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Abstract

Angular spectrum representations are derived for electric and magnetic multipole fields of arbitrary order. The result
involves generalized spherical harmonics and generalized vector spherical harmonics, and the representations are in the
form of integrals over the kj-plane. The representations are especially useful for the study of reflection and transmission
of multipole radiation by a plane interface. As an example, we have considered the reflection at a perfect conductor. The
reflected field of a multipole field could be expressed in the form of an angular spectrum with a very simple relation to
the angular spectrum of the source field. The radiation pattern of a multipole near the perfect conductor is obtained
with the method of stationary phase. We also introduce a method for determining the mirror image of the source of
an arbitrary multipole.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Electromagnetic radiation emitted by a local-
ized source can most conveniently be represented
as a superposition of electromagnetic multipole
fields [1]. In particular, when the source is an atom
[2] or a nucleus [3] then emission of radiation oc-
curs during a transition between states with well-
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defined angular momentum and the emitted radia-
tion is a pure multipole field of order (¢,m), where
¢ and m are determined by the angular momentum
quantum numbers of the initial and final states.
Multipole radiation comes in two types, electric
and magnetic, with electric dipole (£ = 1) and elec-
tric quadrupole (¢=2) radiation encountered
most commonly.

When the source is located in the vicinity of a
material medium like a dielectric or a metal sub-
strate, then the emitted radiation will be reflected
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by and transmitted through the interface. This
problem of reflection and transmission has been
studied extensively for dipole radiation [4-6]. Of
particular interest is the situation where the dis-
tance between the source and the interface is of
the order of a wavelength of the radiation, since
this leads to interesting interference patterns. Fur-
thermore, when the source is an atom (or mole-
cule), the reflected radiation interacts with the
atom, and this affects the time evolution of the
atomic density operator. As a result, the lifetime
of the excited state is altered, and this leads to
enhancement or inhibition of the spontaneous
emission [7-15].

Multipole fields are spherical waves emanating
from the site of the source. Such a representation
does not allow in any simple way to study the
reflection and transmission by an interface. A bet-
ter approach to this problem is to adopt an angular
spectrum representation of the radiation, which is a
superposition of plane waves, each of which obeys
Maxwell’s equations individually. The reflection
and transmission of each partial wave of the spec-
trum is then accounted for by an appropriate Fres-
nel coefficient, and the reflected and transmitted
fields are again represented by angular spectra
[16]. This method has been applied successfully
for radiation emitted by electric and magnetic
dipoles for which the angular spectrum representa-
tion is known [17,18]. In this paper we extend this
approach to multipoles of arbitrary order (¢,m)
and type (electric and magnetic).

For radiation with angular frequency w, propa-
gating in a medium with index of refraction n, a
plane wave has the form exp(iK. - r), with the
wave vector given by

Kizkniﬁez‘ (1)

In an angular spectrum of plane waves, the z-axis
is a preferred direction in space, and the xy-plane
is seen as separating the regions z> 0 and z <0.
In Eq. (1), the upper (lower) sign holds for waves
in the region z > 0 (z <0), and the subscript | re-
fers to the orientation with respect to the xy-plane.
The vector kj is a free parameter in the angular
spectrum (the integration variable), and is allowed
to have any real value. The dispersion relation for
the waves in the medium is K. - K. = n’k}, with

xy-plane

K_

Fig. 1. Schematic illustration of the plane-wave modes of the
angular spectrum. For a given k), with magnitude k|, the wave
is traveling for k < nko, and this is indicated by the vectors K
and K_. The wave travels in the directions away from the xy-
plane. For kj > nky, the z-component of K. is imaginary and
the wave decays away from the xy-plane while traveling along
the xy-plane, as shown on the right.

ko = w/c, and therefore parameter f in Eq. (1) is
given by

,/nzké = kﬁ, k“ < nky,
B - i”kﬁ = I’lzk%), k” > nky. (2)

For ky <nky, p is real and positive, and a wave
with wave vector K, is a traveling wave, which
travels in a direction away from the xy-plane. On
the other hand, for k> nko, parameter f3 is posi-
tive imaginary, and a plane wave of the form exp(i-
K. - r) travels along the xy-plane in the direction
of kj, but decays in the z-direction away from
the xy-plane at both sides. These are the evanes-
cent waves of the angular spectrum. Fig. 1 shows
schematically the traveling and evanescent waves
in the angular spectrum.

2. Scalar multipole fields

Before considering the electromagnetic multi-
pole fields, we first consider the scalar multipole
fields ITy,(r). These fields are solutions of the
Helmholz equation

(V2 + n2k2) 4 (r) = 0, (3)

with outgoing boundary conditions at infinity. In
spherical coordinates (r,, ¢) the solutions are
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o (r) = W (nkor) Yo (0, §), (4)

in terms of a spherical Hankel function A" (nkor)
and a spherical harmonic Y,,(6,¢). For a given

¢=0,1,2,..., the values of m are m=—¢,...,¢,
and the lowest-order scalar multipole is
1 einkgr
II =— 5
00(") \/‘TTE 1nk0r ( )

The higher order multipoles can be obtained from
M yo(r) through differentiation by means of a theo-
rem due to Erdélyi [19]

(20 + 1)(€ — m)!

Hanlr) = () )"
{ENCR | A
m = 0. (6)
Here,
Runlw) = 5 Pa() @

and P4u) is a Legendre polynomial.

