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Abstract

The power emitted by an electric or a magnetic multipole of arbitrary order located near an interface with a layer on
a substrate is studied. The power in the far field can be expressed in terms of Fresnel reflection and transmission coef-
ficients for plane waves. When eliminating the transmission coefficients in favor of the reflection coefficients and com-
bining the various contributions, it appears that the power has three distinct parts: (i) the first term is the power emitted
by an unbounded multipole, and the process of reflection and transmission redistributes the angular dependence of this
power; (ii) the second term represents the interference between the multipole waves which travel directly towards a
detector and the waves which are reflected by the interface, a mechanism which modifies the emission rate, primarily
depending on the distance between the multipole and the interface; (iii) the third term accounts for evanescent multipole
waves which are converted into traveling waves upon transmission through the layer. When the distance between the
multipole and the interface is about or less than a fraction of a wavelength, this third term can be extremely large com-
pared to the emission rate by an unbounded multipole (for which all power comes from traveling multipole waves).
© 2004 Elseveir B.V. All rights reserved.
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1. Introduction cell [1] in a quantum-mechanical context. When
the atom is located near the boundary of a dielec-

An atom with an oscillating electric dipole mo- tric or metallic medium, then part of the radiation
ment emits electric dipole radiation. The radiative will reflect at the interface, leading to constructive
power emitted by the atom does not only depend or destructive interference with the radiation emit-
on the dipole moment, but also on the surround- ted directly by the atom towards a detector in the
ings of the atom, an observation first made by Pur- far field. The interference depends on the distance

between the atom and the surface of the interface.
*Tel: +1 662 325 2919 fax: +1 662 325 8898. In additi(?n, when the interface consists of a layer
E-mail address: arnoldus@ra.msstate.edu of material on a transparent substrate, part of
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the radiation will be transmitted through the layer
and into the substrate. The modifications of the
angular distribution of the power and the total
emitted power by an electric dipole due to the pres-
ence of an interface have been studied extensively
by a variety of methods [2-7] and in particular
the dependence on the atom-surface separation
distance has attracted a great deal of attention.
The theoretical predictions have been verified
experimentally for both radio-wave and optical
frequencies [8-15]. In this paper we generalize
these results by considering the power emitted by
an electric or a magnetic multipole of arbitrary
order, located near an interface.

The problem of reflection and transmission of
multipole radiation by an interface is most conven-
iently approached by means of an angular spec-
trum representation of the multipole field. This is
an integral representation (superposition) in which
each partial wave is a plane wave [16]. The inde-
pendent variable is k, which is the parallel part
with respect to the surface, taken to be the xy-
plane, of the wave vector k of the incident wave,
and the integration runs over the entire k-plane.
When the multipole is embedded in a medium with
dielectric constant &;, assumed to be positive and
corresponding to an index of refraction n; = /e,
then the wave number is k = n;k,, where k, = wlc
and o is the angular frequency of the oscillations
of the dipole moment. The z-component of the
wave vector k is then k, = +(k* — kﬁ)l/z. For
ky <k, the value of k, is real and we have a trave-
ling wave. We select the positive or negative sign
such that the wave travels away from the multipole
in both the positive and negative z-directions. On
the other hand, for k| > k, the variable k. becomes
imaginary, and the sign is chosen in such a way
that the wave decays exponentially away from
the multipole in both the positive and negative z-
directions. These are the evanescent waves of the
angular spectrum representation.

We shall consider the situation depicted in Fig. 1,
where the multipole is located a distance H
above the interface, and is embedded in a medium
with index of refraction n;. The region —L <z <0
is a layer with dielectric constant ¢, and the sub-
strate has a dielectric constant ¢;. We assume that
all dielectric constants are real, thereby excluding
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Fig. 1. The multipole is located on the z-axis, a distance H
above the xy-plane, and the circles indicate the multipole
radiation which consists of spherical waves. The multipole is
embedded in a medium with dielectric constant &, the layer
occupies the region —L < z <0 and has a dielectric constant &,
and the substrate has dielectric constant &. In an angular
spectrum representation, the radiation in each region is a
superposition of plane waves, and this is schematically indi-
cated by the arrows. When a partial wave is traveling, the arrow
indicates the wave vector, but when the wave is evanescent, the
wave travels parallel to the xy-plane with wave vector kj, and
decays in the +z- or —z-direction. For a given incident wave,
each wave vector has the same parallel part kj as the incident
wave. The de-waves are emitted by the multipole towards a
detector in the far field, and the inc-waves are the incident
waves which reflect at the interface, giving rise to the specular r-
waves. Each incident wave gives a transmitted z-wave, which,
when traveling, contributes to the power in z < —L.

xy-plane

possible absorption, but we allow for the possibil-
ity that either &, or &, or both, are negative. In
particular, a negative &3 models a metallic sub-
strate. The reflected and transmitted waves and
the waves in the layer are also plane waves, given
an incident plane wave, and the boundary condi-
tions at z=0 and z = —L require that all waves
have wave vectors with the same k| as the incident
wave. We shall use the notation « = ky/k, for the
dimensionless magnitude of k.

