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The magnetic field of radiation emitted by an electric dipole contains travelling
and evanescent waves when represented as an angular spectrum. The evanescent
waves decay exponentially away from the xy-plane, and will therefore not
contribute to the detectable radiation in the far field, in general. It is well
known, however, that in a small region around the z-axis the evanescent waves
of the electric field do end up in the far zone. We have studied the corresponding
magnetic evanescent waves, and we have found that the evanescent waves of the
magnetic field do not contribute to the far zone in the neighbourhood of the
z-axis. When considering the neighbourhood of the xy-plane, it appears that both
the electric and magnetic evanescent waves end up in the far field, and the
travelling and evanescent waves contribute equally to the radiation in the far
zone. Close to the dipole the radiation field diverges, and we have shown that this
is entirely due to the evanescent waves.

1. Introduction

Evanescent waves play a major role in near-field optics [1]. When a nanometre-size
sample is illuminated with visible light, it will reflect travelling and evanescent waves.
A detector of macroscopic size in the far field can only detect the travelling waves,
since the evanescent waves die out over a distance of about a wavelength from the
source. As a result, the spatial imaging resolution of a far field detector is limited to
spatial variations in the sample of about a wavelength. Nevertheless, information on
the finer structures of the sample is still present in the scattered light, but this
information is carried by the evanescent waves. It has long been recognized that in
order to build a microscope with sub-wavelength resolution, one has to measure the
evanescent waves as well [2, 3]. This has led to the design of scanning near-field
optical microscopes [4–10], in which a small fibre tip is moved over the sample,
collecting the scattered light. In a different approach, light is sent through the fibre
and the radiation emerging from its tip illuminates the sample. Since the aperture
(opening of the tip) is sub-wavelength, the light contains evanescent waves due to
diffraction [11, 12]. In such a setup, the sample is positioned on a hemispherical lens,
which collects the light. Due to refraction at the surface of the lens, all travelling light
ends up in a cone around the normal, and this cone has an opening angle equal to the
critical angle of total internal reflection of the lens-air interface. Evanescent waves,
radiated by the sample, can be converted into travelling waves at the interface,
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provided their wavelength is not too short, and they are transmitted under an angle

larger than the critical angle. In this way, part of the evanescent waves can be

measured in the far field, improving the resolution of the image [13–20].

As mentioned above, evanescent waves can be detected in the far field after

converting them into travelling waves by means of refraction at an interface. In a

recent series of papers [21–24] it was shown that evanescent waves can also survive in

the far field, without conversion into travelling waves first, for a specific direction of

observation. The concept of evanescent waves originates in the angular spectrum

representation of a radiation field. For this representation we need a reference

surface, taken to be the xy-plane. A plane wave of the form exp (iK � r) has wave

vector K, and if K is real this is an ordinary travelling wave, propagating in the

direction of this wave vector. In the angular spectrum representation, also waves

with wave vectors with an imaginary z-component appear, and these are the

evanescent waves. They decay exponentially away from the xy-plane, while still

travelling along the xy-plane (the x- and y-components of K are real). One then

easily assumes that since these waves die out exponentially in the positive and

negative z-directions, they will not contribute to the radiation field far away from the

source. In the quoted references, however, it was shown that there is a cylindrical

region around the z-axis, with a diameter of about a wavelength, in which the

evanescent waves survive in the far field, e.g., they decay as �1/r, with r the distance

to the source. Each evanescent wave decays exponentially in the z-direction, but

the superposition of all evanescent waves decays as 1/r. More recently it was shown

[25, 26] that the evanescent waves also survive in the far field in a slab containing the

xy-plane.

In theoretical investigations concerning the evanescent waves, one exclusively

considers the electric component of the radiation field, with the idea that since the

electric and magnetic field determine each other uniquely through Maxwell’s

equations, there is no need to consider the magnetic field separately. In this paper

we shall consider the radiation field of an electric dipole, and focus our attention on

the magnetic part. It will turn out that the evanescent part of the magnetic field

behaves quite differently than the corresponding electric part.

2. The dipole field

We consider an electric dipole, located at the origin of coordinates, and oscillating

harmonically with angular frequency !. The time-dependent dipole moment is

d(t)=Re [d exp(�i!t)] with d an arbitrary complex-valued vector. The electric field

is written as E(r, t)= Re [E(r) exp (�i!t)], with E(r) the complex amplitude, and

similarly for the magnetic field B (r, t). We shall adopt dimensionless coordinates

throughout, with 1=ko as the unit of measurement, where ko ¼ !=c is the wave

number. A field point r is then represented by q= ko r, and q= kor is the

dimensionless distance to the origin. The electric field of the dipole is then most

compactly given by

EðrÞ ¼
k3o

4�"o
vðqÞ � d, ð1Þ
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with vðqÞ the dimensionless Green’s tensor [27, 28], defined as

vðqÞ ¼ �
4�

3
�ðqÞIþ Iþ

1

k2o
rr

� �
eiq

q
: ð2Þ

Here, �ðqÞ ¼ �ðrÞ=k3o is the dimensionless delta function and I is the unit tensor.
After evaluating the derivatives we obtain

vðqÞ ¼ �
4�

3
�ðqÞIþ ðI� 3q̂qq̂qÞ i �

1

q

� �
eiq

q2
þ ðI� q̂qq̂qÞ

eiq

q
, ð3Þ

with q̂q ¼ r̂r. We see from equation (1) that all spatial dependence of the electric field is
contained in the Green’s tensor vðqÞ, and from equation (3) we observe the four
distinctive parts: the first term is a delta function, which only gives a contribution
inside the dipole, and this is called the self field. The other terms are Oðq�3), Oðq�2Þ

and Oðq�1Þ, which are the near-, middle-, and far field, respectively.
The magnetic field can be written in a similar way as

BðrÞ ¼
i

c

k3o
4�"o

gðqÞ � d, ð4Þ

where the vector gðqÞ is defined as

gðqÞ ¼ �
1

ko
r
eiq

q
, ð5Þ

and this is

gðqÞ ¼ q̂q
1

q
� i

� �
eiq

q
: ð6Þ

We shall refer to gðqÞ as the Green’s vector since it serves the same purpose as
the Green’s tensor for the electric field. It should be noted, though, that gðqÞ is not
a Green’s function in the usual sense. On the other hand, it is possible [29] to
write the solution for BðrÞ in a form identical to equation (1) with a true Green’s
tensor and a dyadic product with d rather than a cross product, but that seems
an unnecessary complication for the problem at hand. We notice that the
magnetic field Green’s vector has Oðq�2) and Oðq�1) terms only, in contrast to the
Green’s tensor for the electric field, which has additional self-field and near-field
terms.