An angular spectrum representation of I1,,,(r)
can be obtained [20] by noticing that ITyy(r) is
the scalar Green'’s function, apart from a constant,
for which the angular spectrum is given by Weyl’s
representation [21]. We have

HOO 47'[3/ nk /dzku lKi (8)

in the notation of the previous section. The inte-
gral over k runs over the entire k-plane. The
derivatives with respect to x, y and z in Eq. (6)
only affect the factor exp(iK.. - r) in the integrand,
and the differentiations are easily carried out. To
this end, we adopt polar coordinates (kj,¢) in
the kj-plane:

ky = kj(e,cos ¢ + e,sin @) 9)
and we introduce and “angle” 6 by

k” = nko sin @ (10)

For a traveling wave we have 0 < sinf < 1, and 0
is the polar angle of the wave vector K. For an
evanescent wave we have sinf > 1, but we shall

still indicate ky/nko by sin 0, keeping in mind that
no angle 6 is associated with sin 6. Similarly, we
write

B = nkycos 6, (11)

which, according to Eq. (2), is positive or positive
imaginary. With this notation we have

K. = nkysin (_9(ex cos d + e, sin q_S) + nkoe. cos 0.

(12)
From Eq. (6) we then find
_ VA m (2£+1)(£_m)' 1
Hlm(r)_( 1) ( 1) (£+m)| 47'63/271](0
2e dimerl oom g 7
X dk”Ee * (—51n9e ) Ryn(£cosb),
m =0, (13)

where again the upper (lower) sign holds for the
region z >0 (z <0).

3. Generalized spherical harmonics

In order to arrive at a more compact represen-
tation we define associated Legendre functions of
a complex variable by

P}(2) = (=1)"(1 = 2)"*Rom(2),

and the definition is extended to all m by means of

m (f — m)' m

In Eq. (14), the branch cut for the square root is
taken along the negative real axis, so that the
branch lines for P}'(z) are (—oo,—1) and (1,00).
It should be noted that the P}'(z) defined here are
not the same as the standard associated Legendre
functions Pj'(z), to which they are related as
PJ(z) = (+1)"P}(z), with + the sign of the imagi-
nary part of z. The difference arises from the differ-
ence in branch cut [22]. For later reference we note
that P}'(z) satisfies

Py(=2) = (=1)""P}(2), (16)

since Rym(—z) = (=1) " ™Ry(z). Recursion rela-
tions for P}(z) carry over to relations for P} (z).

m =0 (14)

Py"(2)
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We shall need the following recursion between
functions with different m value:

Pr2(z) +2(m+ 1) \/1__7?;'“(2)
+ (U —m)({+m+1)P}(z) =0, (17)

where it is understood that P}'(z) = 0 for m > £.
We now define the functions

21 (L=m)! s (18)

Sem(z,9) = [— (Crmy !

for z complex and « real. These are the generalized
spherical harmonics because for z=cosf and
o=¢ they reduce to the regular spherical
harmonics

Sim(cos 8, ) = Y, (0, ). (19)
From Eq. (16) we find
S[,,,('—Z, (X) = (—1)£+"'S[,,,(z, OC) (20)

and Eq. (17) becomes
VE+m+ 1)l —m)e ™Sy (2, )

2
+ isi,m(zv a)

V1-22
+ VU —m+ 1)l +m)e"S;1(z,0) =0.  (21)
Here we set Sy, (z,2) =0 for |m|>¢. The case

m = —/ in Eq. (21) does not follow from Eq. (17)
and has to be verified independently.

4. Scalar multipole fields, continued

When we set z = 4 cos @ in Egs. (14) and (18),
and « = ¢ in Eq. (18) we get just the 6 and ¢
dependence of the integrand on the right-hand side
of Eq. (13), apart from the exponential. Therefore,
the angular spectrum attains the simple form

(i)
Men(r) = 2nnky

/ dzkH %eiKi'rS[m(:t COS 9, (7))
(22)

for m > 0. We shall now show that the same
expression holds for all m.

When we replace m by —m and o by —o in the
definition (18) and use relation (15), we find
immediately

S(,,,(Z, —O() = (—l)msf,—m(zv O() (23)
and therefore with Eq. (19)
Yim(ev _¢) = (—1)'” YF.—m(O* d)) (24)

Then the multipole fields from Eq. (4) obey

Him(r 0 ¢) (

The ¢ dependence in the representation (22) only
enters as K. - r = nkor[sin 0 sin 6(cos ¢ cos p+
sin ¢ sin ¢) + cos 6 cos 0]. We replace ¢> by —¢,
change the integration varlable é to q,’) =21 — ¢,
and drop the prime on cf) This yields for m > 0

Hp,,,(r 0 ¢)

0
L 1 ) ~ B
= 2(7”:])(0 dzk” ﬁelki.rsbn(i cos 67 Zn . ¢)

)" —n(r,0, ). (25)

(26)
and with Eq. (23) this becomes
(=)
27nnk
X / dzk”%e“‘f's[,_,,,(i cos 0, ¢ — 2m). (27)

n?m(", 0, —¢) — (_l)m

Here we can replace ¢ — 27 by ¢ since Sp,(z, ) is
periodic in a with period 2z. Then the right-hand
side of Eq. (27) is just (—1)"II, _,(r,0,¢), pro-
vided we represent I1,,(r,0,¢) for m <0 also by
Eq. (22).