In a medium with dielectric constant ¢;, the dis-
persion relation is ka. = ejk(z, and, given kj, this
determines the z-component of the corresponding
wave vector k;, apart from its sign, since
ka. = kﬁ - kf e When ¢; is negative, the z-compo-
nent is imaginary for all k|, and there can only ex-
ist evanescent waves in the medium. For positive
¢, the wave is traveling (k. real) for k| < njk,, with
n; = /g, and evanescent (k. imaginary) for
ky > nik,. In terms of a, this is « <n; and o > n;,
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respectively. A useful dimensionless variable for
the waves in the material with dielectric constant
Sj is

v, =1/8 — 02, (1)

with the understanding that the square root is
taken as positive imaginary if its argument is neg-
ative. The value of the z-component of a wave vec-
tor in medium ¢; is then k. ; = tk,v;, given a, and
the sign of k. ; depends on whether the wave trav-
els/decays in the positive or negative z-direction.
When v, is positive, the corresponding wave is
traveling, and when v; is positive imaginary the
wave is evanescent.

When ¢ is negative, the parameter vz is imagi-
nary for all «. Then the waves in the substrate
are evanescent, and do not contribute to the emit-
ted power. Let us now consider ¢; > 0. When the
incident wave in medium ¢ is traveling we have
0 < a <ny, and the angle of incidence 6; is given
by a = n;sin6;. The waves in the substrate can be
traveling or evanescent, depending on the value
of k| of the incident wave, or «. If the transmitted
wave is traveling, then the angle of transmission 6,
is given by o = n3sin 6,, since both the incident and
transmitted wave must have the same kj. There-
fore we have o = n3sin 6, = n; sin 6; which is Snell’s
law. For n3 < n; there exists an angle of incidence
for which the angle of transmission becomes 7/2.
This is the critical angle 6., given by

. ns

sinf, = - (2)
If the angle of incidence of a traveling plane wave
exceeds 6, then the transmitted wave in the sub-
strate becomes evanescent. These waves die out
exponentially in the negative z-direction, and do
not contribute to the radiated power in the far
field. Similarly, for n3 > n;, there exists an angle
of transmission for which the angle of incidence
becomes n/2. We define an angle 6,. by

x n

sin f,c = —. 3
ac n3 ( )

This angle 6,. has the significance that if a trave-

ling wave in medium 3 is detected at a transmis-

sion angle larger than 6,., it must have its origin

in an evanescent incident wave in medium #,. Since

this is just the opposite effect as compared to the
situation with the critical angle, we have called this
angle 0, the anti-critical angle [17]. Therefore,
such evanescent waves of the multipole field con-
tribute to the emitted power, since they are con-
verted by the interface into traveling waves
which end up in the far field in the substrate. With
o =n3sinf; and 0 < 6, < n/2 we see that the range
of o values in the angular spectrum contributing
to the transmitted traveling waves is 0 < « <nj.
On the other hand, the incident waves are traveling
for 0 < a < n;, and therefore o values in the range
ny < a <nj3 represent the combination of evanes-
cent incident waves and traveling transmitted
waves.

The power emitted by a multipole comes from
traveling waves in the angular spectrum which tra-
vel directly towards the detector (the de-waves in
Fig. 1), and traveling waves which reflect first at
the interface and then travel towards the detector
(the r-waves). Part of the incident traveling waves
refract at the interface and contribute to the power
transmitted by the layer. For the .situation of
n3 > ny, the power has the additional contribution
from the emitted evanescent waves which are
transformed into traveling waves by the interface.
The contribution of the evanescent waves was con-
sidered in detail recently [18] for an electric dipole,
and it was shown that under certain conditions the
power due to evanescent waves can greatly exceed
the power due to traveling waves.

2. Angular distribution of multipole radiation near
an interface

The electromagnetic field of an electric or mag-
netic multipole in vacuum is well-known [19-22],
and only slight modifications are needed to ac-
count for the embedding medium with index of
refraction n,. For the problem of a multipole near
an interface we need an angular spectrum repre-
sentation of the multipole field, which can be ob-
tained [23,24] with a theorem due to Erdélyi [25].
With an asymptotic expansion with the method
of stationary phase [26,27] we then evaluate the
field in the far zone, after which the emitted power
per unit solid angle, dP/dQ, can be found by
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evaluating the Poynting vector. The result can be
written as

L = Pt ), @)
where P, is the emitted power by the multipole in
an unbounded medium with index of refraction n;
and A", (F) is the normalized intensity as a func-
tion of the observation direction #. The value of P,
is determined by the multipole moments of the
source, and its explicit form is irrelevant for the
present discussion. The possible values of ¢ are
1,2,... for a dipole, quadrupole,..., and given ¢
the possible values of m are m=—¢,...,0. We
have added the subscript 1 to indicate magnetic
(n = 1) and electric (n = —1) multipoles.

The explicit result for the intensity distribution
of the radiation emitted in the half-space z> H
for the case of a magnetic multipole is [28]

N 1im®) = | 14 (=1)*"Ry(01)e# <) £, (cos 0)
+ | 1= (=1)"*"R,(1)e'****° g, (cos §).

