, due to Maue [12], can be solved numerically, and af-
erward the reflected electric and magnetic fields can be
btained by integration involving the free-space Green’s
unction for the scalar Helmholtz equation. This method
as been applied successfully for objects with a large va-
iety of shapes [13–20].

In the examples mentioned above, the incident field is a
raveling plane wave, and the object may have a more or
ess complicated shape. Here we shall consider the
omplementary problem where the incident field is of ar-
itrary complexity, but the object is simple. We shall as-
ume a time-harmonic incident electric field of the form

E�r,t� = Re�E�r�e−i�t�, �1�

ith E�r� the complex amplitude and � the angular fre-
uency, and similarly the magnetic field has complex am-
litude B�r�. The spatial dependence of E�r� and B�r� is
estricted only by the requirement that the fields satisfy
he free-space Maxwell equations. The field is incident on
mirror of infinite extent, and the material of the mirror

s assumed to be a perfect conductor. The incident field in-
uces a surface current density i�r , t� in the mirror, with
omplex amplitude i�r�. The surface of the mirror is taken
s the xy plane, as shown in Fig. 1, and the z axis is ori-
nted such that the positive side is at the side of the inci-
ent field. The surface current density generates the re-
ected radiation. Of particular interest is the surface
urrent density i�r� itself. When the source of the incident
eld is an electric or magnetic dipole, the field lines of
�r , t� exhibit interesting structures such as singular
008 Optical Society of America
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oints, singular circles, and vortex loops [21,22]. We shall
erive an explicit expression for i�r� in terms of the cur-
ent distribution of the source, in addition to a similar re-
ult for the reflected field.

. SCATTERED FIELD
he incident field induces a surface current density i�r� in

he mirror, which in turn generates an electromagnetic
eld. In terms of i�r�, the scattered magnetic field is given
y

B�r�sc =
�o

4�
� �� dS�i�r��g�r − r��, �2�

ith g�r−r�� the free-space Green’s function for the
elmholtz equation

g�r − r�� =
eiko�r−r��

�r − r��
, �3�

here ko=� /c. The corresponding scattered electric field
ollows from a Maxwell equation as

E�r�sc =
ic2

�
� � B�r�sc. �4�

n the region z�0 this scattered radiation is the reflected
eld, and in the region z�0 it should cancel exactly the

ncident field.
The representation in Eq. (3) for the Green’s function is

spherical wave when considering the r dependence with
xed source point r�. Alternatively, the Green’s function
an be written as a superposition of plane waves, which is
eyl’s representation [23]. This representation refers to a

referred z direction and is given by

g�r − r�� =
i

2�
� d2k�

1

�
eik�·�r−r��+i��z−z��, �5�

here the integral runs over the entire k� plane, and the
arameter � is defined as

� =�	ko
2 − k�

2, k� � ko

i	k�
2 − ko

2, k� � ko

 . �6�

A partial wave in Eq. (5) is a traveling wave when � is
eal. For � imaginary, the partial wave is an evanescent

ig. 1. Electromagnetic field is incident on the surface of a per-
ect mirror. The surface of the mirror is the xy plane, and the z
xis is directed toward the incident field. The incident field in-
uces a current density i�r , t� on the surface, and this vector field
etermines a field line pattern on the surface.
ave that decays exponentially as a function of z, for a
iven z�. Then we substitute the right-hand side of Eq. (5)
nto Eq. (2), set z�=0, work out the curl, and introduce the
ave vectors

K± = k� ± �ez, �7�

hich are functions of k�. This yields for the scattered
agnetic field

B�r�sc = −
�o

8�2 � d2k�

1

�
eiK±·rK± � I�k��, �8�

here the upper (lower) sign is to be used for the region
�0 �z�0�. The transformed current density I�k�� is de-
ned as

I�k�� =� dSi�r�e−ik�·r, �9�

hich is the two-dimensional Fourier transform of i�r�.
rom Eq. (4) we then obtain the scattered electric field

E�r�sc =
1

8�2�o�
� d2k�

1

�
eiK±·rK± � �K± � I�k���, �10�

n terms of I�k��.
The function I�k�� is the only unknown in the expres-

ions (8) and (10) for the scattered fields. In addition, Eq.
9) can be inverted as

i�r� =
1

4�2 � d2k�I�k��eik�·r, �11�

o the current density can also be obtained from the func-
ion I�k��.