5. Vector multipole fields

The vector multipole fields, indicated by
Ayem(r), in a medium with index of refraction n
are solutions of the vector Helmholz equation

(V2 + k) Ayim(r) = 0. (28)

The subscript n = =+1 distinguishes between two
possible types of fields. We consider divergence-
free (transverse) solutions only:

V- Aym(r) =0. (29)
There also exists a longitudinal (vanishing curl)

solution, which could be indicated by n =0. The
standard solutions, which form a complete trans-
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verse set and are normalized on the unit sphere,
are given by [23]

1

A,,,l':——LHmI‘, 30
tem(r) ) en(r) (30)
i 1
A_ypm(r) = —— —=V X (L, (r 31
() =~ =V X (L) (3
for{=1,2,...and m = —/,...,¢ (there is no trans-
verse vector multipole for £ =0), and L = —ir x V.
From the above we readily verify the reciprocity
relations between the n =1 and n = —1 fields
V x A,,g,,,(r) = inkoi’]A_,,g,,,(r). (32)

The vector multipole fields are expressed in
terms of the scalar multipole fields, for which we
have an angular spectrum representation, but the
appearance of the operator L is cumbersome.
For the n =1 fields we shall use the alternative
form [24,25]

Avn(r) = h" (nkor) Teem(0, ), (33)

in terms of vector spherical harmonics T,,(6, ¢),
which are in general defined as

Tjen(0, ) = D (€ 1uljm) Y 1 (6, §)e, (34)

Wu

with (£u'1uljm) Clebsch—Gordan coefficients and
e, spherical unit vectors. The summation on the
right-hand side has at most three terms since
w=1,0, —1, and the Clebsch—-Gordan coefficients
vanish unless ' = m — u. Then the n =1 fields can
then be written as

Avm(r) = Z(bﬂ — plpm)II -y (6, P)ey. (35)

u

In the representation of Eq. (35) we can substi-
tute the angular spectrum representation of the
scalar multipole fields, given by Eq. (22). We then
obtain

Alim( )

/ dzk” 7 e®= "V, (£ cos b, p),
(36)

in terms of the generalized vector spherical har-
monics, defined by

27tnk0

Vin(z,a) = > _(tm — plp|tm)Sp_u(z, 2)es,  (37)

u

with Sy,(z,a) the generalized spherical harmonics
from Eq. (18). We only need the generalization
of Tju,(0, ¢) for j = £, so we have left out a redun-
dant subscript ¢ in the notation. The angular spec-
trum representation for the 5= —1 fields now
follows from Eq. (32) with n = 1:

) o Ky
B Lo e
A l(m( ) 27U7k0 d k“ B +
X Vin(£cos 0, d), (38)

where K. = K. /(nky).

6. Electromagnetic multipole fields

The electric and magnetic fields, E(r) and B(r),
emitted by a localized source near the origin of
coordinates, are a solution of the free-space Max-
well equations. Since the vector multipole fields
from the previous section form a complete set of
transverse functions, we can express the electric
and magnetic fields as superpositions of the vector
multipole fields. For the electric field we write

1k(3)
Z bt;l’m u(m(r (39)

47ZS ném

The magnetic field then follows from a Maxwell
equation according to

B(r) = —év x E(r) (40)
and with Eq. (32) this is explicitly

_n lko

C 47[8 Z r’bq[m —ulm (41)

ném

A pure (17,¢,m) multipole field has only one term in
both Egs. (39) and (41). A multipole field with
n=—1(n=1) is commonly referred to as an elec-
tric (a magnetic) multipole field. The constants
byem in Eqgs. (39) and (41) are called the multipole
coefficients.

The multipole coefficients b,,, are determined
by the source of the radiation. Explicit expressions
can be found in Ref. [23] for fields in vacuum. We
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now include the possibility of an embedding med-
ium with index of refraction n, and we consider the
case where the source is entirely accounted for by a
given current density j(r) with dimensions much
smaller than the wavelength of the radiation. Then
the multipole coefficients can be obtained as

_idn (nko)' /1z+1/ . .
b—lfm—w kO (2£+1)” e d V_](r) Vyém(r) )

(42)
y _ndn (nko)* 1
e ke 26+ D) /Rt 1)
X / Erlr xj(r)] - VYm(r). (43)

These involve the solid spherical harmonics Y/,,(r),
defined as

ng(i‘) - r[Ylm(Hv ¢) (44)

and the gradient of these functions is

VYon(r) = V22 + 1)

% Z(ﬁ — Im — plp|m)Y oy pey(r)e,.
m

(45)

It is interesting to see that the multipole coefficients
depend on the index of refraction of the embedding
medium. They are proportional to n’ for an electric
multipole and to n“*! for a magnetic multipole.

7. Sources of multipole radiation

The multipole fields are uniquely determined by
a given current density j(r) of the (monochromatic)
source. We shall first consider a point source at the
origin of coordinates, with a current density given
by

Jj(r) = —iwdd(r), (46)

where d is an arbitrary vector. The multipole coef-
ficients b, for this current distribution can be
found by evaluating the integrals in Eqs. (42)
and (43), and using expression (45) for the gradient
of the solid spherical harmonics. Due to the delta
function in Eq. (46), the only contribution comes
from the point r = 0. However, the solid spherical

harmonics are homogeneous polynomials of de-
gree / in x, y and z, and they vanish at the origin
unless £ =m = 0. To be specific,

1
Yim(0) = —=0¢00mo- 47
4 ( ) \/KE 0 0 ( )
Therefore, the sum on the right-hand side of Eq.
(45) only gives a contribution if £ =1 and u=m.
We find for the multipole coefficients

/2
br]ém =2n _3—n617.—15l’.ld : e;,v (48)

where we have used r X [do(r)]=0. We conclude
that the current distribution (46) represents an
electric (1 = —1) dipole (¢ = 1), and it gives a con-
tribution to the three m values depending on d. To
obtain electric dipole radiation that only contains
one specific value of m, the dipole moment d must
have the form

d=de,, (49)

with d an arbitrary complex number, e.g., d must
be proportional to the spherical unit vector e,,.
For m = 0 this is a linear dipole along the z-axis,
since e, =e,. Since we consider monochromatic
fields, all quantities are complex amplitudes and
the corresponding time dependent quantities are,
for instance, d(t) = Re[d exp(—iwt)]. With the def-
inition of the spherical unit vectors for m = £1

1 .
€y = %(:Fex - ley)a (50)
we then see that m =1 (m = —1) corresponds to a

dipole moment d(¢) that rotates counterclock-
wise (clockwise) in the xy-plane with constant
amplitude.