(5)

This distribution depends on the polar angle 6 with
the positive z-axis, but is independent of the azi-
muthal angle ¢. The distance H between the multi-
pole and the surface enters only through the
dimensionless parameter f§ = 2n1k,H. The Fresnel
reflection coefficients R,, with ¢ =s or p indicat-
ing the polarization of the corresponding plane
wave, depend on the three dielectric constants,
the dimensionless layer thickness d = k,L, and the
parameter o. For a given observation angle 0, the
Fresnel coefficients have to be evaluated at
oy = nysin 6. This shows that the contribution from
the reflected waves to the intensity at angle 6
comes from a plane wave with angle of incidence
0; = 6. Expression (5) clearly exhibits that the field
is a superposition of de-waves, represented by the
terms ““1” inside the absolute value signs, and re-
flected waves. The factors exp(ifficos) account
for the retardation of the r-waves with respect to
the de-waves, and this leads to an interference pat-
tern. Without the interface we have R, =0, and
Eq. (5) reduces to

N 1im(F) = fim(cos 0) + g,,,(cos 0), (6)

which shows that the functions f, and g, ac-
count for the intensity distribution of a multipole
in free space (n; =1 and without boundaries).
The explicit expressions for these functions, which
in general have complex-valued arguments, are gi-
ven in Ref. [24].

For &; < 0 all radiation in the half-space z < —L
consists of evanescent waves, and no power is
transmitted through the layer into the substrate.
For &; >0, the intensity distribution in z<—L
can be expressed in terms of Fresnel transmission
coefficients 7, and the result for a magnetic multi-
pole is

2 n mwi|
mmm=ﬁw‘nnmmmw>

+ | ?S(a3)|zgfm(w)]' (7)

Here we have introduced the modified transmis-
sion coeflicients

~

To() = 2T (@), (8)

in terms of the parameters v; from Eq. (1). The
transmission coefficients have to be evaluated at
o3 =n3sinf, and since 6, =n — 0 we have o3 =
n3sin ;. The parameter w appearing as the argu-
ments of the functions fy,, and gy, is

w=—1/1— (e3/)sin’6, 9)

which is negative or negative imaginary. When the
corresponding incident wave is traveling we have
nysinf; = n3sinf, and this parameter is
w = —cosf;. This shows that the amplitudes of
the transmitted waves are determined by the
amplitudes of the corresponding incident waves,
as could be expected. We note that the functions
fum and gy, are even in their arguments, so that
replacing w by —w has no effect. On the other
hand, for a transmission angle which corresponds
to an evanescent incident wave (which can only
happen for &3 > ¢;), the parameter w is imaginary.
This is the case for 0, < 6, < n/2. Then the overall
factor exp(fImw) decays exponentially with the
distance H between the dipole and the surface,
reflecting the fact that the evanescent waves from
the multipole decay in the direction towards
the surface. Without -the interface we have
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Fig. 2. The graph shows a polar diagram of the intensity
distribution of an electric quadrupole with m = 2. The dielectric
constants are ¢) = 1, &, = &3 = 2, for which the anti-critical angle
is 0,c = 45°. The parameter f is taken as 67, corresponding to a
normal distance of 1.5 wavelengths. Already for this relatively
small value of the distance between the multipole and the
interface, we see that almost no radiation is present in the
region 0,. < 0, < n/2. The fraction f for these parameters is
0.73% (see Section 7, Eq. (30)).

ny =n, =n3, and therefore vy = vy, i‘,, =T,=1,
and w=cosf (cosf is negative for z<—L).
Expression (7) then reduces to Eq. (6). For an elec-
tric multipole the same expressions hold, except
that the Fresnel coefficients for s- and p-polariza-
tion in Eqgs. (5) and (7) have to be exchanged.
The intensity distribution is independent of the
sign of m, so we shall consider m > 0 only. Fig.
2 shows a typical example of a radiation pattern
for an electric quadrupole.

3. Emitted power
The power per unit solid angle is written as in

Eq. (4) in terms of the normalized intensity distri-
bution A", (). Since the expressions for A", (¥)

are different for z> H and z < —L we split the
emitted power accordingly. The emitted power in
z>His

n/2 2n
P, =P / A0 [ dep sin ON (), (10)
0 0

in terms of the spherical coordinates (6, ¢), and the
power emitted in the direction z < —L will be indi-
cated by Py, and is defined as in Eq. (10), with the
integration limits for 6 changed to n/2 < 6 < n. The
total power is then given by Py, = P, + Py,
The intensity distribution A", (#) is independent
of ¢, so the integration over ¢ gives 2n. We nor-
malize the power with P;, and write the normal-
ized power as Py, = Py,/P;, and similarly for
n[m and P ném*

Without the interface the normalized intensity
distribution is given by the right-hand side of Eq.
(6) for all 6, and both for magnetic and electric
multipoles. When integrated over a 4x solid angle
this gives unity. Since the functions fy,, and g, are
even in their arguments, it follows that the power
emitted in the negative z-direction isequal to the
power emitted in the positive z-direction, and
therefore we have the identity

/2 1
Zn/ dé sin H[ﬂm(COS 0) + glm(cos 0)] = 5
0
(11)

For the emitted power in z > H we use expression
(5) for A"y4m(F), and we change the integration var-
iable 0 to « according to a = n;sinf. We then have
nycosf = vy, and the terms that are independent of
the Fresnel coefficients combine just as in Eq. (11).
This yields for the normalized power in z > H for a
magnetic multipole

l
P =75 / do 2 ({| Ry

+ 2( [+mRC[R ( ) Iﬂvl/nl]}fl’m(vl/nl)
+ {I Rs(a)l - 2(—1)“"" C[Rs(a)e‘ﬂ”l/”l]}
X gom(v1/M1)). (12)

The term 1/2 on the right-hand side accounts for
the directly emitted waves by the multipole to-
wards the far field in z > H, and the terms with
|R,,(oc)|2 represent the power by the reflected waves.
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The remaining terms with R (x)exp(ifiv,/n;) are a
result of interference between the de- and the r-
waves.