3. Angular spectrum representation

The function expðiqÞ=q is the Green’s function of the scalar wave equation, apart
from an overall constant ko. Weyl’s representation of this function is [30, 31]

eiq

q
¼

i

2�ko

ð
d2kjj

1

�
eiK �r, ð7Þ

where the wave vector K is given by

K ¼ kjj þ � sgnðzÞez, ð8Þ
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and parameter � is defined as

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2o � k2jj

q
, kjj < ko

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2jj � k2o

q
, kjj > ko

:

8><>: ð9Þ

Representation (7) is commonly referred to as the angular spectrum representa-
tion of the scalar Green’s function. Since �2 ¼ k2o � k2jj, we see that K ¼ ko, and
therefore each partial wave expðiK � rÞ in equation (7) has the same wave number ko.
The parallel part of K with respect to the xy-plane is kjj, and the integration in
equation (7) runs over the entire kjj-plane. For a given kjj, with magnitude kjj,
parameter � is real for kjj < ko, and therefore the z-component of K is real in this
case. This situation corresponds to a travelling wave expðiK � rÞ, with K as the wave
vector. Since � is positive we have sgnðKzÞ ¼ sgnðzÞ, and therefore the direction of
propagation is away from the xy-plane, as illustrated in figure 1. For kjj > ko,
parameter � is positive imaginary, and this corresponds to an evanescent wave
which decays in the positive and negative z-directions. Since kjj is real, the wave
travels along the xy-plane in the kjj direction, as shown schematically in figure 1.
For these waves we have kjj > ko, indicating that the wavelength of the propagat-
ing component is smaller than an optical wavelength ð2�Þ=ko. It is this feature
of the evanescent waves that opens the possibility of imaging an object on a
sub-wavelength scale.

We now substitute the representation (7) into the right-hand side of equation (5)
and move the operator r under the integral. Taking the derivatives then yields
the angular spectrum representation of the Green’s vector

gðqÞ ¼
1

2�k2o

ð
d2kjj

1

�
K eiK �r, ð10Þ

xy-plane
k|| k||

K

K
Figure 1. The two types of waves in the angular spectrum. For a given kjj the wave vector is
K. When the z-component of K is real, the wave is travelling and on each side of the xy-plane it
travels away from the xy-plane as shown on the left. When the z-component is imaginary the
wave is evanescent, and decays away from the xy-plane, as shown on the right. Since kjj is real,
the wave travels along the xy-plane.
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and with equation (4) this gives the angular spectrum representation of the magnetic
field of an electric dipole:

BðrÞ ¼
i!�o

8�2

ð
d2kjj

1

�
ðK � dÞeiK �r: ð11Þ

Clearly, BðrÞ is a superposition of travelling and evanescent waves. The integra-
tion region kjj < ko is a disk in the kjj-plane, and the integral over this disk is a
superposition of travelling waves. The integral over the remainder of the kjj-plane
contains the evanescent waves. In this fashion, BðrÞ splits naturally in a travelling
part and an evanescent part. Since the entire spatial dependence of BðrÞ is contained
in the Green’s vector gðqÞ, it is sufficient to consider the travelling and evanescent
parts of this vector field. We write

gðqÞ ¼ gðqÞtr þ gðqÞev, ð12Þ

in obvious notation.

4. Integration over kjj and dimensionless variables

In order to study the angular spectrum representation (10) of gðqÞ we shall
adopt cylinder coordinates ð�,�, zÞ for a field point. For a given field point r, the
radial and tangential unit vectors are e� ¼ ex cos�þ ey sin� and e� ¼ �ex sin�þ
ey cos�, respectively, so that r ¼ �e� þ zez. For the integration over the kjj-plane we
use the coordinate system shown in figure 2. The ~xx- and ~yy-axes are chosen to coincide
with the radial and tangential unit vectors for the given field point, and then we use
polar coordinates ðkjj, ~��Þ in this kjj-plane. We furthermore introduce the dimension-
less coordinates ��� ¼ ko� and �zz ¼ koz in configuration space and the dimensionless
coordinate � ¼ kjj=ko in the kjj-plane. We also define

��� ¼
�

ko
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
, ð13Þ

and it is understood that ��� is positive imaginary for � > 1, as in equation (9).
We then have K ¼ �koðe� cos ~��þ e� sin ~��Þ þ ko ��� sgnð �zzÞez and with d2kjj ¼ k2o� d� d

~��
we obtain

gðqÞ ¼
1

2�

ð1
0

d�
�
���
ei

���j �zzj

ð2�
0

d ~�� ½�ðe� cos ~��þ e� sin ~��Þ þ ��� sgnð �zzÞez�e
i� ��� cos ~��: ð14Þ

The travelling part of gðqÞ then follows from restricting the range of integration over
� to 0 � � < 1, and gðqÞev is given by equation (14) with the lower limit of integration
replaced by � ¼ 1.

An interesting conclusion can be drawn immediately from equation (14). Let us
consider the value of gðqÞtr for q ! 0. Then both exponentials in the integrand
disappear, and the integrals over cos ~�� and sin ~�� vanish. The remaining integral is
elementary, with result

gð0Þtr ¼
1

2
sgnð �zzÞez: ð15Þ

Apparently, the value of the travelling part is finite at the origin, whereas gðqÞ itself
is singular. Therefore, all singular behaviour of the magnetic field near the origin can
only be due to the evanescent waves. This shows that indeed the evanescent waves
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dominate the field near the location of the source. We also notice that gð0Þtr is
discontinuous across the xy-plane. The corresponding result for the Green’s tensor
of the electric field is [24]

vð0Þtr ¼
2

3
i I, ð16Þ

which is also finite.

5. Auxiliary functions

The integrals over ~�� in equation (14) lead to Bessel functions:ð2�
0

d ~�� cos ~�� ei� ��� cos
~�� ¼ 2�iJ1ð� ���Þ, ð17Þð2�

0

d ~�� sin ~�� ei� ��� cos
~�� ¼ 0, ð18Þð2�

0

d ~�� ei� ��� cos
~�� ¼ 2�J0ð� ���Þ: ð19Þ

We can then write the Green’s vector as

gðqÞ ¼ sgnð �zzÞezMeðqÞ þ e�Mf ðqÞ, ð20Þ

in terms of the auxiliary functions

MeðqÞ ¼

ð1
0

d� �J0ð� ���Þe
i ���j �zzj, ð21Þ

Mf ðqÞ ¼ i

ð1
0

d�
�2

���
J1ð� ���Þe

i ���j �zzj: ð22Þ

The Green’s tensor can be written in a similar way [32], involving four different
auxiliary functions MaðqÞ, . . . ,Md ðqÞ with a similar appearance. It follows from
equations (21) and (22) that these two functions are invariant under reflection in the
xy-plane and under rotation around the z-axis.

x
φ

ρ
P

x~

y y~

~

||k

ρe

φe f

Figure 2. Point P is the projection of a field point r onto the xy-plane, and this point is taken
as the origin of the kjj-plane. The diagram shows the coordinate system used in the kjj-plane.
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On the other hand, gðqÞ is given by equation (6). The dimensionless cylinder
coordinates ð ���,�, �zzÞ of a field point are related to the dimensionless spherical
coordinates ðq, �,�Þ by ��� ¼ q sin �, �zz ¼ q cos �, and the unit vector q̂q in equation (6)
can be expressed as q̂q ¼ e� sin � þ ez cos �. When we compare expressions (6) and
(20), the e� and ez components must be the same, and this leads immediately to the
result