As a second example we consider

J(r) = —p x V(). (s1)

with p an arbitrary vector. In order to remove the
derivatives of the delta function, we integrate by
parts first. This effectively moves the derivatives
to the factors Y,_y,,_,(r) on the right-hand side
of Eq. (45), and these derivatives can be evaluated
with the same formula. For the multipole coeffi-
cients we then find
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2n* 2n
bl]@m = T ?51].156,11) $ e:,- (52)
Evidently, this is magnetic dipole radiation from a
magnetic dipole moment p. For an arbitrary p, all
three m values will occur in the radiation field, and
we get a pure multipole with one m value if

D = Pém, (53)

just like for the electric dipole.

An interesting method for obtaining the cur-
rent distributions of the higher-order multipoles
is given by van Bladel [26]. The next leading term
has the form

j(r) = gio[95() - 0, (54)

with Q an arbitrary symmetric second-order Carte-
sian tensor, the electric quadrupole tensor. Upon
evaluating the integral in Eq. (43) we find that
the result is proportional to }_,,0,se; X e, with
o, B=x, y, z, and this is zero since Q is symmetric.
Therefore, by,, =0. For the electric multipole
coefficients we obtain

1 T , .2,
b_ym = 3”2160\/%5/,2 Z(lulﬂ [2m)e;, - Q-e),.
'
(55)

Clearly, j(r) in Eq. (54) gives electric quadrupole
(¢ =2) radiation, and for an arbitrary quadrupole
tensor Q all m values will contribute. The question
comes up what the form of Q must be so that only
one m value survives, in analogy to Egs. (49) and
(53) for the electric and magnetic dipoles, respec-
tively. The answer is

e )]
Q = QEm ’ (56)

where E,("Z) are “‘spherical unit tensors”, just like the
spherical unit vectors. They are defined as (see
Appendix A for the relation to the irreducible ten-
sor components of Q):

(k)
E, = Z(ltl‘c’|kq)e,e,/ (57)

t

for k=0, 1and 2, ¢ =—k,...,k, and they form a
complete set for second-rank tensors. From

e, e = 0,. and the orthonormality of the Cle-
bsch—Gordan coefficients we then have

(k)
Z(lulu’|2m)e; E, €, =0k204m, (58)
up!
showing that the operation on the left, which is the
same as in Eq. (55), just filters out the k =2 and
q = m value.

8. Properties of the generalized vector spherical
harmonics

If we replace z by —z in the definition (37) of the
generalized vector spherical harmonics, and use
Eq. (20), we find

Vim(_zv O()
= (=1)"! Z(Zm — w1 p|m) Sy m-u(z, %)e,,
p==l
+ (=)™ (em10]€m)Sm(z, 2 )e.. (59)

If we then combine this with V,,(z, «) in two differ-
ent ways we obtain

V(",(Z, O() + (—1)“-’" V['m(—Z, (X)

= 2(ém10[fm)S; (2, t)e:, (60)
V[,,,(Z, a) = (_1)“”71 Vlm(_zw a)
=2 Z(ém — ulp|lm)Sm—y(z, o)e,. (61)
p==1

Here we notice that the right-hand sides of Eqgs.
(60) and (61) are perpendicular and parallel to
the xy-plane, respectively. We shall use this in Sec-
tion 10 to verify boundary conditions.

From definition (18) we observe

Som(z, ) = €78 (2, 0). (62)

The a-dependence of each term in V,,(z,«) in Eq.
(37) is therefore expli(m — w)a]. When considering
Vilz,2)", each term has a factor exp[-i(m — w)a],
and therefore

V[,,,(Z, O() : Vém(zv a)* = V[,,,(Z, 0) . ng(Z, 0)*1 (63)

since the cross terms cancel due to e, - €}, = J,,.
Now we consider the relation between positive

and negative m values, for the case « =0. From

Eq. (50) we see that e, - e, = —p/ V2, from which
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e, Vin(z,0) = —% Z (bm — pl | m) uS ¢ pm—y(2,0).
p==+l1

(64)
Then we replace m by —m and use the property
(6 —m— plpll —m)=—m+ pl — pl¢m). From
Eq. (23) we have Sy _,.(z,0)=(—1)"Seu(z,0),
which then yields

e Vim(z,0) = (=1)""e, - Viu(z,0). (65)
Along similar lines we find
ey Vin(z,0) = (=1)"¢, - Viu(2,0), (66)
e Vim(z,0) = (=1)""e. - Viu(z,0). (67)
Together with Eq. (63) this shows that
Viz,0) * Viu(z,2)" is independent of « and the
sign of m.

