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Abstract

When a monochromatic plane wave of intensity /, is normally incident upon a circular
aperture, the intensity at on-axis observation points after the aperture oscillates between the
values 4], and zero as the distance from the aperture is increased. This has been referred to as
the diffractive multifocal focusing of radiation (DMFR) effect. The DMFR effect can
dramatically increase the on-axis intensity of the diffracted wave, as compared to the incident
wave, in two- or multi-circular aperture systems. In this paper the phase of the diffracted field
is investigated for both one- and two-aperture systems. For the one aperture system, it is
shown that in the neighborhood of a focal point (where the Fresnel number is odd) the phase
of the wave approaching the focal point is that of a converging wave, the phase in the focal
plane is planar, and the phase of the wave exiting the focal point is that of a diverging wave. It
is shown that as the observation point on-axis passes through a singular point (where the
intensity is zero and the phase is undefined), the nature of the wave in the neighborhood of the
axis changes from that of a diverging wave to that of a converging wave, i.e., the wave
refocuses. Similar behavior is observed for the two-aperture system, and the behavior of this
system depends on the ratio of the radii of the two apertures.

1 Introduction

It is well known that when a monochromatic plane wave of intensity /, is normally incident
upon a circular aperture, the intensity at on-axis observation points after the aperture
oscillates between the values 4/ and zero as the distance from the aperture is increased. The
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reason for this is that the various Fresnel zones in the aperture contribute either constructively
or destructively to the amplitude of the field at the observation point in question, causing the
amplitude to oscillate between zero and twice the incident field value. For an incident
wavelength A, aperture radius a, and aperture-plane to observation-plane distance z, the
number of zones that contribute is given by the Fresnel number, N = a’/Az. The maxima and
minima occur, respectively, at observation points where the Fresnel number is an odd or even
integer.

What is generally not appreciated is the fact that in the region near the axis, as z is
increased, the light is repeatedly focusing, then defocusing, and then refocusing, over and
over again, due to diffraction. These focal points occur at positions where the Fresnel number
is an odd integer. This was pointed out in a series of papers by Lit and co-workers [1-3] and
most recently by Letfullin and George, [4] who referred to this phenomenon as the diffractive
multifocal focusing of radiation (DMFR) effect.

Letfullin and George used the DMFR effect to propose a system of two circular apertures
that would increase the on-axis intensity of an incident monochromatic plane wave
dramatically. In their system the second aperture was located where the Fresnel number of the
first aperture was unity. They analyzed this system theoretically, and showed that the on-axis
intensity after the second aperture oscillates between maximum values of the order of ten
times that of the incident wave and minimum values that were small, but nonzero. These
predictions were verified experimentally [5],[6] and extended theoretically to incident fields
with a Gaussian amplitude distribution [7].

In this paper we substantiate the focusing, defocusing, and refocusing interpretation
mentioned above by investigating the phase of the diffracted field created when a
monochromatic plane wave is normally incident upon a circular aperture, and we use these
results to explain the behavior of the bicomponent system of Ref. 4. In particular, it is shown
that in the neighborhood of a focal point (where the Fresnel number is odd) the phase of the
wave approaching the focal point is that of a converging wave, the phase in the focal plane is
planar, and the phase of the wave exiting the focal point is that of a diverging wave. It is also
shown that the wave becomes more and more divergent as the distance from the focal point is
increased, until a position is reached where the Fresnel number is even. At such a point the
intensity of the wave is zero, and the phase of the wave is undefined, i.e., singular. It is shown
that as the observation point on-axis moves away from the aperture and passes through a
singular point, the nature of the wave in the neighborhood of the axis changes from that of a
diverging wave to that of a converging wave, i.e., the wave refocuses.