For the power in z < —L, assuming that &; is
positive, we use expression (7) and set a = n3sin.
This gives w = —vy/n;, and we obtain for a mag-
netic multipole

2% ™ o v

Pl =— / do —eFlm/m _i“ Tp(“)|2f£m(vl/"1)
ny Jo U oA
+ | To(@0) gm (01 /m1)], (13)

where we have used Eq. (8). For z < —L there are
only transmitted waves with an intensity propor-
tional to |T,(x)|>. When a corresponding incident
wave is traveling, v; is real, and exp(—pfImuv,/
ny) = 1. On the other hand, when the incident wave
is evanescent, this factor is real and decays expo-
nentially with the distance f.

4. Fresnel reflection and transmission coefficients

The results from the previous section do not de-
pend on the explicit forms of the Fresnel reflection
and transmission coefficients. When considering
the total emitted power, the various contributions
can be combined in an appealing way by using
properties of the Fresnel coefficients. Therefore
we give here the reflection and transmission coeffi-
cients, and we express these in terms of the varia-
bles v;, defined in Eq. (1). We have

Ry(@) = -[(01 = 02) (02 + 03

S

+ (01 + 02) (03 — v3)e™™), (14)
1
Ry(a) = 1 (201 — &102)(&302 + £203)
p
+ (8201 + &102) (8302 — £03)e?™), (15)
T i) = 4u10; glv=)d (16)
4 ,
Tp(a) = ljllvz eamynae 27, (17)

As = (01 + v2) (02 + v3) + (v — 02) (v — v3)e¥,
(18)
Ap = (&201 + €102) (€302 + £203)
+ (821)1 = 811)2)(8302 - 82U3)62ivzd. (19)

We have indicated in the notation the dependence
on the variable «, since this will be the integration
variable in the expression for the total power. The
Fresnel coefficients depend furthermore parametri-
cally on the dielectric constants &, &, &3, and the
dimensionless layer thickness d.

The variables v; are the dimensionless perpen-
dicular components of the various wave vectors,
apart from a possible minus sign depending on
the wave under consideration. When v; is real,
the corresponding wave is traveling and when v;
is imaginary the wave is evanescent in the z-direc-
tion. We therefore have v; =v; for a traveling
wave and v; = —v; for an evanescent wave. From
this observation a variety of relations for the Fres-
nel coefficients can be derived, and these are sum-
marized in Fig. 3.

5. The three cases

The result for the total power can be simplified
considerably with the help of the relations for the
Fresnel coefficients from the previous section. We
can add the power emitted in z> H and z < —L,
but the way in which these contributions combine
depends on the character of the waves in the vari-
ous regions. We have to distinguish three possible
cases.

1.e3<0

When &5 is negative, as for instance for a metal
(neglecting absorption), then all waves in z < —L
are evanescent, and no power is emitted in this re-
gion. We therefore have Py, = P}, with P, gi-
ven by Eq. (12). In this case, the incident and
reflected waves are traveling and the transmitted
waves are evanescent, which corresponds to the
situation shown in Fig. 3a. We then notice that
the terms with |R,(2)]* = 1 in Eq. (12) give the inte-
gral of Eq. (11), and this yields the simplified
expression for the power
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Fig. 3. The figure shows various relations for the Fresnel
reflection and transmission coefficients. Whether a wave in the
material with dielectric constant ¢; is traveling or evanescent
depends on the value of the corresponding v;, given by Eq. (1).
When v; is real, the wave is traveling, which is indicated by an
arrow, and when v; is imaginary, the wave is evanescent, which
is indicated by dashes. It appears that the relations shown do
not depend on whether the wave in the layer is traveling or
evanescent, and the relations are the same for s- and p-
polarization.

4 m )
Plim =1 +_T[(—1)[+MRC/ da le‘/‘l’l/ﬂl
m 0 v

X [Rp(2) fom(v1/m) — Rs(0)gm(v1/m)], (20)

where we have used that the functions f;,, and gy,
are real.

2.0<eg<g

For &; > 0 there are traveling waves in z < —L
which contribute to the power. For ¢; <¢; there
exists a critical angle ., given by Eq. (2), and for
a given traveling incident wave, the corresponding
transmitted wave can be traveling or evanescent.
For the power in z > H this affects the property
of the Fresnel reflection coefficients. When
0<0;<0., we have the situation of Fig. 3b,
whereas for an evanescent transmitted wave, for

which 6. < 0; < n/2, we have again the case shown
in Fig. 3a. The corresponding o ranges are
0 < a<n3 and n3 < a <ny, respectively. For the
transmitted power the integration range is
0 < a <ns, and this corresponds to the situation
of Fig. 3b. We use the given equation to eliminate
the transmission coefficients in favor of the reflec-
tion coefficients in Eq. (13) for the powerinz < —L
(and use that v, is real here). For the terms with
|R,(2)* in Eq. (12) we split the integral in an inte-
gral over 0<a<n; and an integral over
n3 < o < n;. Then we find that the first integral can-
cels exactly against the terms in the expression for
the power in z < —L involving the reflection coeffi-
cients. For the integral over n; < o« < ny, we are in
the situation of Fig. 3a. When we set |R,(2)]> =1,
and add this to what is left of the power in z < —L,
we find that the sum is exactly the expression of
Eq. (11) (after transforming back to 6). The result
is that the expression for the power is again given
by Eq. (20).