. INTEGRAL EQUATION FOR THE
RANSFORMED SURFACE CURRENT
ENSITY
he total electric field is the sum of the incident field and

he scattered field, both in front of and behind the mirror.
he boundary condition for the electric field at the mirror

s that the component of the field parallel with respect to
he surface vanishes just in front of the mirror. Therefore
e have for a point r just off the mirror and in z�0

E�r�sc,� = − E�r�inc,�. �12�

he parallel part of E�r�sc at the surface �z=0� can be ex-
ressed in terms of I�k�� with Eq. (10). The boundary con-
ition (12) then becomes

1

8�2�o�
� d2k�

1

�
eik�·r�ko

2I�k�� − k��k� · I�k���� = E�r�inc,�.

�13�

his is an integral equation for the transformed surface
urrent density I�k�� with the incident field as inhomoge-
eous term. The value of r, representing a point in the xy
lane, is a parameter, and the equation has to hold for all
in the xy plane.
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The second boundary condition for a perfect conductor
s that the perpendicular component of the magnetic field
anishes just off the surface. Along similar lines, this
ives the relation

�o

8�2 � d2k�

1

�
eik�·rk� � I�k�� = B�r�inc,�. �14�

his relation, however, is dependent. When we apply the
peration ey� /�x−ex� /�y on both sides of Eq. (13), and use
hat the incident electric and magnetic fields are related
y Maxwell’s equations, we obtain Eq. (14). Therefore,
ny solution I�k�� of Eq. (13) satisfies Eq. (14) automati-
ally.

. ANGULAR SPECTRUM OF THE INCIDENT
IELD
he solution I�k�� of Eq. (13) depends on the value of the

ncident electric field at the surface of the mirror. This in-
ident field is emitted by a source in front of the mirror, as
hown schematically in Fig. 2. The source has a (volume)
urrent density j�r� that emits the magnetic field

B�r�s =
�o

4�
� �� dV�j�r��g�r − r��, �15�

n all directions. We assume that the extent of the source
s limited in the z direction, as in the figure. For the
ource point r� in Eq. (15) we then have z1�z��z2, and
e shall consider only the radiated field outside the re-
ion z1�z��z2. For the field point r we then have either
�z2 or z�z1. For the Green’s function we use Weyl’s rep-
esentation (5), in which we can then set �z−z��= ± �z−z��,
ith the upper (lower) sign holding for z�z2 �z�z1�. With

he notation of Eq. (7) we can then represent the Green’s
unction as

g�r − r�� =
i

2�
� d2k�

1

�
eiK±·�r−r��. �16�

hen we substitute the right-hand side of Eq. (16) for
�r−r�� in Eq. (15), which yields for the magnetic field ra-
iated by the source

B�r�s = −
�o

8�2 � d2k�

1

�
eiK±·rK± � J±�k��. �17�

ere we have introduced the source functions

ig. 2. Current density j�r� is the source of the incident field,
nd is confined in the z direction as shown.
J±�k�� =� dVj�r�e−iK±·r �18�

n analogy with Eq. (9) for the transformed surface cur-
ent density. The expression (17) for the emitted magnetic
eld involves different source functions for the regions z
z2 and z�z1 (the J+ and the J−, respectively), whereas

or the surface current sheet we have only a single trans-
ormed current density I�k��, which represents the source
unction for the emission of radiation in both directions
way from the mirror. Expressions like Eq. (17) are com-
only referred to as angular spectrum representations.
he corresponding electric field follows from the magnetic
eld as in Eq. (4), and we find

E�r�s =
1

8�2�o�
� d2k�

1

�
eiK±·rK± � �K± � J±�k���.