In Sec. 2 we will investigate the intensity and phase of the field diffracted by a single
circular aperture. In Sec. 3 we use the results of Sec. 2 to investigate the intensity and the
phase of the field after the second aperture in a system of two circular apertures. We use
scalar wave theory throughout. Unlike in Ref. 4, where the monochromatic wave equation
(i.e., the Helmholtz equation) was integrated numerically, we use the Fresnel approximation
and the paraxial approximation in our calculations.
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2 Intensity and Phase of the Field Diffracted by a Circular
Aperture

A Basic Equations

Consider a monochromatic plane wave of amplitude U, and frequency o, propagating in the

positive z direction, and normally incident upon an opaque screen in the plane z=0,
containing an aperture of radius a. The aperture is centered about the origin. Let p’- (x,),0)

be a point inside the aperture, and let P=(x,y,z) be a point in an observation plane z =

constant > 0 (see Fig. 1). In cylindrical polar coordinates we have P’'=(p’,6,0) and
P=(p,0,z). We assume a time dependence of exp(_iwt)for the incident field. The complex

amplitude, U (p, 9,2), of the incident field is given by
U(i)(p70:z):U0eikz’ (21)

where U, is a positive constant and k = a)/ ¢ is the wave number of the light.

Fig. 1. Geometry for the diffraction of a plane wave from a circular aperture with radius a. Point
P'=(p,8,0) is a point inside the aperture and P=(p.8,2) is a point in the observation plane z =

constant.

We make the following assumptions. First, that the wavelength A is much smaller than
the distance z from the aperture plane to the observation plane. Second, that the Fresnel
number of the observation plane is small and that the transverse distance p is less than the
aperture radius ¢ and much less than the distance z. In this case the paraxial form of the
Fresnel approximation to the Rayleigh-Sommerfeld diffraction formula [8] is appropriate for
describing the field, and the complex amplitude, U(p,0,z), of the diffracted field can be

written as
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aln
U(p, 0’ Z) = _Q%erikzeikpz/zz J‘ J‘U(x) (pl’al,o) eikprz/zze—ikpp'cos(t‘?—ﬂ')/zprdprder. (22)
00

iz

Equation (2.2) is equivalent to the formula used by Lommel9 for the case in which the
incident field is a diverging spherical wave.

Let us now simplify this equation. Upon substituting the value of U (p’,8",0) from Eq.

(2.1) into this equation and performing the angular integration, we find that the complex
amplitude of the field is independent of the angle #and is given by the expression

U(p,2)=Su,ete [0, (kpp'[2)p'dp),
=z 0 2.3)

where J (x) is the zero order Bessel function of the first kind. Let us now make the change

of variables p’ = £a . Upon making this change, Eq. (2.3) can be rewritten in terms of two

dimensionless variables 7 and v as
3] 52 ) .2
U(p,z)=-iuU,e"e" fou Ie'“§ /2J0 (vé)&de,
0 24)

where
u=2nN, v=2nNp/a, (2.5)
and N is the Fresnel number of the aperture at the on-axis observation point,
= p?
N =d*/az. (2.6)

Let us now put Eq. (2.4) into a form more suitable for calculations. It is shown in the
Appendix that in the lit region (where p < a and hence v < u ) the integral on the right-hand

side of Eq. (2.4) can be expressed in as
1

Ieiu§2/2‘]0 (vf)fdé: - i{e—wz/zu _ M |:V0 (u,V)—iVl (u,v)]},
; u 2.7

V. V :
where ° (u,v) and ! (u,v) are Lommel functions of two variables:
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) =2 (2] 0

(2.8)

Upon substituting the right-hand side of Eq. (2.7) into Eq.(2.4), the field in the lit region
attains the form

U(p.z)=U,e" F(p.z), 29)
where

F(p,z) =] g2 g [VO (u,v)— iV (u,v)]. (2.10)

The intensity, / ( p,Z) , of the field in the lit region is given by

1(p,2)=U(p.2) U(p.z) = |F (p.2)[ » @.11)

where * denotes the complex conjugate and /, = |U0|2 is the intensity of the incident field. Tt

follows from Eq. (2.9) that the phase ¢( p,z) of the field is given by

d(p.z)=kz+y(p,z), (2.12)

where
v(p,z)=argF(p,z), (2.13)

and arg denotes the argument of the complex-valued function F ( p,z). We shall refer to

v ( o 8 Z) as the reduced phase.