For both cases (1) and (2) the power is given by
the same result, Eq. (20), although the contribu-
tions come from different processes. The reason
for this is that in both cases all emitted traveling
waves by the multipole, corresponding to the
range 0 < a <ny, end up in the far field. In case
(1) all waves are reflected and in case (2) some of
the waves are transmitted, and they end up in
the far field below the substrate. For these cases,
no evanescent emitted waves contribute, and all
emitted traveling waves contribute.

3.0<g <&

When &3 > ¢; we can have the situation shown
in Fig. 3c, where evanescent waves from the multi-
pole are converted into traveling transmitted
waves and end up in the far field, thereby contrib-
uting to the power. In this case we have to split the
integral for the transmitted power in Eq. (13) at
o =n;, and use the relation from Fig. 3b for the
range 0 < a <ny. For n; < a < nz, we use the rela-
tion from Fig. 3c, and the fact that in this range
v is pure imaginary. When compared with the
expression for the power in z> H we find again
that the terms with |R,(«)|* cancel, and that the
integral of Eq. (11) shows up. The result is again
Eq. (20), but now an additional term remains due
to the integral over n; < o <nj3 in the transmitted
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power. This is the term that has its origin in the
evanescent waves of the multipole.

The final result covering all cases can be written
as

4 n )
Pim =1 +—E(—l)z+'"Re/ do L eiboi/m
! 0 Uy

X [Rp (@) fom (01 /m1) — Rs(#)€gm(v1/m1)]
+1—TH(83 —¢&1)Re /n. ' da Uﬁleiﬂ"‘/"‘

X [Ro (o) fom(v1/m1) + Rs(2)gen(01/m)], (21)

for a magnetic multipole, and for an electric multi-
pole we exchange the Fresnel coefficients for s- and
p-waves. Here we have introduced the Heaviside
step function H(x) in the last term to indicate that
this term only contributes for &; > ¢;. An interest-
ing difference between the two integrals is that
the reflection coefficient for s-waves is preceded
by a minus sign in the first integral but not in
the second. Another difference is that the first inte-
gral has an overall factor of (—1)**”, whereas the
second integral does not.

6. Dipole

For a magnetic or an electric dipole we have
¢=1. Let us first consider the case m = 0, which
corresponds to a dipole moment oriented along
the z-axis. The two functions appearing in Eq.
(21) are [28]

Suo(2) =0, (22)

fuld) = 1-7], (23)

for arbitrary complex z. This yields for the emitted
power by the dipole
3

ni€

ny 3 .
H(e — sl)Re/ da z—e'ﬂ”’/"‘Rs(a).
ny 1

ny 3
PllO =1 “+ Re/ da E_elﬁUI/anS((x)
2 0 U1

2n18]
(24)

Here we notice that the integrands of both inte-
grals are the same. When &3 < ¢;, the second inte-

gral does not contribute. Near the upper limit
a=n; of the first integral, the parameter v; is
imaginary, and the corresponding transmitted
wave is evanescent. For o > n; also v; would be
imaginary, corresponding to an evanescent inci-
dent wave. This gives the situation depicted in
Fig. 3d, for which the Fresnel reflection coefficients
are real. Then we also have that exp(ifiv\/n,) is real,
and due to the factor 1/v; the integrand is imagi-
nary. We can therefore extend the upper limit of
integration to infinity. On the other hand, for
e3> ¢, the second integral can be added to the
first, giving an integral over the range 0 <a <ns.
Then for «>ny both v; and v; are imaginary,
and we are again in the situation of Fig. 3d. There-
fore we can also extend the integration limit to
infinity. Consequently, for all cases the result (24)
can be simplified to

fo.o] 3 )
Re / do Lef/mp (). (25)
0

3
Pio=1
110 +2 -

nié
Effectively, the upper limit of integration is
o = max(ny,n3), since for larger o the integrand is
imaginary. A dipole with m =1 has a dipole mo-
ment with a constant magnitude and this dipole
moment rotates counterclockwise in the xy-plane.
The two functions are

fule) = 1o (26)
g0 =10 | " (27)

Along similar lines we obtain

3 o i
P =1+ Re/ do X ifo/m
4ni& 0 Ui

X [e1Ry(2) — (&1 — 2)R,()] (28)

The elegant representations (25) and (28) for the
power emitted by a dipole have been reported
numerous times in the quoted literature (for an
electric dipole, so with Ry and R, exchanged).
We have derived this result by considering the field
emitted by the dipole as a superposition of plane
waves which reflect and refract at the interface.
From this, the Poynting vector in the far field
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could be found by asymptotic expansion, and after
integrating over a 4 solid angle, the result for the
emitted power is an expression in terms of Fresnel
reflection and transmission coefficients. With the
relations shown in Fig. 3, the transmission coeffi-
cients could be eliminated in favor of the reflection
coefficients, and this led to the results (25) and (28)
for the case of a perpendicular and a parallel di-
pole, respectively. It is interesting to note that
these results can also be derived with a very differ-
ent approach, sometimes called “radiation reac-
tion”. In this approach one constructs an
angular spectrum representation of the field emit-
ted by the dipole and the reflected field by the
interface, expressed in terms of reflection coeffi-
cients. Rather than considering the far-field solu-
tion, one considers the field at the location of the
dipole. The dipole then interacts with its own field,
including the reflected field, and one evaluates the
emitted power by calculating the negative of the
power dissipated by the dipole from its own field
by integrating the corresponding term in Poyn-
ting’s theorem over a small sphere around the di-
pole [12]. This leads exactly to Eqs. (25) and
(28). In this approach, the presence of the interface
only enters through the Fresnel reflection coeffi-
cients, but the formal result is independent of the
properties of the Fresnel coefficients, like the rela-
tions shown in Fig. 3. Therefore, the results (25)
and (28) hold more generally, and in particular
they also hold when there is absorption in the
material, or when the interface structure is more
complicated than the situation shown in Fig. I.
On the other hand, it is not clear how this ap-
proach can be generalized to obtain the power
emitted by a multipole of arbitrary order (¢,m).