From definition (37) we immediately see
e. - Viu(z,0) = (bm10|€m)S,,(z, ). (68)
From Eq. (50) we find

. [T

e, cosa+e,sina) -e, = ———e'** 69
( ySina) - e, v (69)

and therefore

(excoso+ e, sina) - Vin(z, )
1

= Im — pl pllm) e Sy (2, ).
ﬁu;( |¢m) em—n(2, )

(70)

The three Clebsch-Gordan coefficients that ap-
pear in the definition (37) of Vy,(z, «) are explicitly

(m-1m&g=-¢“‘2&2%+m, (71)

m

NAGES

Mm+H—H%ﬂ=¢@+Z&2%_M. (73)

(bm10]¢m) = (72)

We then notice that the numerators are just the
factors in the recursion relation (21) for the gener-
alized spherical harmonics. Then we set z = cos f§
in Eq. (21), with again the understanding that cos 8
can be complex, and sinff = (1 — 2%)!2_ This gives
the alternative form

R sin 8 Z (€m — pl p|fm) e Sy, (cos B, o)
\/E u==l1

= cos B(¢m10|€m)Sy(cos B, a). (74)

The summation on the left-hand side is the same as
in Eq. (70), and the right-hand side equals cosf
times the right-hand side of Eq. (68). In this way,
Eq. (74) becomes

[sin B(e, cos a + e, sin &) + e cos ff]
. V[,,,(COS ﬁ, O() =0. (75)

For (B,0) = (0,¢) the term in square brackets is
the radial unit vector #, and Vy,(cos6,¢)=
Toom(0,¢). Therefore, Eq. (75) generalizes the
theorem

P Tﬂm(gv ¢) = 07 (76)

which expresses that the magnetic multipole fields
Aion(r), Eq. (33), are transverse in the sense that
they are perpendicular to r for all points in space.

9. Multipole near a perfect conductor

The angular spectrum representation of the elec-
tromagnetic multipole fields is particularly useful
for the study of reflection and refraction by an inter-
face. As an example we consider a pure (1, £, m) mul-
tipole located on the z-axis and a distance H above
the xy-plane, as illustrated in Fig. 2. The region
z > 0 is occupied by a dielectric material with index
of refraction n, with the multipole embedded in
it, and the half-space z < 0 is assumed to be a perfect
conductor. In the perfect conductor we have
E(r) =0 and B(r) =0, and therefore the boundary
conditions are that E(r); and B(r), vanish at
z=0". In other words, E(r) must be along the z-
axis and B(r) must be in the xy-plane at z = 0".

In the region z > 0 the electric field can be writ-
ten as a superposition of the source (s) field and
the reflected (r) field:

E(r) = Eo(r) + E(r) (77)

and similarly for the magnetic field. The angular
spectrum representations of E(r) and B(r) of a mul-
tipole, the source field, are given by Egs. (39) and
(41), by retaining only one term, and with expres-
sion (36) or (38) substituted for the vector multi-
pole field. This representation is, however, the
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Z-axis

medium #

®)
z 9 s

— xy-plane

Fig. 2. The multipole source is located on the z-axis, a distance
H above the xy-plane, and embedded in a material with index
of refraction n. The region z <0 is a perfect conductor. The
mirror image of the multipole is a located on the z-axis, a
distance H below the xy-plane.

field of a multipole located at the origin of coordi-
nates. An advantage of the angular spectrum is that
the r dependence of the field only enters as exp
(iK. - r) in the integrand, and we can easily shift
the location of the multipole to He, by the substitu-
tion r — r — He,. We then obtain for the electric
and magnetic source fields of an electric multipole
I G V.
E(r)= —qu(fm

1. . o
X /dzkﬁﬁe"‘*'("”"”Ki X Vim(£c0s0,0),
(78)

1. —_—
x/d2k||B—e‘Ki‘("He’) Vim(E£cos0,¢) (79)

and the fields of a magnetic multipole are

__(—i)”lkg
E(r)= Snlegn Jlim
1. I
* / Phyges 1V (cosD,P), (80)
_ (D
B,(r)= Siaac bim

X /dzk“%ewiv(r_”e:)i(i x Vp,,,(:hCOS(-),(-P).
(81)

The upper and lower signs now refer to z > H and
0 < z < H, respectively.

The reflected fields have to be determined such
that the sum of the s and r fields satisfy the bound-
ary conditions at the interface. We shall employ
the method of images, which consists of guessing
the answer and then proving afterwards that it is
correct. For a given (5,£,m), the reflected field is
again a multipole field with the same (n,£,m) and
the same b,,,, but the location of the source is at
the mirror position —He,. We then only need the
solution with the upper sign. In addition, the field
picks up a phase factor of (—1)“""*"" for an electric
multipole and (—1)*" for a magnetic multipole.
The reflected electric and magnetic fields of an
electric multipole are

E(n) = (1)

1
B _(_1\m 0 i
,.(l‘) ( 1) 87I2£ch 1m
1. -
g / &k gV i (c0s0,) (83)
and for a magnetic multipole we have
d+172
1k
Er =(=1 m 0 b i
(r)=( )Snzson &
1 .
X/de“BelK+<(r+Hl’:) V[,,,(COSB,¢), (84)
(41,2
1k
B.(r)=(=1)"—="Lbim
(r)=( )87:230:: 1t

X/d2k||%CiK"(r+He’)k+ X Vg,,,(COS(_),(}). (85)

10. Verification of the boundary conditions

Since the reflected fields are again multipole
fields for a medium with index of refraction n, with
the source below the surface, they satisfy Max-
well’s equations in z > 0. Therefore we only have
to verify that in z = 0" the total electric field is per-
pendicular to the surface and the total magnetic
field is parallel to the surface. For the source field
we need the solution with the lower sign. With the
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definition (1) of K. we have K, - (r=+ He.)=
ky-r% pz+ pH, and the expression with the
upper (lower) sign appears in the exponential in
the reflected (source) field in the region
0<z<H. For z=0", both expressions are the
same, and we can easily add the reflected field
and the source field. For the electric multipole

we find the fields at z=0" to be
)R

E(¢) = Sreun b_1tm
/d2k|| (k) -r+BH)
K X Vim(—cos 0, §)
— (=1)*"K, x Vg, (cosb, §)], (86)

( i)(-{-lk(:_;
B = —1m
(r) 8n2eec b_yy

/de” i(k)-r+pH)

X [Vim(—cos B, )

— (=1)"*"Vgm(cos b, §)] (87)
and similar expressions hold for the magnetic mul-
tipole. The term in square brackets in Eq. (87) is
the same as the left-hand side of Eq. (61) with
z=—cosl, a = ¢, and therefore we see immedi-

ately that B(r) is in the xy-plane. The term in
square brackets in Eq. (86) is first split as

K X VZm( COSO d)) ( )[-H"K X V[,,,(COSH ¢)
= Lk” X [Vp,,,(—COS 9,(25)

I’Ik()
— (=1)"*"V (cos 8, ¢)] — %ez
X [Vim(—c0s0,@) + (—=1)"Vu(cos 0, $)].