B Discussion of the Results

In this section the intensity and reduced phase in observation planes at a variety of distances
from the aperture will be investigated. For the sake of comparison, let us first recall the
paraxial form for a diverging spherical wave. A spherical wave emanating from the origin and

arriving at the position P in Fig. 1 is described by the wave function exp (lkr) / r where

r=yp*+z°. The paraxial approximation to this function is
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exp (ikr)/r ~ exp |:ik (Z + p? /22)]/2 . Upon comparing this equation to Eq. (2.9), we see

that the paraxial approximation to the reduced phase of this wave is

w(p,z)~kp*[2z. (2.14)

The intensity and reduced phase of the diffracted field along the x axis in several
observation planes at different distances from the aperture plane are plotted in Figs. 2 and 3.
The behavior of the field as we travel outward from the aperture plane and pass through a
focal point is depicted in Figs. 2(a) through 2(c). In Fig. 2(a) the Fresnel number is 3.5, and in
this plane we see that the reduced phase near the axis has a curvature with the opposite sign of
that of the phase in Eq. (2.14). Hence the wave in this plane corresponds to a converging
wave. The on-axis intensity value is approximately 2.0. In Fig. 2(b) the Fresnel number is 3.
This is a focal plane, and we see that the reduced phase is constant near the axis, i.e., the wave
is behaving like a plane wave in this region. The on-axis intensity value in this case is 4.0. In
Fig. 2(c) the Fresnel number is 2.5, and we see that in this plane the reduced phase near the
axis has a curvature with the same sign as the phase in Eq. (2.14). Hence the wave
corresponds to a diverging wave. The on-axis intensity value is approximately 1.2.

As we move further away from the aperture plane, the wave near the axis diverges more
strongly, until we reach the on-axis point where the Fresnel number is 2.0. At this point the
intensity of the field is zero, and its phase is undefined. Such a point is referred to as a
singular point of the field. [10],[11] Figure 2(d) shows the intensity and phase of the wave in
the plane where the Fresnel number is 2.01, i.e., just before we reach the singular point. The
phase near the axis has a steep upward curvature, corresponding to a strongly diverging wave.
The value of the phase on-axis is approximately -n/2. Figure 2(e) shows the intensity and
phase of the wave in the plane where the Fresnel number is 1.99, i.e., just after we have
passed through the singular point. The phase near the axis has a steep downward curvature,
corresponding to a strongly converging wave. The on-axis value of the phase here is
approximately 7/2, so as we pass through the singular point, the phase jumps by . Figure 2(f)
shows that as we continue to move further away from the aperture plane, the field near the
axis starts to converge less strongly. Finally, at the next focal point, the plane where N = 1.0,
we see that the phase near the axis is again constant; and hence the wave is again behaving
like a plane wave. This is shown in Fig. 3. In addition, by comparing Fig. 3 to Fig. 2(b), we
see that for focal points further from the aperture plane, the wavefront is planar over a larger
area in the observation plane.

Figure 4 shows the lines of constant phase, ¢, in the xz plane near the N = 2 singular

point, for the case a/A =50. It is evident from the figure that as the wave approaches the

singular point, it is a diverging wave whose radius of curvature becomes smaller and smaller.
It also follows from the figure that after the wave has passed through the singular point, it is
now a converging wave whose radius of curvature is increasing.
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Fig. 2. Plots of [/ / 1 o (thin line) and ¥/ / 7¢ (thick line) as functions of position along the x axis for
observation planes with Fresnel numbers: (a) N=3.5,(b) N=3, (c) N=2.5,(d) N=2.01, (e) N=1.99,

and () N=1.5.
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Fig. 3. Plots of [ / 1 o (thin line) and ¥ / 7¢ (thick line) as functions of position along the x axis for the

observation plane with N= 1.
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Fig. 4. Lines of constant phase, ¢, in the xz plane near the N = 2 singular point when a/ A =50.The

transverse coordinate x is in units of @, and the z coordinate is in units of the wavelength A. The value of
the phase for each line is labeled in units of /4.

3 Intensity and Phase of the Field Diffracted by a Bicomponent
System of Apertures

A  Basic Equations

Let us now consider the two-aperture system depicted in Fig. 5. The radius of the first
aperture is aj, the radius of the second aperture is a,, and the distance between the planes

containing the apertures is L. Let P" = (x", »",L) be a point inside the second aperture, and
Pe (x, y,Z) be an observation point in the plane z = constant > L. In cylindrical polar

coordinates we then write P" = (p",8",L) and P =(p,0,z). It follows from Egs. (2.9)

and (2.10) that the complex amplitude of the field incident upon the second aperture is given
by