7. Contribution of evanescent waves

The general result (21) splits naturally in three
parts. The term ““1” represents the emitted power
by the multipole irrespective of the boundary and
it only involves traveling waves emitted by the
multipole. The first integral represents interference
between the directly emitted waves and the re-
flected waves, and only traveling multipole waves
contribute to this term. The second integral comes

from evanescent multipole waves which are con-
verted into traveling transmitted waves by the
interface. We write the power as

+ P (29)

ném?

tr
P nbm = P

ntm

indicating the contributions from traveling and
evanescent multipole waves. As a measure for the
relative contribution of evanescent waves we intro-
duce the fraction

cV

P
e P o TR, (30)

F ==
Pf]ém + P::'Iém

For a numerical evaluation of the emitted power,
the representation given by Eq. (21) is not the most
convenient, since the parameter v; goes to zero for
o — n,, leading to singularities of the integrands at
o =n,. For the integral of the traveling part we
change the integration variable according to
u = [1—(a/ny)*]"?, which gives

Pl = 1+ 4n(-1)""
|
b Re/ dueiﬁ"[Rpﬁ,,,(u) = ng({m(u)]' (31)
0

The Fresnel coefficients have to be evaluated at
o= m(1—u*)"?. Similarly, for the evanescent part
we set u = [(a/n;)*—1]"2, which yields

PT;m = 47IH(83 - 8')

v /e—1
T / due ™[Ry fim(it1) + R (ite)],
0

(32)

and here the Fresnel coefficients have o=
m(1 +u?)'"? as arguments.

As an example, let us consider quadrupole radi-
ation, for which ¢ =2 and m = 2, 1,0 (the power is
independent of the sign of m). The functions f,,
and g»,, have u as their arguments in Eq. (31),
but in Eq. (32) the arguments are iu, which are
imaginary. For arbitrary complex z, the functions
for £ =2 are given by

fal@ =1 |1- 2], (33)

5
gn(a) =11 1-2 |2, (34)
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fald) = 1o= |, (39)

o) =12 122 - 1, (36)

fu(z) =0, (37)
15 2

en(@) =g | 1-2 11 (39)

Fig. 4 shows the emitted power for an m =1 elec-
tric quadrupole as a function of f, and for ¢, = 1,
& = g3 = 4 (single interface). Also shown are the
separate contributions from traveling and evanes-
cent waves. We see that for small distances be-
tween the surface and the multipole the emitted
power is mainly due to the evanescent waves,
whereas for larger distances the traveling waves
determine the emitted power. Near f~3 (f =4=n
corresponds to a distance of one optical wave-
length in medium n;), both contributions are
approximately equal. Fig. 5 shows the intensity
distribution for the same parameters and for
p = 0. The anti-critical angle is 30°, and we notice
that most radiation is emitted in the range
0, < 0, < m/2, as evidenced by the large lobe. The
fraction f for this distribution is 92%. Further-
more, from Fig. 4 we see that for f# — 0 the power

total

0 2 4 6 8 10
B

Fig. 4. The figure illustrates the dependence of the total emitted
power on the normalized distance f§ between the multipole and
the xy-plane for an m = 1 electric quadrupole, and for param-
eters &) = 1, &, = &3 = 4. Also shown are the separate contribu-
tions from traveling and evanescent multipole waves. For f§
small, the evanescent waves dominate the emitted power. For
p =0, the emitted power is finite, but outside the graph.

3 1 1 ad

0 1 2

Fig. 5. Polar diagram of the intensity distribution for the same
parameters as in Fig. 4. The distance between the multipole and
the interface is here taken as f# = 0. The anti-critical angle is 30°,
and the large lobe is entirely due to evanescent multipole waves.
The fraction f for these parameters is 92%.

approaches the value 12.5, which implies that the
emission rate, mainly due to evanescent waves, is
12.5 times the emission rate of the same multipole
in an unbounded medium.

8. Dependence on the layer thickness

The dependence of the emitted power on the
layer thickness d is illustrated in Fig. 6 for an elec-
tric quadrupole and for each of the m-values. The
oscillatory behavior is due to the factors exp(2iv,d)
in the Fresnel reflection coefficients. Here v, =
(e2—?)"? and « is the integration variable. For d
large, the factors exp(2iv,d) oscillate very rapidly
with o, and when integrated over they average
out. It was shown in Ref. [29] that the integration
has the effect of averaging the reflection coeffi-
cients with the average coefficient being the Fresnel
coefficient for the single ¢,—¢, interface in the limit
d — co. Fig. 7 shows this effect for an electric
quadrupole. However, the oscillatory behavior as
a function of d is not always as prominent, as is
illustrated in Fig. 8.
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m=1

N NACVAUVAY

Fig. 6. Emitted power by an electric quadrupole as a function
of the dimensionless layer thickness d, for ¢y = ¢3 =1, &, =4 and
B = 1. The oscillations are due to the oscillations in the Fresnel
reflection coefficients.
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Fig. 7. Emitted power for the same parameters as in Fig. 6, but
only for m = 0. The figure illustrates that for large d the power
approaches a steady value, which is due to the fact that the fast
oscillations in the Fresnel coefficients average out when
integrated over.