(88)

From Eq. (60) we see that the second expression in
square brackets is proportional to e., giving
e.xe,=0. With Eq. (61) we find that the first
expression in square brackets is a combination of
e; and e_;, and with
i i

ky x e, = ——kje'"%e,, = +1, 89

1% & ==k p (89)
as follows from Egs. (9) and (50), we find that the
right-hand side of Eq. (88) is proportional to e..

This proves that the sum of the source and the
image fields for an electric multipole satisfy the
boundary conditions, and the same can be verified
for the fields of the magnetic multipole along the
same lines.

11. Image sources

The reflected field of an (1,4, m) multipole is the
same as the source field itself, except that it origi-
nates from the image position, and in addition it
picks up a possible minus sign. The information
about the source is contained entirely in the multi-
pole coefficients b,,,, so effectively a reflected field
follows from the replacement

b—l[m 4 (_l)f+1n+lb—l[nlw (90)
bllm - (_l)“—mbl(’m (91)

in the source field. But from Egs. (42) and (43) we
see that the multipole coefficients are determined
by the current density j(r), so we could equally as-
sign the phase factors to the corresponding j(r).
For an electric dipole we have j(r) = —iwdd(r), so
the phase factor effectively changes the dipole mo-
ment d. When we decompose d in spherical unit
vectors as in Eq. (A.1):

d=Y di; (92)
q

which can also be written as

d=> (-1)"d_e,, (93)

then each term ¢ is the source of electric dipole
radiation with m = ¢, according to Eq. (49). For
the image source, the term with ¢ then picks up a
factor of (—1)“™*! with £=1 and m = ¢, which
is (—1)?. By superposition, the image dipole of d
given by Eq. (93) is then

Zd_qeq, (94)

which is the same as

d'™ =3 "(-1)"d,e]. (95)

9
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Comparison with Eq. (92) then shows that the
components with ¢ =+1 get a minus sign and
the ¢ = 0 component remains unaltered. But then,
the vectors e, are in the xy-plane whereas eg is
along the z-axis, so if we write d =d, +d then
the image dipole moment is

d™ =d, —dy. (96)

The same holds for the magnetic dipole p, except
that each spherical component p, acquires an extra
minus sign, as compared to the electric dipole.
Therefore the image of a magnetic dipole moment
is

P(im) =P)—P.- 97)

Let us now consider the electric quadrupole a
According to Eq. (A.10), O can be decomposed
in spherical unit tensors according to

o (k)
0= Z OYE, (98)
q

and since @ is a symmetric Cartesian tensor, the
components with k =1 vanish. We can also write
0 as, Eq. (A.12),

5= ;(—n‘*qQ&"ﬁf) (99)
g

in analogy to Eq. (93) for the electric dipole. As
shown in Section 7, an electric quadrupole field
with a given m is e(r21)1itted by a quadrupole moment
proportional to Em . For the mirror source, a fac-
tor (—1)“™*! with ¢ = 2 appears, which is (—1)¢*"'
for each term in Eq. (99). This gives the mirror
quadrupole

—(im) «(2)
=-> 0%E, (100)
q
and this is
o =(2)
Q(lm) _ Z(_l)q-HQfIZ)Eq : (101)

q

As compared to Eq. (98), we see that each term
with k =2 picks up a factor (—1)7"'. The mirror
image does not have the k=0 contribution, as
does Q, although it could be added since it would

not contribute to the image field anyway, accord-
ing to Egs. (55) and (58).

12. Intensity distribution

In Section 9 we obtained angular spectrum rep-
resentations for the electric and magnetic source
and reflected fields in the half-space z > 0. Of par-
ticular interest are the far fields r — oo, and the
radiation pattern (intensity distribution) of a mul-
tipole near the perfect conductor. In the far field
we have z> H, so that only the upper signs are
used for the source fields. Then each partial wave
in the source and reflected fields has wave vector
K. An asymptotic approximation for r large of
an angular spectrum can be made with the method
of stationary phase [27,28]. For an arbitrary func-
tion f(k) we have

1 27
[ Eriges sty ~ -2, (102)

where k| is the stationary point in the k-plane.
This point is given by

ko = nkosin 0(e, cos ¢ + e, sin ¢), (103)

for a given observation direction (0, ¢). Angle ¢ in
the angular spectra is the angle of k| in the k-
plane, according to Eq. (9), and comparison with
Eq. (104) then shows that in the stationary point
we have (¢), = ¢. From Eq. (103) it follows that
the magnitude of ko equals nkosinf, which gives
(sin6), = sin 0 with Eq. (10), and from Egs. (2)
and (11) we then have (cos 0), = cos 6. From Eq.
(12) and K. = K./(nko) we obtain (K.), =i
The phase factors involving the distance H become
{exp[iK - (He,)]}o = exp(xinhcos), where we
have set i = koH for the dimensionless distance be-
tween the multipole and the interface. We then
find the asymptotic approximation for the total
electric field of an electric multipole to be (we shall
write an equal sign instead of =)
(_1)1k5 in(kor—hcos 0)
E(r) = dnegnr
x [1 = (=1)"e" <) x ¥ (o8 0, ¢),
(104)

—1tm®€
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and for a magnetic multipole we obtain

N7 2
E(l’ _ (_1) kO bli ein(kor-hcos(?)
4reonr "

X [1 = (_1)[+nleZinl1cos(?] V[,,,(COS 0’ ¢) (105)

Expressions for the magnetic field can be found in
the same way, and it turns out that in the far field
we have

B(r) = gﬁ x E(r). (106)

To verify this, one needs to use Eq. (75) or (76) in
the form

P Vi(cost, ¢) =0, (107)

from which we also find #- E(r) = 0 in the radia-
tion zone.