U(p",&”,L) =U, P {l _eilq/zeivlz/zul I:Vo(ul’vl)_ iV (ul,v] )]}, 3.1

” 2
where u, =27N,, v, =27N,p"/a, ,and N, =a_ [AL .
In order to compare our results to those of Ref. 4, we now assume that the distance L is
such that N;, the Fresnel number of the first aperture at the center of the second aperture, is

equal to unity. In this case u, = 27, v, = 27p" /a, , and Eq. (3.1) can be written as
q 1 | P |4

U(p".0",L)=U,e*[1+D(p"[a,)], (3.2)
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where

D(w)= & [VO (27, 2zw) -1V, (27[,27rw)]. (3.3)

/ / i
20

22 / /

L z-L

N\
\ 3

Fig. 5. Geometry for the diffraction of a plane wave by a system of two circular apertures with radii a,

and a,, respectively. The distance between the two aperture planes is L. Point P'= ( p",@”,L) is a

point inside the second aperture, and P = ( P, 0,z ) is a point in the observation plane z = constant.

Let us now investigate the complex amplitude, U ( p,H,z) , of the diffracted field in the

region z > L. The paraxial form of the Fresnel approximation to the Rayleigh-Sommerfeld
diffraction formula tells us that this field is given by the expression

ikp’ a 2r ikp™

eik(z—L)eZ(sz) J' IU(pn,gn’L)eZ(Z—L)e—ikpp'cos(@—B")/(z—L)pndpnden. (34)
00

k
U(p,0,z)=————
(p.6.2) 27i(z-L)
Upon substituting the right-hand side of Eq. (3.2) into Eq. (3.4) and performing the
angular integration, we find that the field is independent of angle #and is given by

k ikp’ _a, ikp”?

= i (z-L) ” 2(z-L) kpp” ” "
U(,D,Z)—i(z—_L)UOekzez L (;ﬂ:l-f-D(p /a])]ez L)Jol:::|p d,D . (3.5)

Let us now make the change of variable p” = &a, . After using this relation in the right-

hand side of Eq.(3.5), we find that the field can be described in terms of the dimensionless
variables u; and v, as
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1
U(p,2) = —imUye™e" ™ [[1+ D (&) |e"* 1, (v,¢) &d¢, (3.6)
0

where
u,=2zN,, v,=2zN,p"/a,, (3.7)

with N, the Fresnel number of the second aperture at the on-axis point in the observation
plane,

N,=a;[A(z-L), (3.8)
and « the ratio of the radii of the two apertures,
a=a,/a,. (3.9)
By analogy with the results of Sec. 2, let us write Eq. (3.6) as
U(p,z)=U,e“F(p,z), (3.10)

where
1
F(p.z)=—iwe" ™ [[1+D(ag)]e" /T, (v,£)cdé. (3.11)
0

It follows from Eq. (3.10) that the intensity and phase of the field in the lit region are
given, respectively, by Egs. (2.11) and (2.12) with F(p,z) given by Eq. (3.11) and the

reduced phase defined as in Eq. (2.13). The function F ( P, z) can be evaluated by numerical

integration.

B Discussion of the Results

The on-axis intensity and reduced phase of the field after the second aperture were calculated
by the method described above, and are plotted as a function of the Fresnel number N, for two
different values of « in Figs. 6 and 7. One general comment is in order before discussing the
results. There are no true singular points after the second aperture, because even at points
where the intensity is minimum, its value is not exactly zero.

Figure 6 shows the results for @ = 0.1. The value of the reduced phase oscillates and
undergoes a phase change of approximately 0.87 at each point where the Fresnel number is
even. The value of the intensity oscillates and is approximately zero at each point where the
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Fresnel number is even and 151, at each focal point (where the Fresnel number is odd). Figure
7 shows the results for = 0.5. The value of the reduced phase oscillates with smaller
amplitude than in the previous case, and the value of the intensity oscillates between the
values Iy and 81;. This figure shows, especially at the higher values of N, that the maxima

and minima no longer occur exactly at integer values of the Fresnel number.
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Fig. 6. Plots of /I, and W/ /7 on-axis as functions of the Fresnel number N, for &= 0.1.