MeðqÞ ¼
j �zzj

q2
1

q
� i

� �
eiq, ð23Þ

Mf ðqÞ ¼
���

q2
1

q
� i

� �
eiq: ð24Þ

From equations (23) and (24) we see that the two functions are related as

���MeðqÞ ¼ j �zzjMf ðqÞ: ð25Þ

6. Evanescent and travelling parts

The evanescent part of the magnetic field is determined by the evanescent part of the
Green’s vector, which is

gðqÞev ¼ sgnð �zzÞezMeðqÞ
ev
þ e�Mf ðqÞ

ev, ð26Þ

and here the evanescent parts of the auxiliary functions follow from replacing the
lower limit of integration � ¼ 0 by � ¼ 1 in equations (21) and (22). Furthermore we
have ��� ¼ ið�2 � 1Þ1=2 in the evanescent region. The following theorem involving
Bessel functions

j �zzj

ð1
1

d�
�nþ1ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� 1

p Jnð� ���Þe
�j �zzj

ffiffiffiffiffiffiffiffi
�2�1

p

¼ Jnð ���Þþ ���

ð1
1

d��nJn�1ð� ���Þe
�j �zzj

ffiffiffiffiffiffiffiffi
�2�1

p

, n¼ 0,1, . . . ,

ð27Þ

can be proved by setting

�ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p e�j �zzj
ffiffiffiffiffiffiffiffi
�2�1

p

¼ �
1

j �zzj

d

d�
e�j �zzj

ffiffiffiffiffiffiffiffi
�2�1

p

ð28Þ

in the integrand on the left-hand side and a subsequent integration by parts. For
the remaining integral we use ðxnJnðxÞÞ

0
¼ xnJn�1ðxÞ, and this proves the theorem.

By setting n ¼ 1, the theorem becomes

���MeðqÞ
ev
¼ j �zzjMf ðqÞ

ev
� J1ð ���Þ: ð29Þ

relating the evanescent parts of both functions. As compared to the corresponding
relation (25) for the unsplit functions, we see that the splitting in a travelling and
an evanescent part gives an additional Bessel function J1ð ���Þ.
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For further analysis it is useful to make the change of integration variable
u ¼ ð�2 � 1Þ1=2 in the integral representations. This gives

MeðqÞ
ev
¼

ð1
0

du uJ0ð ���
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þe�uj �zzj, ð30Þ

Mf ðqÞ
ev
¼

ð1
0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
J1ð ���

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þe�uj �zzj: ð31Þ

In the representation (22) for Mf ðqÞ, the integrand has a singularity at � ¼ 1, since
at this value we have ��� ¼ 0. After the change of variables, this singularity has
disappeared, indicating that the original singularity is integrable, and therefore
causes no problems. A second conclusion that can be drawn from equations (30)
and (31) is that the evanescent parts of the auxiliary functions are real-valued.
With equation (20) we then see that gðqÞev is real, and therefore the imaginary part of
gðqÞ only contains travelling waves. This also implies that only the real part of gðqÞ
splits in a travelling and an evanescent part, and the same holds for the functions
MeðqÞ and Mf ðqÞ. From equations (23) and (24) we obtain

ReMeðqÞ ¼
j �zzj

q2
sin qþ

cos q

q

� �
, ð32Þ

ReMf ðqÞ ¼
���

q2
sin qþ

cos q

q

� �
; ð33Þ

and these functions split as

ReMkðqÞ ¼ MkðqÞ
ev
þReMkðqÞ

tr, k ¼ e, f : ð34Þ

Therefore, we know MkðqÞ
ev if we know ReMkðqÞ

tr, and vice versa.
For the travelling parts of the auxiliary functions we only need to consider

ReMkðqÞ
tr, since the imaginary parts are simply the imaginary parts of equations (23)

and (24). In order to obtain suitable integral representations, we limit the integration
range to 0 � � < 1 in equations (21) and (22), set u ¼ ð1� �2Þ

1=2 and take the real
parts, which yields

ReMeðqÞ
tr
¼

ð1
0

du uJ0ð ���
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
Þ cosðuj �zzjÞ, ð35Þ

ReMf ðqÞ
tr
¼ �

ð1
0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
J1ð ���

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
Þ sinðuj �zzjÞ: ð36Þ

When we take the difference between equations (25) and (29) we find

���MeðqÞ
tr
¼ j �zzjMf ðqÞ

tr
þ J1ð ���Þ: ð37Þ

7. The z-axis and the xy-plane

For a field point on the z-axis we have ��� ¼ 0 and j �zzj ¼ q, so that we have with
equations (23) and (24)

MeðqÞ ¼
1

q
� i

� �
eiq

q
, ð38Þ

Mf ðqÞ ¼ 0: ð39Þ
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With J0ð0Þ ¼ 1 the integral in equation (30) is elementary and with J1ð0Þ ¼ 0 the
integral in equation (31) vanishes. This yields for the evanescent parts of the
auxiliary functions

MeðqÞ
ev
¼

1

q2
, ð40Þ

Mf ðqÞ
ev
¼ 0: ð41Þ

and the Green’s vector becomes

gðqÞev ¼
1

q2
sgnð �zzÞez: ð42Þ

The most important observation here is that gðqÞev ¼ Oðq�2), which is of the middle
field type. Therefore, the evanescent waves in the magnetic field do not survive in the
far field along the z-axis. This in contrast to the evanescent waves in the electric field
for which we have [24]

vðqÞev ¼
1

2q
ðIþ ezezÞ �

1

q3
ðI� 3ezezÞ, ð43Þ

which is Oðq�1Þ. We come to the remarkable conclusion that even though the electric
and magnetic fields determine each other uniquely, the evanescent magnetic field
vanishes along the z-axis whereas the evanescent electric field does not.

For the travelling part along the z-axis we find from equations (35) and (36)

ReMeðqÞ
tr
¼

1

q
sin qþ

cos q

q

� �
�

1

q2
, ð44Þ

ReMf ðqÞ
tr
¼ 0: ð45Þ

The first term on the right-hand side of equation (44) is just ReMeðqÞ, equation (32).
We therefore conclude that due to the splitting in travelling and evanescent waves,
the travelling waves get an extra term �1=q2, which is just the negative of MeðqÞ

ev.
For a field point in the xy-plane we have j �zzj ¼ 0 and ��� ¼ q and we find from

equations (23) and (24)

MeðqÞ ¼ 0, ð46Þ

Mf ðqÞ ¼
1

q
� i

� �
eiq

q
: ð47Þ

We now consider the travelling part first. When we set j �zzj ¼ 0 in equation (35) the
remaining integral is cumbersome. Instead we consider equation (37), from which we
obtain

ReMeðqÞ
tr
¼

1

q
J1ðqÞ: ð48Þ

Since ReMeðqÞ ¼ 0, we find for the evanescent part

MeðqÞ
ev
¼ �

1

q
J1ðqÞ: ð49Þ

Here we observe the interesting situation that a function which is identically
zero splits in non-zero travelling and evanescent parts. We will get back to this in
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section 13. Bessel functions are Oðq�1=2) for q large, and therefore both ReMeðqÞ
tr

and MeðqÞ
ev are Oðq�3=2), and they do not end up in the far field.