The Poynting vector for time-harmonic fields is
defined as

S(r) = %toReE(r) x B(r)" (108)

and with Eq. (106) this simplifies to
n ¥
S(r) = %[E(r) -E(r)")i. (109)
The emitted power P per unit solid angle Q is

dp
dQ
which can now easily be evaluated. We shall nor-
malize the result as

dpP
dQ
where P is the total power emitted by a multipole
embedded in a medium with index of refraction n,

but without any boundaries present. This power is
given by

= r28(r) - 7, (110)

=Pl'/V‘l]Zm(’A’)~ (111)

1 R\
P = st | (Bl 112
! 2np,c (47‘(80> [Baen {113)

intensity  distribution then

The normalized
becomes

N yim(F) = 2[1 + n(=1)"" cos(2nh cos )]
X Vim(cos O, ¢) - Viu(cosO,¢)".  (113)

It follows from Eq. (63) that A", (#) is indepen-
dent of angle ¢, and from Egs. (65)—(67) that
A yem () 1s independent of the sign of m.

In order to see the significance of the very sim-
ple result (113), we first recall that without the per-
fect conductor present, the normalized intensity
distribution is given by

N yim(#) = Vim(cos 0, ) - Vin(cos 0, @), (114)

which holds for a 47 solid angle. From the proper-
ties of the vector spherical harmonics it can be
shown that the integrated A", (F) from Eq.
(114) equals unity. The effect of the interface is first
that an overall factor of 2 appears. This is due to
the fact that the radiation emitted by the multipole
in the negative z-direction reflects at the interface,
and contributes to the power in z> 0. The term
with cos(2nhcosf) in square brackets accounts
for the modulation due to interference between
the directly-emitted multipole waves in the positive
z-direction and the reflected waves. When the dis-
tance between the multipole and the interface is
much larger than a wavelength, this term effec-
tively averages out to zero (when integrated over
a small AQ), and the resulting distribution is just
twice that of Eq. (114). Fig. 3 shows the difference
between the free-space radiation pattern and the
interference pattern for the case of a magnetic
dipole with m = 0.

z-axis
02

o1 p

0 xy-plane

-0.1
0 0.1 0.2 0.3 0.4 0.5

Fig. 3. Polar diagram of the radiation pattern of a magnetic
dipole with m =0, for n=1. The dimensionless distance
between the dipole and the interface is s = 3n, corresponding
to a separation of 1.5 wavelengths. The thick curve is the
emission pattern in free space and the thin line is the intensity
distribution near the perfect conductor.
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z-axis
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4
1

Fig. 4. Radiation pattern of an electric (e) and a magnetic (m)
dipole near a perfect conductor, both with m = 0, and for n = 1.
Here we took h = n, corresponding to a separation of half a
wavelength. The figure illustrates that at the angle where
constructive interference for the magnetic dipole occurs, the
radiation pattern for the electric dipole has a minimum, and
vice versa.

08 F

06

0.2

0 e xy-plane

-0.2 A .
0 0.2 0.4

Fig. 5. The figure shows the angular intensity distribution of
the radiation emitted by an electric quadrupole in free space
(thick line) and near the perfect conductor (thin line) for m =1,
n=1 and h = 4n. For emission in the positive z-direction, the
intensity of the radiation emitted by the quadrupole near the
perfect conductor is four times the value of the intensity of
emission by the same quadrupole in free space.

The factor n(—1)“"™ preceding the interference
factor cos(2nhcos0) is either 1 or —1, indicating
that when for a certain m value the interference
is constructive for a given angle 6, than for an m
value one higher or lower the interference is
destructive. It also shows that when the interfer-
ence is constructive for an electric multipole for a
given 0, then for a magnetic multipole with the
same m value the interference is destructive at this
angle, and vice versa. This is illustrated in Fig. 4
for an electric and magnetic dipole. Finally, when
n(—1)*"" = +1, then the intensity at § =0 is four
times the value of the intensity without the inter-
face. This dramatic increase in intensity is shown
in Fig. 5 for an electric quadrupole with m = 1.

13. Conclusions

We have obtained angular spectrum representa-
tions of the transverse vector multipole fields,
given by Egs. (36) and (38), and thereby of the
electromagnetic multipole fields. The angular spec-
tra could be expressed in terms of generalized vec-
tor spherical harmonics V(% cos 0, J)), which in
turn were expressed in generalized spherical har-
monics. The result is a superposition of plane
waves with wave vectors K., which have their par-
allel parts k| as free parameters (integration vari-
able). Depending on the value of k|, the wave is
either traveling or evanescent. For a traveling
wave, the angles (0, ¢) appearing in the arguments
of the generalized vector spherical harmonics are
the spherical-coordinate angles of wave vector
K. The wave with wave vector K_ travels in the
opposite direction with respect to the xy-plane,
as shown in Fig. 1, and its direction is given by
the angles (m — 0,¢). For an evanescent wave,
the variable cos  becomes imaginary.