The explanation for this behavior is as follows. When a = 0.1, the radius of the second
aperture is ten times smaller than that of the first. In this case the results of Sec. 2 show that
the phase of the field incident upon the second aperture is constant across it (see Fig. 3), and
that the value of the intensity incident upon it varies by only 10% across it. Therefore the field
incident upon the second aperture is very similar to the field incident upon the first aperture (a
constant amplitude, normally incident plane wave), and this explains why the second aperture
increases the on-axis intensity at the focal points by a factor of close to four, why the intensity
at singular points is approximately zero, and why the phase jump at a singular point is close
to m. As « increases from the value 0.1, the phase of the field incident upon the second
aperture remains approximately constant across it, but the intensity begins to vary
considerably. As a result, the effect of the second aperture becomes less ideal. When a = 0.5,
as in Fig. 7, both the phase and the intensity of the field incident upon the second aperture
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vary significantly across it (see Fig. 3), and the effect of the second aperture is
correspondingly less ideal.

107 111,
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\

-0.44

-0.6

Fig. 7. Plots of [ / I, and ¥ / 7r for on-axis observation positions as functions of the Fresnel number
N, for a=0.5.

The intensity and reduced phase of the diffracted field as a function of the scaled
transverse coordinate x/ a, insix different planes after the second aperture are shown in Fig.

8 for the case a = 0.4. In Fig. 8(a) the Fresnel number is 3, and the plane is a focal plane. The
on-axis intensity is maximum, and the phase near the axis is approximately constant. In Figs.
8(b) and 8(c) the Fresnel numbers are 2.5 and 2.2, and the wave is diverging in each case. In
Fig. 8(d) the Fresnel number is 1.85, and the wave has changed from a diverging wave to a
converging wave. In Fig. 8(d) the Fresnel number is 1.5, and the wave continues to converge.
In Fig. 8(a) the Fresnel number is 1, and the plane is a focal plane. The on-axis intensity is
maximum, and the phase near the axis is approximately constant. In Ref. 4 the value of o was
0.4, as it is in Fig. 8. Our results for the intensities agree well with those of Ref. 4.
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Fig. 8. Plots of [ / Io (thin line) and l/// 7¢ (thick line) as functions of position along the x axis for

observation planes after the second aperture with Fresnel numbers: (a) N, = 3.0, (b) N, = 2.5, (c) N, =
2.2,(d)N,=1.85,(e) N,=1.5,and (f) N, = 1.0.

4 Conclusions

We have investigated for the first time the phase of the diffracted wave for both one- and two-
aperture systems. The paraxial and Fresnel approximations to the Rayleigh-Sommerfeld
diffraction theory have been used to investigate the phase and amplitude of the diffracted field
for a monochromatic plane wave normally incident upon a circular aperture. For the one
aperture system it was shown that in the neighborhood of a focal point (where the Fresnel
number is odd) the phase of the wave approaching the focal point is that of a converging
wave, the phase in the focal plane is planar, and the phase of the wave exiting the focal point
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is that of a diverging wave. It was also shown that the wave becomes more and more
divergent as the distance from the focal point is increased, until a position at which the
Fresnel number is even is reached. At such a point the intensity of the wave is zero, and the
phase of the wave is undefined, i.., singular. It was shown that as the observation point on-
axis moves away from the aperture and passes through a singular point, the nature of the
wave in the neighborhood of the axis changes from that of a diverging wave to that of a
converging wave, i.e., the wave refocuses. It was also shown that similar behavior is observed
for the two-aperture system, and that the behavior of this system depends on the ratio of the
radii of the two apertures.

Appendix

It is convenient to consider the real and imaginary parts of the integral on the left-hand side of
Eq. (2.7) separately. We set

1

Iei"52/2J0 (v§)§d§ =%[C(u,v)+iS(u,v)], (AD)

0

where

1
C(u,v) =2 |cos(ué? 1 2)Jy(vE)EdE (A2)
0

S(u,v) =2 |sin&? 12)J,(vE)EdE (A3)

0

These two integrals can be expressed in terms of the Lommel functions of two variables

Vo(u,v) and ¥, (u,v), [12]
2F . (.9 ’
C(u,v) —;[sm(v /2u)+s1n (u/2)V0(u,v)—cos(u/Z)Vl(u,v)], (A%)

S(u,v) = %[cos(v2/2u) —cos(u/2)V, (u,v)—sin(u/2)V, (u,v)} (A5)

Upon substituting the right-hand sides of Egs. (A4) and (A5) into Eq. (A1), we find
1

i’ [2 — L -2 2u _iuf2 .
je Jo(vE)EdE = u{e e [Vo(u,v) lVl(u,v)]}. (A6)

0
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