From equation (36) with j �zzj ¼ 0 we find

ReMf ðqÞ
tr
¼ 0, ð50Þ

which gives for the evanescent part with equation (32)

Mf ðqÞ
ev
¼

1

q
sin qþ

cos q

q

� �
: ð51Þ

This is Oðq�1), so of the far field type. Apparently, along the xy-plane and in the far
field, the real part of the Green’s vector is pure evanescent. Since the imaginary part
is travelling and Oðq�1), we conclude that along the xy-plane the travelling and
evanescent waves contribute equally to the magnetic far field. This behaviour is the
same as for the electric field [24]. The evanescent part of the Green’s vector in the far
field is up to leading order

gðqÞev � q̂q
sin q

q
: ð52Þ

8. Asymptotic series for large �zzj j

In order to study systematically the evanescent waves in the far field, we now derive
an asymptotic expansion of the auxiliary functions for j �zzj large. In the
integral representation (30) for MeðqÞ

ev we replace the Bessel function by its series
expansion

JnðxÞ ¼
X1
k¼0

ð�1Þk

k!ðkþ nÞ!

x

2

� �2kþn

, ð53Þ

which gives

MeðqÞ
ev
¼

X1
k¼0

ð�1Þk

ðk!Þ2
���

2

� �2k ð1
0

du uð1þ u2Þke�uj �zzj: ð54Þ

The integral on the right-hand side can be evaluated asð1
0

du uð1þ u2Þke�uj �zzj ¼
Xk
‘¼0

k
‘

� �
ð2‘þ 1Þ!

j �zzj2‘þ2
: ð55Þ

We substitute this into equation (54), change the order of summation and set
n ¼ k� ‘ in the summation over k. The sum over n then has the appearance of a
Bessel function, as in equation (53), and we obtain

MeðqÞ
ev
¼

1

j �zzj2

X1
‘¼0

ð2‘þ 1Þ!

‘!
�

���

2 �zz2

� �‘

J‘ð ���Þ: ð56Þ

In a similar way we find

Mf ðqÞ
ev
¼ �

1

j �zzj

X1
‘¼0

ð2‘Þ!

‘!
�

���

2 �zz2

� �‘

J‘�1ð ���Þ, ð57Þ

where we used that J�1ð ���Þ ¼ �J1ð ���Þ.
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For a field point on the z-axis we have ��� ¼ 0, and since J‘ð0Þ ¼ 0 for ‘ 6¼ 0 and
J0ð0Þ ¼ 1 the series solutions reduce toMeðqÞ

ev
¼ 1=j �zzj2 andMf ðqÞ

ev
¼ 0, which is the

exact solution for all points on the z-axis (equations (40) and (41)). Off the z-axis the
series diverge, and they should be understood as an asymptotic series for j �zzj large,
and with ��� fixed. The first few terms are

MeðqÞ
ev
¼

1

j �zzj2
J0ð ���Þ þ Oðj �zzj�4Þ, ð58Þ

Mf ðqÞ
ev
¼

1

j �zzj
J1ð ���Þ þ

���

j �zzj3
J0ð ���Þ þ Oðj �zzj�5Þ: ð59Þ

Figure 3 shows the exact Mf ðqÞ
ev, obtained by numerical integration, and the

approximation by the first term on the right-hand side of equation (59). We see
that for relatively small values of �zz the agreement is already excellent.

Let us now consider the dependence on the distance q to the origin. For ���
small, we found in the previous section that the Green’s vector is Oðq�2), and
is given by equation (42). For ��� large, we can use the asymptotic form of the
Bessel functions

Jnð ���Þ �

ffiffiffiffiffiffi
2

� ���

s
cosð ����

1

2
n��

1

4
�Þ: ð60Þ

With ��� ¼ q sin � we see that the Bessel functions are Oðq�1=2), and with �zz ¼ q cos � we
find that the leading term in the auxiliary functions is the first term on the right-hand
side of equation (59), which is Oðq�3=2). The leading term in the Green’s vector of the
evanescent magnetic field is therefore

gðqÞev �
1

q3=2
1

j cos �j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

� sin �

r
sinðq sin � � �=4Þe�: ð61Þ

We conclude that near the z-axis the evanescent Green’s vector is Oðq�2), and this
term comes from the first term on the right-hand side of equation (58), so from
MeðqÞ

ev. Off the z-axis, the evanescent field becomes Oðq�3=2), due to the first term in
the series for Mf ðqÞ

ev. In both regions, the decay is faster than Oðq�1), so there is no
contribution to the far field. Also interesting is that the vector character changes
from being proportional to ez in equation (42) to being proportional to e� in
equation (61). For details of the transition between the two regions one has to
retain the Bessel functions in the first terms on the right-hand sides of equations (58)
and (59).

9. Uniform asymptotic approximation

The results in the previous section were derived from the asymptotic series for j �zzj
large, and the conclusions do not extend all the way to field points near the xy-plane.
This is most obvious from equation (61), where the right-hand side diverges for
� ! �=2. In this section we shall obtain an asymptotic approximation which holds
uniformly for all angles, ranging from � ¼ 0 to � ¼ �, and passing smoothly through
the xy-plane. We start from the integral representations (30) and (31) for MeðqÞ

ev
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andMf ðqÞ
ev. Initially, we consider ��� large, so that we can replace the Bessel functions

by their asymptotic form, given by equation (60) with ��� ! ���ð1þ u2Þ1=2. This gives

MeðqÞ
ev
�

ffiffiffiffiffiffi
2

� ���

s
Re e�ið�=4Þð2nþ1Þ

ð1
0

du
u

ð1þ u2Þ1=4
e�uj �zzjþi ���

ffiffiffiffiffiffiffiffi
1þu2

p

, ð62Þ

and a similar expression for Mf ðqÞ
ev. We then set ��� ¼ q sin �, �zz ¼ q cos �, and

consider the behaviour of these integrals for q large, � fixed. It was recognized by

Berry [25], who considered the scalar Green’s function which has a similar integral

representation, that these integrals have two critical points. On one hand there is the

endpoint of integration u ¼ 0, and on the other hand, the exponent has a saddle

point at u ¼ �ij cos �j. When � approaches �=2, the saddle point approaches

the other critical point u ¼ 0. Asymptotic approximations for such types of integrals

can be made with Bleistein’s method [33–35]. This method provides an approxima-

tion for the integral appearing on the right-hand side of equation (62), which

holds near � ¼ �=2 and smoothly connects to the region � 6¼ �=2. Due to the factor
����1=2 in front of the integral, the result can not be extended to include the z-axis

as well in one formula. Recently, we modified Bleistein’s method for integrals of the

type given in equations (30) and (31), in such a way that the approximation also

holds when the field point approaches the z-axis [26]. Instead of repeating this rather

lengthy derivation, we shall simply give the result here.

First we introduce the universal function

NðqÞ ¼ �j cos �jeiq erfcðxÞ �
1

x
ffiffiffi
�

p e�x2
� �

, ð63Þ

which involves the parameter

x ¼ ð1þ iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
qð1� sin �Þ

r
, ð64Þ

-0.4

-0.3

-0.2

-0.1

0

0 2 4 6 8 10
z

Mf (q)ev

Figure 3. Function Mf ðqÞ
ev as a function of �zz for ��� ¼ 5. The thick line is the exact result and

the thin line is the asymptotic approximation for large �zz with only the first term of the
series used.
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and the complementary error function of complex argument. This function can be
written in the alternative form

NðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin �

�q

s
eið �����=4Þ � j cos �jeiqerfcðxÞ: ð65Þ

The asymptotic approximations are then found to be

MeðqÞ
ev
� �

1

q
ImNðqÞ, ð66Þ

Mf ðqÞ
ev
�

1

j �zzj
½J1ð ���Þ � sin � ImNðqÞ�: ð67Þ

We notice that only the imaginary part of NðqÞ enters this result, whereas for the
corresponding expressions for the auxiliary functions of the Green’s tensor for the
electric field only the real part of NðqÞ was involved [26].