�19�

. SOLUTION OF THE INTEGRAL
QUATION
he mirror is located in the region z�z1, so the incident
lectric field is given by Eq. (19) with the lower sign. At
he mirror we have z=0, and when we separate out the
arallel part we find

E�r�inc,� = −
1

8�2�o�
� d2k�

1

�
eik�·r�ko

2J−�k���

− k��K− · J−�k���� �20�

or r in the plane of the mirror. The first term in braces
ontains the parallel part of J− rather than the source
unction J− itself. Then we replace the right-hand side of
q. (13) by the right-hand side of Eq. (20), and combine

he two integrals. We then obtain

� d2k�

1

�
eik�·r�ko

2�I + J−,�� − k��k� · I + K− · J−�� = 0,

�21�

here we have temporarily suppressed the dependence of
he functions on k�. The left-hand side of Eq. (21) is a two-
imensional Fourier integral, and therefore the function
n square brackets is unique. This gives

k��k� · I� − ko
2I = ko

2J−,� − k��K− · J−�, �22�

hich is now an algebraic equation for I�k��, given the
ource function J−�k��.

Equation (22) can be solved for I�k��. To this end we
ote the vector identity

k�
2I = k��k� · I� − k� � �k� � I�, �23�

hich expresses that I is known as soon as we know its
ot and cross products with k�. By taking k� · �. . .� and
� �. . .� of Eq. (22) and using �2=k2−k2, we find
� o �
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I�k�� = − J−�k��� −
1

�
�ez · J−�k���k� �24�

s the solution. With some further manipulation this can
e written as

I�k�� = − J−�k�� −
1

�
�ez · J−�k���K−, �25�

nd upon combining both terms we obtain

I�k�� = −
1

�
ez � �K− � J−�k���. �26�

his result shows that the transformed surface current
ensity in the mirror can be expressed in a very simple
ay in terms of the source function J−�k��.

. CURRENT DENSITY IN THE MIRROR
ith Eqs. (11) and (26) we find for the surface current

ensity

i�r� = −
1

4�2ez �� d2k�

1

�
eik�·r�K− � J−�k���, �27�

hich is an angular spectrum representation for i�r�.
hen we substitute the right-hand side of Eq. (18) with

he lower sign for J−�k��, and note the identity

� d2k�

1

�
K−eiK−·�r−r�� = 2���g�r − r��, z� � z, �28�

hich follows from Eq. (16). This gives

i�r� =
1

2�
ez �� dV�j�r�� � ���g�r − r���. �29�

y introducing the function

f�r� =
1

r2iko −
1

r�eikor, �30�

hich depends only on vector r though its magnitude r,
q. (29) simplifies to

i�r� =
1

2�
ez �� dV�f�r − r���r − r�� � j�r��. �31�

Result (31) shows that the surface current density i�r�
or any given r can be found as an integral over the source
urrent density j�r�. The surface current density i�r� is in-
uced by the magnetic field that is emitted by the source
urrent density j�r�. With Eq. (31), the surface current
ensity in the mirror can be evaluated without consider-
ng the emitted magnetic field first, which is a great sim-
lification.

. CURRENT DENSITY INDUCED BY
ULTIPOLES
prime example of a localized source is an electric or a
agnetic multipole. On one hand, the current distribu-

ion of any localized source can be written as a superpo-
ition of pointlike multipoles [24], and on the other hand,
he radiation emitted by atoms and molecules is multipole
adiation. An electric dipole located at ro in front of the
irror has a current density

j�r� = − i�d	�r − ro�, �32�

here the dipole moment d is an arbitrary complex con-
tant vector. The current density it induces in the mirror
ollows immediately from Eq. (31), and we obtain

i�r� = −
i�

2�
f�r − ro�ez � ��r − ro� � d�. �33�

This result can also be derived with the method of im-
ges. An image dipole behind the mirror produces the re-
ected field, and then from the boundary conditions at the

nterface for the magnetic field, the surface current den-
ity can be found. The field lines of the corresponding
�r , t�=Re�i�r�exp�−i�t�� depend on the orientation of d
ith respect to the surface. These field line patterns were

tudied in [21], where it was shown that some intriguing
piraling field line structures can appear.