The angular spectrum representation of the
multipole fields is particularly useful for the study
of reflection and refraction by a plane interface. As
an example, we have considered the reflection at a
perfect conductor. It appeared that the reflected
field of a multipole is the multipole field itself,
apart from a possible phase factor, but its source
location is shifted to the mirror position below
the surface. An electric or magnetic multipole of
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order ¢ has 2¢+ 1 independent m components
(‘magnetic quantum number’). The reflected field
can be considered as being generated by an image
source, and the phase factor can be assigned to the
current distribution of this image source. The
phase factor (+1 or —1) depends on the value of
m and on the type of multipole field (electric or
magnetic). When a source consists of a current dis-
tribution which is a superposition of various m val-
ues, then the various m-components acquire a
different phase factor. From this it follows that
for the mirror image of an electric dipole the par-
allel component changes sign, as compared to the
source dipole, whereas for a magnetic dipole the
perpendicular component changes sign, which is
a well-known fact. The method can be extended
to multipoles of arbitrary order. For instance,
the mirror image of an electric quadrupole is given
by Eq. (101).

With the method of stationary phase, an
asymptotic approximation of the angular spec-
trum representations can be obtained, and we have
applied this to evaluate the intensity distribution
of a multipole near a perfect conductor. The nor-
malized intensity distribution is given by Eq.
(113). The result is the same distribution as in free
space, Eq. (114), modified by an interference factor
(factor in square brackets) and a factor of two.
The difference in radiation pattern between an
electric and a magnetic multipole of the same
order (¢,m) is a simple minus sign in the expression
(the parameter ) A consequence of this minus sign
is that when an electric multipole exhibits con-
structive interference at a certain observation
angle then the magnetic multipole of the same or-
der shows destructive interference at this angle,
and vice versa.

Appendix A

A vector V can be expanded onto the set of
spherical unit vectors as

V=> 7. (A.1)
q

and since e; - e; = dyy, the spherical components
V, of V are

Vy

=e,-V. (A.2)
With e; = (—1)%e_,, Eq. (A.1) can also be written

as
V=> (-1)V_ge,. (A.3)

Comparison with Eq. (49) then shows that for
electric dipole radiation with a given m value, the
dipole moment d has only one non-vanishing
spherical component (with ¢ = —m), and the same
holds for the magnetic dipole.

For electric quadrupole radiation the current
source involves the quadrupole tensor Q, for which
a similar decomposition can be made. To this end,
we note that the significance of the spherical com-
ponents of a vector is that these are the compo-
nents of a spherical (irreducible) tensor of rank
1. According to a well-known theorem [29], two
vectors ¥ and W can be “multiplied” to form an
irreducible tensor of rank k, with k=0, 1 or 2.
The gth component of the irreducible tensor of
rank k is defined as

T =Y (Ll [kg)V, W, (A4)

up

for ¢ = —k,...,k. We now make a slight general-
ization of this theorem as follows. We can write
VW, as e, (VW) ey, and then we note that
the dyad VW is a Cartesian second rank tensor.
If we replace VW in Eq. (A.4) by an arbitrary
Cartesian second rank tensor 7, then the combina-
tion of matrix elements

Tf]k) = Z(lulu"kq)eu T-ey (A.5)

e

transforms under rotations in the same way as
the right-hand side of Eq. (A.4), and therefore
the quantities 7" defined in this way are also the
qth components of an irreducible tensor of rank
k. Eq. (A.5) can be inverted with the orthonormal-
ity of the Clebsch—Gordan coefficients according
to

e, T-ey = Z(l;tlu’|kq)Tflk). (A.6)

kq
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Any tensor T can be written as

T=> (e, T-ey)eel, (A7)
up

and combination with Eq. (A.6) yields

P= Z(lulu’lkq)TfIk)e:e;,. (A.8)
kqup!

Then we define the “unit tensors”

(k)

E, = (luly|kg)e,e, (A.9)

'

in terms of which Eq. (A.8) becomes
ot (k)
s (k)
T= Z TOE, ,
q

since the Clebsch-Gordan coefficients are real. This
expansion is equivalent to the expansion of vector
V in spherical unit vectors, as given by Eq. (A.1).
The Clebsch—-Gordan coefficients have the property
(1 = pl = 'kq) = (=1 (1ulpy'|k — g), from which
we have

(A.10)

< (k)
q

(k)
-q

= (-1)*"E (A.11)
in analogy to e; = (—1)’e_,, and this allows us to

write Eq. (A.10) in the alternative form

(%)

— Z(—l)"'*"T(_";Eq : (A.12)
°q

as in Eq. (A.3) for vectors. Comparison with Eq.
(56) shows that electric quadrupole radiation for
a given m has a source with a quadrupole tensor
identical in form to Eq. (A.12), but with only the
term k =2 and ¢ = m present.

Eq. (A.5) expresses T in terms of the matrix
elements e, - T-e, of T, and these can in turn be
expressed in terms of the Cartesian components
T,p with a, f = x, y, z. The results are listed on p.
174 of Ref. [30]. In particular, if 7' is a symmetric
Cartesian tensor it follows by inspection that
the three spherical components with k£ =1 vanish.
The approach with the unit tensors does not
appear to be readily available in the literature, so
here we list these tensors explicitly for reference:

OB 1 -
EO = —3(e1e_| +e_1e — eoeo) = _ﬁ I,
(A.13)
By =L ) (A.14)
=+— (e, e0 — €pesy), ¢
+1 \/j +1€0 0€+1
B =y ) (A.15)
=—(eje_; —e_e), ’
0 \/j 1 1 1€1
=(2)
Ei2 = €4+1€41, (Al6)
=(2)
Ei—l = ﬁ(eileo + eoeil). (A17)
-(2) 1
EO = %(e]e_l +e_je) + 28080). (A18)
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