In order to see the significance of this result, let us first consider the behaviour of
the function NðqÞ. For a point in the xy-plane we have � ¼ �=2, and the function
NðqÞ becomes

NðqÞ�¼�=2 ¼

ffiffiffiffiffiffi
2

�q

s
eiðq��=4Þ, ð68Þ

as follows from equation (65). The most important point here is that this is Oðq�1=2).
Off the xy-plane we have � 6¼ �=2, and this makes x large if q is large. In this case
we use expression (63) for NðqÞ and we can approximate the complementary error
function with its asymptotic expansion [36]:

erfcðxÞ ¼
1

x
ffiffiffi
�

p e�x2 1þ
X1
n¼1

ð�1Þn
1 � 3 � � � � � ð2n� 1Þ

ð2x2Þn

" #
: ð69Þ

Interestingly, the first term is just the second term in square brackets in equation
(63), and therefore NðqÞ is Oðx�3), which is Oðq�3=2). The function NðqÞ provides the
smooth transition from the xy-plane into the region � 6¼ �=2, and the behaviour
changes gradually from Oðq�1=2) to Oðq�3=2). Figure 4 shows the real and imaginary
parts of NðqÞ as a function of � for q¼ 32.

The approximation to MeðqÞ
ev, given by equation (66), is then seen to be Oðq�3=2)

near the xy-plane and Oðq�5=2) off the xy-plane. Bleistein’s method gives an
accurate approximation up to order q�3=2, so this approximation is only reliable
near the xy-plane. The exact result in the xy-plane is given by equation (49), and with
the approximation (60) for J1ðqÞ, we see that this is asymptotically equivalent to
equation (66), given the value of NðqÞ in equation (68).

More interesting is the approximation for Mf ðqÞ
ev, equation (67). Off the

xy-plane, NðqÞ is Oðq�3=2), and with j �zzj ¼ qj cos �j we find that the term with NðqÞ
gives an Oðq�5=2) contribution, which is negligible compared to the term with the
Bessel function, which is Oðq�3=2). Therefore we might as well set

Mf ðqÞ
ev
�

1

j �zzj
J1ð ���Þ: ð70Þ

Evanescent waves in magnetic field of electric dipole 1227



This is just the first term on the right-hand side of equation (59), which is

the asymptotic approximation for large j �zzj, and which is exact on the z-axis.

When approaching the xy-plane, the function NðqÞ becomes Oðq�1=2), which is the

same order as the Bessel function. In that case, both terms have to be retained.

The result (67) is then an undetermined form for � ! �=2, if we replace J1ð ���Þ by its

asymptotic form (60), and this case has to be considered with a limit. It can be shown

that this limit is

Mf ðqÞ
ev
�

sin q

q
, ð71Þ

which is asymptotically equivalent to the exact result (51). The picture that emerges

is that on the z-axis the evanescent magnetic waves in the far field are negligible,

meaning at most Oðq�2). Off the z-axis, the function Mf ðqÞ
ev becomes Oðq�3=2), with

MeðqÞ
ev still negligible. When approaching the xy-plane, the function MeðqÞ

ev

contributes as Oðq�3=2), but now Mf ðqÞ
ev becomes Oðq�1), which is a far field

contribution. We conclude that the evanescent magnetic waves contribute to the

far field in a region near the xy-plane, are Oðq�3=2) off the xy-plane, and are

negligible near the z-axis. The situation for the electric field is similar, except that

when approaching the z-axis, the evanescent electric waves become Oðq�1). The

uniform asymptotic approximation, given by equations (66) and (67), then accounts

for the smooth transition between the three regions of different behaviour. Figure 5

illustrates the accuracy of the approximation for Mf ðqÞ
ev.

The conclusions from the previous paragraph can be quantified a little further.

The transition between the Oðq�1) and the Oðq�3=2) behaviour is determined by the

function NðqÞ. This function becomes Oðq�3=2) when the argument of the comple-

mentary error function is large enough for the asymptotic expansion (69) to set in.

This occurs at about jxj � 1, and with equation (64) this gives q� ��� � 1. Since

q ¼ ð ���2 þ �zz2Þ1=2 and j �zzj � ���, this is equivalent to j �zzj2 � 2 ���. Therefore, given ���, there
is a layer with a thickness of about j �zzj �

ffiffiffi
���

p
around the xy-plane, and inside this

layer the evanescent waves end up in the far field. Although the thickness of this

-0.1

0

0.1

0° 30° 60°
q

90°

Re N (q)

Im N (q)

Figure 4. Real and imaginary parts of NðqÞ as a function of � for q ¼ 32.
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layer grows indefinitely with the distance to the origin, the angular width of this layer
is asymptotically zero.

10. Series expansion for small z

In section 8 we considered the evanescent waves of the magnetic field for j �zzj
large, leading to asymptotic series for the auxiliary functions. We now consider
the complementary case of �zz small, with ��� fixed. We start from the integral
representations (35) and (36) for the real parts of the travelling parts. In equation
(35) we replace the Bessel function J0ð ���

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
Þ by its series expansion (53) and

we also expand cosðuj �zzjÞ in its series representation for small argument. This yields
the double series

ReMeðqÞ
tr
¼

X1
k¼0

X1
‘¼0

ð�1Þkþ‘

ðk!Þ2ð2‘Þ!

���

2

� �2k

j �zzj2‘
ð1
0

du ð1� u2Þku2‘þ1: ð72Þ

The integral on the right-hand side isð1
0

duð1� u2Þk u2‘þ1 ¼
k!‘!

2ðkþ ‘þ 1Þ!
, ð73Þ

and when substituted into equation (72), the summation over k can be represented by
a Bessel function. We then obtain the series expansion

ReMeðqÞ
tr
¼

1

���

X1
‘¼0

‘!

ð2‘Þ!
�
2 �zz2

���

� �‘

J‘þ1ð ���Þ, ð74Þ

and in a similar way we find

ReMf ðqÞ
tr
¼ �

j �zzj

���

X1
‘¼0

‘!

ð2‘þ 1Þ!
�
2 �zz2

���

� �‘

J‘þ2ð ���Þ: ð75Þ

-0.01

0

0.01

0.02

0° 30° 60° 90°

Mf (q)ev

θ

Figure 5. The thick line is the exact value of Mf ðqÞ
ev for q ¼ 40, and the thin line is the

uniform asymptotic approximation from equation (67). Except close to 90	 the approximation
appears perfect. The behaviour near 90	 improves with increasing q.
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This result has a remarkable resemblance with equations (56) and (57) for the
asymptotic series for the evanescent parts. The difference is that now we have Taylor
expansions in �zz, for fixed ���, and the series converge for all �zz. We also notice that for
�zz ¼ 0 the results (74) and (75) reduce to equations (48) and (50), respectively, which
were derived in an independent way. The evanescent parts near the xy-plane can now
be found by taking the difference with equations (32) and (33). Figures 6 and 7 show
the result of the series summation up to ‘ ¼ 20 for the travelling and evanescent
parts, respectively. When more terms are included, numerical rounding becomes
a problem, and one would have to go to double precision. Figure 7 complements
figure 3, and we see that there is a considerable overlap between the range of
applicability of the series expansion ( �zz<e 15) and the asymptotic approximation
( �zz>e 4).