A magnetic dipole with dipole moment p, located in ro,
as a current density

j�r� = − p � �	�r − ro�. �34�

e substitute this in the right-hand side of Eq. (31). The
perator � can be eliminated by integration by parts, and
his introduces the gradient of the function f�r−ro�. When
e write

�f�r − ro� = �r − ro�h�r − ro�, �35�

hen the function h�r� is explicitly

h�r� = −
1

r3ko
2 +

3iko

r
−

3

r2�eikor. �36�

he surface current density then becomes

i�r� = −
1

�
f�r − ro�ez � p +

1

2�
h�r − ro�ez

���r − ro� � ��r − ro� � p��, �37�

nd with some vector manipulations this can be simpli-
ed to

i�r� =
1

2�
k�r − ro�ez � p +

1

2�
h�r − ro�

���r − ro� · p�ez � �r − ro�, �38�

here we have set

k�r� =
1

rko
2 +

iko

r
−

1

r2�eikor, �39�

hich is k�r�=−2f�r�−r2h�r�. The field line pattern of the
orresponding i�r , t� can be very complicated, and for cer-
ain values of p vortices appear in the surface current
22].

An electric quadrupole at r has a current density
o
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j�r� =
i�

6
QJ · �	�r − ro�, �40�

here QI is a complex-valued, symmetric Cartesian tensor
f rank two. The induced surface current density can be
valuated from Eq. (31), and this yields

i�r� =
i�

12�
h�r − ro�ez � ��r − ro� � ��r − ro� · QJ ��. �41�

ere we have used the identity

�

,�

Q
�e
 � e� = 0, 
,� = x,y,z, �42�

hich follows from the fact that QI is symmetric.
As illustration, let us consider an electric quadrupole

ith a quadrupole moment represented by the matrix

QJ �
Qo

	6�
− 1 0 0

0 − 1 0

0 0 2
�, Qo � 0, �43�

n the Cartesian basis. This is the quadrupole moment of
�m=0 electronic transition in an atom. Let the quadru-
ole be located on the z axis at a distance H from the mir-
or so that ro=Hez. The general expression (41) can then
e simplified to

i�r� = − Qo

i�H

4�	6
rh�r − ro�, �44�

nd the time-dependent current density becomes

i�r,t� = − Qo

cko
6H

4�	6

1

q1
3

�� 3

q1
cos�q1 − �t� + 1 −

3

q1
2�sin�q1 − �t��r,

�45�

here we have set

q1 = ko�r − ro� �46�

or the dimensionless distance between the quadrupole at
o and the point r in the xy plane. The current density
�r , t� is proportional to r, so it is in the radial direction.
herefore, the field lines are radially inward or outward,
epending on the sign of the expression in square brack-
ts. This expression is zero when

tan�q1 − �t� =
3q1

3 − q1
2 , �47�

hich is a transcendental equation for q1, given t. The so-
utions of this equation correspond to circles around the
rigin, and the field lines of i�r , t� therefore change direc-
ion when crossing such a circle. Since the current density
s zero on each circle, field lines start and end on a circle
nd the circles are singular circles of the field line pat-
ern. Figure 3 shows the field lines of i�r , t� for a fixed t.

hen time progresses, the circles expand (at near the
peed of light), and the field line picture changes accord-
ngly. New singular circles emanate from the origin of co-
rdinates, which itself is a singular point �i�0, t�=0�, and
hey expand rapidly with time.

. SCATTERED FIELD AND IMAGE SOURCE
he magnetic and electric fields radiated by the surface
urrent density i�r� are given by Eqs. (8) and (10), respec-
ively, in terms of the transformed surface current density
�k��. For the scattered magnetic field behind the mirror
e use Eq. (8) with the lower sign, and when we use the

epresentation (25) for the solution I�k��, we see that K−
I=−K−�J−. We then obtain

B�r�sc =
�o

8�2 � d2k�

1

�
eiK−·rK− � J−�k��, z � 0. �48�

he magnetic field emitted by the source is for the region
ehind the mirror given by Eq. (17) with the lower sign,
nd we notice that this field is the opposite of the field in
q. (48). Therefore, the field by i�r� cancels exactly the
eld by j�r� in the region behind the mirror, as it should.
The field reflected by the mirror is the scattered field in

he region z�0. The reflected magnetic field is given by
q. (8) with the upper sign, and with the solution for I�k��

n the form of Eq. (26) we find for the reflected magnetic
eld

B�r�r =
�o

8�2 � d2k�

1

�2eiK+·rK+ � �ez � �K− � J−�k����,

�49�

nd a similar expression for the reflected electric field fol-
ows from Eq. (10). This reflected field is identical to the
eld emitted by an image source behind the mirror, as can
e shown as follows.
The magnetic field radiated by the source is given by

q. (17) in terms of the source functions J±�k��. If an im-
ge source were located behind the mirror, then the emit-
ed magnetic field would be identical in form to Eq. (17),
ut with J±�k�� replaced by the corresponding source
unctions for the image J±�k��im. Since the reflected field
ravels in the positive z direction, we would need the form
f Eq. (17) with the upper sign, and hence the reflected
agnetic field would be of the form

ig. 3. Field lines of the current density i�r , t� in the mirror for
he case where the source of the incident radiation is an electric
uadrupole with a quadrupole tensor given by Eq. (43), and for a
xed time t. The field lines are in the radial direction, either in-
ard or outward, and they change direction across the singular

ircles, indicated by thin lines.
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B�r�r = −
�o

8�2 � d2k�

1

�
eiK+·rK+ � J+�k��im. �50�

Now let us define the function

J+�k��im = J−�k��� − J−�k���. �51�

his function is determined by the −source function of the
ource itself, and it follows from a reversal of the sign of
he parallel component with respect to the xy plane. It can
hen be shown by inspection that

1

�
K+ � �ez � �K− � J−�k���� = − K+ � J+�k��im, �52�

nd therefore the magnetic fields in Eqs. (49) and (50) are
dentical. We conclude that the function J+�k��im is the
source function for the image source. We shall see in the
ext sections that this source is indeed located behind the
irror at the mirror image location.

. IMAGES OF MULTIPOLES
or an electric dipole d at position ro, the current density

s given by Eq. (32), and the source functions follow from
q. (18). This gives

J±�k�� = − i�de−iK±·ro, �53�

nd with Eq. (17) we then obtain the angular spectrum of
he emitted magnetic field by the dipole:

B�r�s =
i��o

8�2 � d2k�

1

�
eiK±·�r−ro�K± � d. �54�

he dependence on the field point r enters as r−ro, which
ndicates that the field is emitted from the location ro of
he dipole. From Eq. (51) we see that the image source
unction follows from the function J−�k�� by reversing the
ign of the parallel component. If we write d=d�+d� for
he dipole moment, then the image source function is

J+�k��im = − i�dime−iK−·ro, �55�

ith

dim = d� − d�, �56�

he image dipole moment. We now introduce the image
oint of ro as

ro
im = ro,� − ro,�, �57�

hich is �xo ,yo ,−zo� in Cartesian coordinates. With Eq. (7)
e then have K−·ro=K+·ro

im, and the reflected field be-
omes

B�r�r =
i��o

8�2 � d2k�

1

�
eiK+·�r−ro

im�K+ � dim, �58�

ith Eq. (50). The r dependence enters here as r−ro
im,

hich shows that this is the magnetic field emitted by a
ipole with dipole moment dim located at ro

im.
Similarly, the current density (34) for a magnetic dipole
at r gives the source functions
o
J±�k�� = iK± � pe−iK±·ro, �59�

rom which we obtain the image source function

J+�k��im = iK+ � pime−iK+·ro
im

, �60�

here

pim = p� − p� �61�

s the image dipole moment. The reflected field is identi-
al to the field by the image dipole pim located at the mir-
or position ro

im.
The case of an electric quadrupole QJ located at ro is

lightly more complicated. With the current density given
y Eq. (40), we find for the source functions

J±�k�� = −
�

6
K± · QJe−iK±·ro. �62�

he image source function then follows from the construc-
ion given in Eq. (51). We would like to write this as

J+�k��im = −
�

6
K+ · QJ ime−iK+·ro

im
, �63�

o that QJ im is the quadrupole moment of the image quad-
upole at ro

im. To this end, we expand the quadrupole ten-
or on the Cartesian basis as

QJ = �

,�

Q
�e
e�, 
,� = x,y,z, �64�

nd substitute this for QJ in Eq. (62). Then we separate
he perpendicular and parallel parts, apply Eq. (51), and
rite the result as in Eq. (63). The result for QJ im can be
ritten in dyadic form, as in Eq. (64), but more transpar-
nt is its matrix representation

QJ im � �
− Qxx − Qxy Qxz

− Qyx − Qyy Qyz

Qzx Qzy − Qzz
� �65�

n the Cartesian basis.