9. Power along the xy-plane

The power emitted by the multipole, given by
Eq. (21), was derived by considering the contribu-
tions from the regions z > H and z < —L, and both
contributions were combined by using the proper-
ties of the Fresnel reflection and transmission coef-
ficients. We did not take into account the possible
contributions from the radiation emitted in the re-
gions 0 < z < H and —L < z <0. In this section we
shall show that these contributions are identically
zero. The simplest argument is that the angular

15 ¢

magnetic

05
elecrric

d

Fig. 8. This figure shows the emitted power as a function of d
for an electric and a magnetic quadrupole with m =0. The
parameters are f=m, & =4, &;=1 and &= —2. Near d=0
there is some structure, but the curves level off rapidly with
increasing d, and there are hardly any oscillations with these
parameters.

width of the slab —L <z < H is asymptotically
zero, so the power integrated over this region van-
ishes asymptotically.

It is more interesting to consider the power per
unit solid angle, dP/dQ, in the regions 0 <z < H
and —L<z<0. For 0<z<H the electric and
magnetic fields consist of inc-waves and r-waves,
as schematically shown in Fig. 1. Let us consider
a pair of corresponding inc- and r-waves. In the
far field we have § — n/2, and the wave vectors
of both waves become identical and parallel to
the xy-plane. For a given polarization g, the r-
wave has an additional Fresnel reflection coeffi-
cient R,(a;) with respect to the inc-wave, with
everything else being the same. The sum of the
two waves therefore has a factor of 1+ R,(oy).
Here, o; = ny, since 6 = n/2, and with Eq. (1) this
gives v; = 0. With Egs. (14), (15), (18) and (19) we
then find

R,(m) = -1, (39)

which gives 1 + R, () = 0. The conclusion is then
that in the region 0 < z < H each pair of inc- and r-
waves interferes destructively, and therefore the
electric and magnetic fields are asymptotically zero
in 0 < z < H, and no power is emitted in this slab.
The electric and magnetic fields in —L < z < 0 have
contributions from the waves labeled “1”” and “2”
in Fig. 1. In the far field both waves have the same
wave vector, and in this layer the parameter v,
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goes to zero for § — n/2. The sum of the waves is
then proportional to the sum of the two corre-
sponding Fresnel coefficients (not given here),
and it can be shown that the two waves also inter-
fere destructively in the far zone. The proof of this
is slightly more complicated since A, — 0 for
v, — 0 (Egs. (18) and (19)), and will be omitted
here. Therefore, also the power emitted in the slab
—L < z <0 vanishes identically.

The power per unit solid angle emitted in the re-
gion z > H is given by Eq. (5). When we take the
limit 6 — n/2, the Fresnel coefficients are again gi-
ven by Eq. (39), and from the values of the func-
tions fy,,(0) and g,,(0) [30] we then obtain
N ym(#) =0 in this limit. Furthermore, for
z < —L the power per unit solid angle is given by
Eq. (7). When we take 6 — n/2 we have o3 — n3,
so that v3 —0. From Eq. (8) we then have
T,(a3) — 0 due to the overall factor of v;, and
therefore A ym(#) — 0 for 8 — /2 from below
the surface. In conclusion, we have A", (#) =0
in the region —L < z < H and approaching this re-
gion from either above or below. The illustrations
in Figs. 2 and 5 show indeed that the intensity
along the xy-plane vanishes. It should be noted
here that this conclusion only holds when there is
an interface present. When we set ¢ = & = ¢; In,
for instance, the Fresnel reflection coefficients,
then R, =0, in conflict with Eq. (39).

10. Perfect conductor

Particularly interesting is the limit of a perfect
conductor (mirror), which formally follows from
& = &3 — —oo. Then the reflection coefficients are

Ri=-1, Ry=1. (40)
There is no contribution from evanescent waves

and the power is given by Eq. (31), which simplifies
to

Pum = 1 + dnp(—1)7" /] du cos(Bu)[fom(u)
0

+gim(u)]7 (41)

where we have used that for an electric multipole
the Fresnel coefficients for s- and p-polarization
have to be exchanged.

When the distance between the multipole and
the surface is much larger than a wavelength
(B> 1), the factor cos(Bu) varies very rapidly with
u and integrates to zero. We then have Py, — 1,
as it should be. When the multipole is close to
the mirror, we have cos(fu) =1+ O(f%), when
seen as a function of B. The term “1” gives the
integral of Eq. (11), and we obtain

Pom = 1 +1(=1)"" + O(), (42)

for  — 0. The term n(—1)**" equals 1 or —1, and
therefore we find for f=0 for a magnetic
multipole

0, ¢+modd,
Py, = 43
a { 2, ¢+ m even, 43)
and for an electric multipole
2, ¢+ m odd,
P—llm = { (44)
0, ¢+ m even.