11. The near field

In section 9 we found a uniform asymptotic approximation for the evanescent
magnetic waves in the far field (q large). In this section we shall consider the
complementary situation of q small, which is the near field. In the previous section
we obtained a series expansion in �zz, which is useful for �zz small, although the series
converges for all �zz. The Taylor coefficients then became functions of ���. We shall now
derive a series expansion in q, around q ¼ 0, and such that the coefficients of the
terms in the series become functions of the polar angle �. To this end, we start from
equations (74) and (75), in which we replace the Bessel functions by their series
representation (53). We find for ReMeðqÞ

tr

ReMeðqÞ
tr
¼

1

���

X1
‘¼0

X1
k¼0

ð�1Þ‘þk ‘!

ð2‘Þ!k!ðkþ ‘þ 1Þ!
�zz2‘

���

2

� �2kþ1

, ð76Þ

and a similar expression for ReMf ðqÞ
tr. Then we rearrange the order of summation,

similar as in the Cauchy product for a double series, set ��� ¼ q sin �, �zz ¼ q cos �,
and collect the powers of q. This yields the series expansions in q

ReMeðqÞ
tr
¼

1

2

X1
n¼0

Qnð�Þ
ð�q2=4Þn

n!ðnþ 1Þ!
, ð77Þ

ReMf ðqÞ
tr
¼ �

1

4
q2 sin �j cos �j

X1
n¼0

Pnð�Þ
ð�q2=4Þn

n!ðnþ 2Þ!
: ð78Þ

with coefficients that are functions of �. These coefficient functions are defined by

Pnð�Þ ¼ n!
Xn
k¼0

k!

ðn� kÞ!ð2kþ 1Þ!
ðsin2 �Þn�k

ð4 cos2 �Þk, ð79Þ

Qnð�Þ ¼ n!
Xn
k¼0

k!

ðn� kÞ!ð2kÞ!
ðsin2 �Þn�k

ð4 cos2 �Þk: ð80Þ

With Q0ð�Þ ¼ 1 we find the values of the auxiliary functions at the origin of co-
ordinates to be ReMeð0Þ

tr
¼ 1=2, ReMf ð0Þ

tr
¼ 0, and this agrees with equation (15)

for the travelling part of the Green’s vector at the origin.
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In order to obtain the evanescent part near the origin, we use equation (34) in

combination with the expressions for the unsplit functions ReMkðqÞ, given by

equations (32) and (33). We expand the right-hand side of equation (32) in a

series in q:

ReMeðqÞ ¼ j cos �j
1

q2
þ j cos �j

X1
n¼0

ð�1Þnð2nþ 1Þ

ð2nþ 2Þ!
q2n, ð81Þ

-0.1

0

0.1

0.2

0 5 10 15 20 25
z

Re Mf (q)tr

Figure 6. The graph shows the exact value of ReMf ðqÞ
tr and its approximation by the series

with Bessel functions, equation (75), for ��� ¼ 5, and the series terminated at ‘ ¼ 20. The series
approximation is accurate up to about �zz ¼ 15. When more terms are retained, the range can be
increased, but one would have to go to double precision in order to avoid the noticeable
rounding problems that are starting to set in.

-0.2

-0.1

0

0.1

0 5 10 15 20 25z

M f (q) ev

Figure 7. Exact value of Mf ðqÞ
ev and the result obtained from the series expansion of the

corresponding travelling part, given by equation (75), for ��� ¼ 5. The series is summed up to
‘ ¼ 20.
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and similarly for the right-hand side of equation (33), and then we take the difference
with the series in equations (77) and (78). This yields the series expansions of the
evanescent parts

MeðqÞ
ev
¼ j cos �j

1

q2
þ
1

2

X1
n¼0

qnð�Þ
ð�q2=4Þn

n!ðnþ 1Þ!
, ð82Þ

Mf ðqÞ
ev
¼ sin �

1

q2
þ
1

2

� �
�
1

4
q2 sin �

X1
n¼0

pnð�Þ
ð�q2=4Þn

n!ðnþ 2Þ!
: ð83Þ

which involve new coefficient functions pnð�Þ and qnð�Þ. These new functions are
related to the functions of the travelling parts as

pnð�Þ ¼ Pnð0Þ � j cos �jPnð�Þ, ð84Þ

qnð�Þ ¼ j cos �jQnð0Þ �Qnð�Þ: ð85Þ

The values of Pnð�Þ and Qnð�Þ at � ¼ 0 that appear here are given by

Pnð0Þ ¼
4nðn!Þ2

ð2nþ 1Þ!
, ð86Þ

Qnð0Þ ¼
4nðn!Þ2

ð2nÞ!
, ð87Þ

as follows from equations (79) and (80) (only the n ¼ k terms contribute).
Equations (82) and (83) show that the singular behaviour of the magnetic

evanescent waves near the origin is Oðq�2). Since the travelling part is finite, we
obtain for the total Green’s vector, equation (20),

gðqÞ ¼ sgnð �zzÞ ez
1

q2
j cos �j þ e�

1

q2
sin � þOð1Þ, ð88Þ

and since sgnð �zzÞ ¼ sgnðcos �Þ, this is

gðqÞ ¼
1

q2
q̂qþOð1Þ: ð89Þ

On the other hand, gðqÞ is given by equation (6), and when we expand the right-hand
side in a series in q, we obtain the same first term as in equation (89). Here we have
shown that this singular term is entirely due to the evanescent waves, which shows
that indeed the evanescent waves dominate the near field.

12. Coefficient functions

The definitions (79) and (80) for Pnð�Þ and Qnð�Þ, respectively, are not very suitable
for numerical evaluation, nor do they shed any light on the behaviour of these

1232 H. F. Arnoldus



functions. In this section we derive some interesting properties of these functions.
To this end, we introduce the generating functions for Pnð�Þ and Qnð�Þ:

gPð�; tÞ ¼
X1
n¼0

Pnð�Þ
tn

n!
, ð90Þ

gQð�; tÞ ¼
X1
n¼0

Qnð�Þ
tn

n!
: ð91Þ

When we substitute the right-hand side of equation (79) into equation (90), the
resulting expression has the form of a Cauchy product of a double series. We use
Cauchy’s theorem backwards, and write the result as a double series. This gives

gPð�; tÞ ¼
X1
k¼0

X1
‘¼0

k!

‘!ð2kþ 1Þ!
ðt sin2 �Þ‘ð4t cos2 �Þk: ð92Þ

Here the summation over ‘ gives an exponential, leading to

gPð�; tÞ ¼ et sin
2 �
X1
k¼0

k!