0. REFLECTED FIELD IN TERMS OF THE
OURCE CURRENT DENSITY
quation (31) expresses the surface current density i�r�

n the mirror directly in terms of the source current den-
ity j�r�. The reflected field is expressed in terms of the
ource function J−�k�� in Eq. (49) and in terms of the im-
ge source function J+�k��im in Eq. (50). In Section 9 it
as shown that for multipoles the reflected field can be
xpressed as the field emitted by an image multipole lo-
ated at ro

im behind the mirror. We shall now show that
he reflected field can also be expressed directly in terms
f the source current density j�r�.

The magnetic field generated by the surface current
ensity is given by Eq. (2). Behind the mirror this field
ancels exactly the incident field and in front of the mir-
or this is the reflected field. For i�r� in Eq. (2) we substi-
ute the right-hand side of Eq. (31), which yields
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B�r�r =
�o

8�2 � � �ez �� dV�A�r,r�� � j�r��� . �66�

ere we have introduced the universal vector function

A�r,r�� =� dS�g�r − r���r� − r��f�r� − r��. �67�

Equation (66) expresses the reflected field for all r in
ront of the mirror as an integral over the source current
ensity. With �r�−r��f�r�−r��=��g�r�−r��, the integrand
n Eq. (67) involves the Green’s function twice. For these
reen’s functions we insert the angular spectrum repre-

entation (5), and use that both r and r� are in the region
�0. We then find

A�r,r�� = − i� d2k�

1

�2K−eiK+·re−iK−·r�, z,z� � 0, �68�

s an angular spectrum representation for this function.
he variable r� in Eq. (68) is the same as in Eq. (66), and
herefore it represents a point in the source region. The
irror image of this point is r�im=r��−r�� , when r�=r��
r�� . We then have K−·r�=K+·r�im, and Eq. (68) can be
ritten as

A�r,r�� = − i� d2k�

1

�2K−eiK+·�r−r�im�, z,z� � 0. �69�

ere we observe that each partial wave has wave vector
+, so it corresponds to a wave propagating (or decaying)

n the positive z direction, and the superposition appears
o come from an image source behind the mirror.

As an example, let us consider again the electric dipole,
or which the current density is given by Eq. (32). From
q. (66) we find for the reflected field

B�r�r = −
i��o

8�2 � � �ez � �A�r,ro� � d��, �70�

hich is now expressed in terms of the dipole moment d,
ather than its image dim.

1. CONCLUSIONS
hen light reflects off a mirror, it induces a current den-

ity i�r� in its surface. An integral equation for the trans-
ormed current density I�k�� was derived, and this equa-
ion has the incident electric field at the surface as an
nhomogeneous term. The incident radiation is emitted by
source with a volume current density j�r�, and when we

dopt an angular spectrum representation of the field
mitted by this source, the integral equation turns into an
lgebraic equation, which can subsequently be solved.
he result is given by Eq. (26), which expresses the trans-

ormed current density I�k�� in terms of the source func-
ion J−�k��. By transforming back to configuration space,
e obtain relation (31). This equation relates the surface

urrent density i�r� directly to the source current density
�r�, and therefore i�r� can be calculated without the
sual intermediate step of finding the magnetic field at
he surface first. In Section 7 it was shown that the
ethod allows for an easy evaluation of the current den-
ity induced by an electric or magnetic dipole, and by an
lectric quadrupole. The reflected field can be expressed
n terms of the solution I�k��, and in Section 8 it was
hown that this leads immediately to the identification of
he image source function, given by Eq. (51). As illustra-
ion, we have shown in Section 9 that this approach can
e applied to the construction of images of multipoles. Al-
ernatively, the reflected field can be expressed in terms of
he source current density j�r�, as shown in Eq. (66), and
n this result any intermediate reference to the surface
urrent density or to an image source has disappeared.
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