This shows that the emission rate for a multipole
on the surface of the mirror is either twice the
emission rate of an unbounded multipole, or iden-
tically zero. This behavior can be understood by
considering the multipole and its mirror image
[24]. The mirror image of a magnetic multipole is
the multipole itself for ¢ + m even, and for f =0
the mirror position is the position of the multipole
itself. This doubles the multipole moment, and
therefore the corresponding electric field in z> 0
is multiplied by two, yielding a factor of four in
the power as compared to the emission in z>0
by an unbounded multipole. However, near the
mirror all power is emitted in the direction z > 0,
and none in the direction z < 0. This reduces the
power by a factor of two, as compared to the un-
bounded multipole, giving effectively a gain of a
factor of two. For £+ m odd, the mirror image
of the magnetic multipole is the opposite of the
multipole, and this gives effectively no multipole
at all, which explains that the emission rate van-
ishes. For an electric multipole, the dependence
on the odd- and evenness of ¢ + m reverses.

The functions f,,(«) and g,,(u) are given in Sec-
tions 6 and 7 for dipoles and quadrupoles, respec-
tively. With these explicit expressions, the integral
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in Eq. (41) can be evaluated for each case. We ob-
tain for dipoles

B 3r/ Iy . cos 8

Pnll_ Zﬂ [(l_ﬁf> nﬁ+ B :|*, (45)
B 3n smﬂ

Pyo=1-22% (52— cosp). (46)

and for quadrupoles

5 3si 6
s a(-)5 ($)e]
(47)
5n [ 21 48
P =1- 2Z_<I—F+ﬁ4>smﬁ
48\ cos
+(5-7)% )
15 12\ si 12
—
(49)

Fig. 9 shows the functions P_;,, and Pjy; as a
function of B. The emitted power by a multipole
near a perfect conductor only depends on this
parameter . This includes the dependence on the
index of refraction n; as a scale factor, since f§ =
2n|k0H.

0 L i

0 5 10

B

Fig. 9. Power emitted by an electric (thick line) and a magnetic
(thin line) m =1 quadrupole near a perfect conductor as a
function of the dimensionless distance f§ between the quadru-
pole and the surface. This power is given by Eq. (48). Near
B =0, all negative powers of f (five orders) have to cancel, and
this leads to numerical rounding inaccuracies near f§ = 0.

11. Conclusions

Radiation emitted by an electric or a magnetic
multipole consists of traveling and evanescent
waves. When this multipole is located near an
interface, then part of the traveling waves are emit-
ted directly towards a detector in the far field (the
de-waves in Fig. 1), and the remaining traveling
waves of the angular spectrum serve as the incident
waves on the interface (the inc-waves). A fraction
of the inc-waves is reflected as traveling waves (r-
waves), and end up in the far field in z > H. The
remaining fraction is transmitted through the
layer. For the contribution of the transmitted
waves to the power we have to consider three
cases, depending on the values of the dielectric
constants g, and &;. For &3 < 0, modeling a metallic
substrate, the transmitted waves are evanescent
and they do not contribute to the power. For
0 < g3 < ¢, there exists a critical angle 6., given
by Eq. (2). Traveling inc-waves with an angle of
incidence smaller than the critical angle give trave-
ling transmitted waves which contribute to the
power in z < —L, but traveling inc-waves with an
angle of incidence larger than 6. are transmitted
as evanescent waves which die out exponentially
in the substrate, and there is no contribution to
the power. This corresponds to the cases shown
schematically in Fig. 3b and a, respectively. For
&3 > ¢, there exists an anti-critical angle, given by
Eq. (3), which has the significance that all incident
traveling waves are transmitted in the cone
6, < 0,., with 0, the angle of transmission. This
corresponds again to the case of Fig. 3b. In addi-
tion, there is transmission of traveling waves out-
side this cone, e.g., 0..<6;<m/2, and these
waves have their origin in evanescent waves of
the multipole field. This corresponds to the situa-
tion of Fig. 3c, and this process contributes to
the power in z < —L.

The total power emitted by the multipole could
be written in the form given by Eq. (21), which
covers all possible cases. In this expression, the
Fresnel transmission coefficients were eliminated
in favor of the reflection coefficients by using the
equations shown in Fig. 3 for the various cases.
This power is normalized with the power emitted
by a multipole embedded in a medium with index
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of refraction n;, but without any boundaries.
Therefore, the term “1”’ on the right-hand side of
Eq. (21) represents the power emitted by such an
unbounded multipole. It follows from the deriva-
tion of Eq. (21) that this term has contributions
from de-waves, r-waves and r-waves. The second
term in Eq. (21) is a result of interference between
the de-waves and the specular r-waves. For &3 < g,
this is the only additional term, and it gives rise to
an oscillatory dependence of the power on the
dimensionless distance f between the multipole
and the interface. For & > ¢; there is a third term
in Eq. (21), which accounts for the evanescent
multipole waves that are converted into traveling
waves at the interface. In the factor exp(ifvi/n,)
the parameter v, is imaginary, and this factor has
an exponential dependence on the distance f,
reflecting the fact that the evanescent multipole
waves decay exponentially from the multipole to
the surface. Therefore, the contribution of evanes-
cent waves decreases rapidly with increasing f, as
illustrated in Fig. 4. For the intensity distribution
dP/dQ this implies that there will be no radiation
outside the cone 0, < 0,. for f sufficiently large,
and this can be seen in Fig. 2. On the other hand,
for B small, the emitted power originating in eva-
nescent multipole waves, which only contribute be-
cause of the presence of the interface, can greatly
exceed the power emitted by an unbounded
multipole.
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