ð2kþ 1Þ!
ð4t cos2 �Þk: ð93Þ

The sum of this series can be expressed in terms of an error function [37],
which yields

gPð�; tÞ ¼
1

2 cos �

ffiffiffi
�

t

r
et erfð

ffiffi
t

p
cos �Þ, ð94Þ

and in a similar way we obtain

gQð�; tÞ ¼ et sin
2 � þ cos �

ffiffiffiffiffi
�t

p
et erfð

ffiffi
t

p
cos �Þ: ð95Þ

Next we use the series expansion for the error function to write gPð�; tÞ as

gPð�; tÞ ¼
X1
k¼0

ð� cos2 �Þk

k!ð2kþ 1Þ
ðtketÞ, ð96Þ

from which we can find Pnð�Þ according to

Pnð�Þ ¼
dngPð�; tÞ

dtn

����
t¼0

: ð97Þ

Carrying out the differentiation then gives the alternative expression for Pnð�Þ

Pnð�Þ ¼
Xn
k¼0

n
k

� �
ð� cos2 �Þk

2kþ 1
: ð98Þ

With the same procedure for Qnð�Þ we obtain a similar series due to the error
function in equation (95), and the first term on the right-hand side gives rise to an
additional term. We find

Qnð�Þ ¼ ðsin �Þ2n þ 2n cos2 �Pn�1ð�Þ, n ¼ 1, 2, . . . , ð99Þ
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relating the functions Qnð�Þ to the functions Pnð�Þ. Then we set sin2 � ¼ 1� cos2 �,
and combine the two terms, using equation (98) for Pn�1ð�Þ, which gives

Qnð�Þ ¼ �
Xn
k¼0

n
k

� �
ð� cos2 �Þk

2k� 1
, ð100Þ

as an alternative to equation (80).
Now we introduce the function

YnðxÞ ¼
Xn
k¼0

n
k

� �
ð�1Þk

2kþ 1
x2kþ1, ð101Þ

and from equation (98) we see that Ynðcos �Þ ¼ cos �Pnð�Þ. It is easy to see that YnðxÞ
satisfies the differential equation

dYn

dx
¼ ð1� x2Þn, ð102Þ

which can be integrated as

YnðxÞ ¼

ðx
0

dtð1� t2Þn, ð103Þ

since Ynð0Þ ¼ 0. We write this as

YnðxÞ ¼ Yn�1ðxÞ �

ðx
0

dt t2ð1� t2Þn�1, ð104Þ

and here we set uðtÞ ¼ ð1� t2Þn, from which ð1� t2Þn�1
¼ ð�2ntÞ�1du=dt. Integration

by parts then gives a relation between YnðxÞ and Yn�1ðxÞ, and when we substitute
x ¼ cos � we obtain the recursion relation for the coefficient functions

ð2nþ 1ÞPnð�Þ ¼ 2nPn�1ð�Þ þ ðsin2 �Þn, n ¼ 1, 2, . . . : ð105Þ

Since the functions Qnð�Þ are related to the functions Pnð�Þ, according to equation
(99), this also implies a recursion relation between the functions Qnð�Þ, and we find

ð2n� 1ÞQnð�Þ ¼ 2nQn�1ð�Þ � ðsin2 �Þn, n ¼ 1, 2, . . . : ð106Þ

With P0ð�Þ ¼ Q0ð�Þ ¼ 1 as initial values, these recursion relations provide a means to
efficiently compute a large number of these functions. From equation (105) we
readily deduce that the functions Pnð�Þ are bounded as 0 < Pnð�Þ � 1. From equation
(99) it follows that Qnð�Þ � 1þ 2n. Furthermore, by combining equations (99) and
(105) we can derive the relation

Qnþ1ð�Þ ¼ Qnð�Þ þ cos2 �Pnð�Þ, ð107Þ

from which we conclude Qnþ1ð�Þ 
 Qnð�Þ. Since Q0ð�Þ ¼ 1 we then find that the
functions Qnð�Þ fall within the limits 1 � Qnð�Þ � 1þ 2n. Finally we notice the special
values of Pnð�=2Þ ¼ Qnð�=2Þ ¼ 1. Figure 8 shows the functions for n ¼ 3.

The coefficient functions pnð�Þ and qnð�Þ are related to the functions Pnð�Þ and
Qnð�Þ according to equations (84) and (85), respectively. With equations (105) and
(106) we then obtain the recursion relations for these functions

ð2nþ 1Þpnð�Þ ¼ 2npn�1ð�Þ � j cos �jðsin2 �Þn, ð108Þ

ð2n� 1Þqnð�Þ ¼ 2nqn�1ð�Þ þ ðsin2 �Þn, ð109Þ
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and the initial values are p0ð�Þ ¼ 1� j cos �j and q0ð�Þ ¼ j cos �j � 1. Values for
special angles are

pnð0Þ ¼ qnð0Þ ¼ 0, ð110Þ

pnð�=2Þ ¼
4nðn!Þ2

ð2nþ 1Þ!
, qnð�=2Þ ¼ �1: ð111Þ

Figure 9 shows the functions pnð�Þ and qnð�Þ for n¼ 3. With the recursion relations,
the series for MkðqÞ

ev in equations (82) and (83) can be evaluated very efficiently.
Figure 10 shows MeðqÞ

ev as a function of q for � ¼ 30	, obtained by summing the
series in equation (82) up to n¼ 20. We see from the graph that the series gives a
perfect match with the exact result up to about q¼ 20, corresponding to a distance of
about three wavelengths to the origin of coordinates. At this distance the uniform
asymptotic expansion sets in, and in this sense both results are complementary.

13. New integral representations

With the results from the previous section we can derive some interesting new
integral representations for the auxiliary functions. In this section we shall only
consider 0 � � � �=2, which will simplify the notation somewhat. Since the functions
are reflection symmetric with respect to the xy-plane, this is no limitation. When
we set x ¼ cos � in equation (103) we find

Pnð�Þ ¼
1

cos �

ðcos �
0

dt ð1� t2Þn, ð112Þ

and then we make the change of variables t ¼ cos�, which yields

Pnð�Þ ¼
1

cos �

ð�=2
�

d� ðsin �Þ2nþ1: ð113Þ

When we substitute this result in the series expansion (78), the summation over n
is just the series expansion of the Bessel function of order 2, equation (53), and so
we obtain

ReMf ðqÞ
tr
¼ � sin �

ð�=2
�

d�
1

sin �
J2ðq sin �Þ: ð114Þ

This remarkable result should be compared to the original integral representation
(36), which is much more cumbersome in appearance. Interesting to notice is that the
new integral representation involves a Bessel function of different order compared to
the original integral representation.

Also the evanescent part allows a new integral representation. To this end,
we notice that equation (102) can also be integrated as

YnðxÞ ¼ Ynð1Þ þ

ðx
1

dt ð1� t2Þn, ð115Þ

instead as in equation (103). Then we put again x ¼ cos �, and with Ynð1Þ ¼ Pnð0Þ
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this gives

Pnð�Þ ¼
1

cos �
Pnð0Þ �

ð1
cos �

dt ð1� t2Þn
� �

: ð116Þ

When we compare this to definition (84) of pnð�Þ, we see that this is just

pnð�Þ ¼

ð1
cos �

dt ð1� t2Þn: ð117Þ

Setting again t ¼ cos� gives

pnð�Þ ¼

ð�
0

d� ðsin �Þ2nþ1, ð118Þ
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)(3 θP
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Figure 8. Illustration of the coefficient functions for travelling waves.
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Figure 9. Illustration of the coefficient functions for evanescent waves.
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and when we substitute this in the series expansion (83), the sum is again a Bessel

function. We then find

Mf ðqÞ
ev
¼ sin �

1

q2
þ
1

2

� �
� sin �

ð�
0

d�
1

sin �
J2ðq sin �Þ: ð119Þ

Compared to the travelling part, equation (114), we notice that both integrals have

the same integrands, and they only differ in their integration limits. When we add

both integral representations we obtain

ReMf ðqÞ ¼ sin �
1

q2
þ
1

2

� �
� sin �

ð�=2
0

d�
1

sin �
J2ðq sin �Þ, ð120Þ

and this should be equal to the right-hand side of equation (33). The unsplit

function ReMf ðqÞ contains a travelling and an evanescent contribution. When

represented as in equation (120), the first term on the right-hand side is pure

evanescent. When we split the integration range exactly at the polar angle � of the

field point, then the integral over 0 � � � � gives the remaining evanescent part of

this function, and the integral over � � � � �=2 accounts for the travelling

contribution. We have verified numerically that these new integral representations

reproduce indeed ReMf ðqÞ
tr and Mf ðqÞ

ev, obtained by numerical integration of the

old representations.

The series expansions for ReMeðqÞ
tr and MeðqÞ

ev, as given by equations (77)

and (82), respectively, involve the coefficient functions Qnð�Þ and qnð�Þ. In order to

derive integral representations for Qnð�Þ and qnð�Þ we introduce

ZnðxÞ ¼
Xn
k¼1

n
k

� �
ð�1Þk

2k� 1
x2k�1, ð121Þ

-0.02

0

0.02

0 10 20 30
q

Me(q)ev

Figure 10. Exact value of MeðqÞ
ev (thick line) for � ¼ 30	 and its series approximation from

equation (82), summed up to n ¼ 20 (thin line).
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in analogy to the function YnðxÞ in equation (101), and from equation (100) we
see that

Qnð�Þ ¼ 1� cos �Znðcos �Þ: ð122Þ

It follows by inspection that ZnðxÞ satisfies the differential equation

dZn

dx
¼

1

x2
ð1� x2Þn � 1
	 


, ð123Þ

and with Znð0Þ ¼ 0 this can be integrated as in equation (103). We then set x ¼ cos �,
which gives

Qnð�Þ ¼ 1þ cos �

ðcos �
0

dt
1

t2
1� ð1� t2Þn
	 


, ð124Þ

and with the substitution t ¼ cos� this becomes

Qnð�Þ ¼ 1þ cos �

ð�=2
�

d�
sin �

cos2 �
1� ðsin �Þ2n
	 


, ð125Þ

in analogy to the representation (113) for Pnð�Þ.
We now substitute the representation (125) into the series representation (77),

which gives the new integral representation

ReMeðqÞ
tr
¼

1

q
J1ðqÞ �

1

q
cos �

ð�=2
�

d�
1

cos2 �
J1ðq sin �Þ � sin �J1ðqÞ½ �: ð126Þ

The appearance of this result is very similar to equation (114), with the exception
that an additional term J1ðqÞ=q appears. For � ¼ �=2, the integral on the right-hand
side of equation (126) vanishes, and only this term J1ðqÞ=q remains. This is just the
value of ReMeðqÞ

tr in the xy-plane, as we already found in equation (48). It was also
observed in section 7 that this term could be considered a result of the splitting, since
ReMeðqÞ itself is identically zero in the xy-plane.

For the evanescent part we need a representation for qnð�Þ. Equation (124) is the
integral of equation (123) around x ¼ 0. When we integrate around x ¼ 1 and use
Znð1Þ ¼ 1�Qnð0Þ we find

Qnð�Þ ¼ cos � Qnð0Þ þ

ð1
cos �

dt
1

t2
ð1� t2Þn

� �
, ð127Þ

and with equation (85) this is

qnð�Þ ¼ � cos �

ð1
cos �

dt
1

t2
ð1� t2Þn: ð128Þ

For � ! �=2 the integral does not converge in the lower limit, but the overall cos �
keeps qnð�=2Þ finite, and equal to �1. With t ¼ cos�, equation (128) becomes

qnð�Þ ¼ � cos �

ð�
0

d�
1

cos2 �
ðsin �Þ2nþ1, ð129Þ

which we now substitute in the series representation (82). This gives

MeðqÞ
ev
¼

1

q2
cos � �

1

q
cos �

ð�
0

d�
1

cos2 �
J1ðq sin �Þ: ð130Þ
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In this representation the integrand is not the same as in equation (126) for the
travelling part. We can write equation (130) also as

MeðqÞ
ev
¼

1

q2
cos � þ

1

q
J1ðqÞðcos � � 1Þ �

1

q
cos �

ð�
0

d�
1

cos2 �
J1ðq sin �Þ � sin �J1ðqÞ½ �,

ð131Þ

and now the integrands are the same. When added to equation (126) we find

ReMeðqÞ ¼
1

q
J1ðqÞ þ

1

q2

� �
cos � �

1

q
cos �

ð�=2
0

d�
1

cos2 �
J1ðq sin �Þ � sin �J1ðqÞ½ �,

ð132Þ

and this should be equal to the right-hand side of equation (32). Here we see again
that the integral over 0 � � � � gives the evanescent contribution and the integral
over � � � � �=2 is the travelling part. The additional term on the right-hand side is
pure evanescent. In addition, the travelling part gets a term J1ðqÞ=q and the
evanescent part a term �J1ðqÞ=q. In the sum, equation (132), these terms have
canceled. In this sense we can consider the appearance of the terms � J1ðqÞ=q a result
of the splitting, as mentioned in section 7.

14. Conclusions

We have studied the travelling and evanescent waves in the magnetic field of an
electric dipole. In an angular spectrum representation of the magnetic field, both
parts appear as integrals over the kjj-plane. The integration over the azimuthal
angle can be performed in closed form, leading to Bessel functions. Rather than
considering the magnetic field itself, we have introduced a Green’s vector which
determines the magnetic field in a simple way, and which contains all spatial
dependence of the field. In this fashion, the approach is independent of the
orientation of the dipole. This Green’s vector was expressed in terms of two auxiliary
functions, which both have a travelling and an evanescent part. The imaginary parts
of these functions are known in closed form, and only have a travelling part.
Therefore we only had to consider the splitting of the real parts of the auxiliary
functions into their travelling and evanescent contributions.

We have obtained full asymptotic series, for j �zzj large, for the evanescent parts of
both the auxiliary functions. It followed that in most of space the behaviour of the
evanescent waves is Oðq�3=2), indicating that the evanescent waves die out with
distance faster than Oðq�1), and therefore do not contribute the far field. This in
contrast to the evanescent part of the electric field, which survives in the far field in a
small cylinder around the z-axis. In order to include the behaviour in the neighbour-
hood of the xy-plane we have obtained a uniform asymptotic approximation which
holds for all angles �. By considering � ! �=2 we found that near the xy-plane the
evanescent waves do survive in the far field as Oðq�1), just as the evanescent part of
the electric field.

For the study of the near field we have first obtained series expansions in �zz, for
�zz small, of the travelling parts of the auxiliary functions. These series were then
converted into series in the radial distance q, with the coefficients functions of the
polar angle �. From these series we have derived similar series for the evanescent
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parts of the auxiliary functions. It was shown that all singular terms in the magnetic
field are entirely due to the evanescent waves, and they appear as separate terms in
the series expansions. From the properties of the coefficient functions in the series
expansions in q we have derived interesting new integral representations for the
travelling and evanescent parts of the auxiliary functions.
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