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ABSTRACT

We have studied theoretically optical phase conjugation through four-wave mixing in a
slab of nonlinear material. When two strong counterpropagating laser beams irradiate a
nonlinear crystal, the third-order susceptibility is activated, and can couple to an external
weak probe field. A four-wave mixing process then generates a phase-conjugated or
time-reversed replica of this incident probe field. We have investigated the mechanism of
the production of phase-conjugated radiation in such a configuration by solving the
nonlinear Maxwell equations for the electric field. The electric field in the material
satisfies a set of two coupled wave equations, which couple positive and negative
frequency components of the electric field. It is shown that the polarization of the pumps
and the tensorial nature of the interaction can be accounted for by a simple polarization
operator in the wave equations. Maxwell's equations for the field in the layer admit plane-
wave solutions, although the dispersion relations are very different from the usual linear
relation between the frequency and the wave number. The coupling between the two
waves exhibits a strong resonance near the frequency of the pump beams. These plane-
wave modes can be matched across the boundaries to the probe field and the reflected
and transmitted waves, which we will assume to be plane traveling or evanescent waves.
The response of the material can then be expressed in terms of Fresnel reflection and
transmission coefficients for both s- and p-polarization. We have derived simple matrix
equations for the set of Fresnel coefficients, which can be solved numerically, and we
have also obtained closed-form analytical solutions for the various Fresnel coefficients. It
is indicated that our solutions reduce to earlier results in the appropriate limits.
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1. INTRODUCTION

When an electromagnetic wave travels through a medium, like the atmosphere, an optical
fiber, or an amplifier, it builds up distortions during the propagation due to, for instance,
inhomogeneities in the index of refraction of the material. Since Maxwell's equations for
wave propagation are time-reversal invariant, it should be possible, in principle, to erase these
distortions by sending the wave back through the medium and forcing it to evolve according
the time-reversed Maxwell equations. This procedure would require, however, that the
distorted wave which is incident on the medium for the second time is the time-reversed
replica of the distorted wave, rather than the distorted wave itself. For this reason it is of great
practical importance to develop techniques for the time reversal of wavefronts.

Devices which generate a time reversed wave for a certain input wave are collectively
called 'phase conjugators', for the following reason. Let the electric field vector of a plane-
wave component of a propagating electromagnetic wavefront be of the form

E(r,0)ip. = E,Re & & *7=01 (1.1)

where the amplitude E,, the wave vector k, and the angular frequency @ are real. The
polarization vector & can be complex, and the notation inc indicates the incident wave. The
corresponding time reversed image is then

E(r,1),. = E(r~t);,, =E,Re g K100 (1.2)
pc inc 0
which is the same as
E(r,t) . = EyRe g* kot (1.3)

and this is again
E(r,0) e = E, Re (g e"’”)*e""‘” . (1.4)

It is seen that replacing ¢ by -¢ is equivalent to taking the complex conjugate of the spatial part
(the phase) of the wave, and hence the name 'phase conjugation'. For an arbitrary wave this
can be done for each plane-wave component of the spatial Fourier spectrum. It follows from
Eq. (1.3), when compared to Eq. (1.1), that the phase conjugated (pc) wave has -k as its wave
vector, and therefore this pc wave travels in the direction opposite to the inc wave, as could
be expected from a time-reversed replica. Another important observation that follows from
Eq. (1.4) is that the polarization vector ¢ also has to be conjugated in order to obtain the
correct time-reversed behavior.

The first experimental demonstration of wavefront-distortion correction after phase
conjugation was given by Zel'dovich and co-workers in 1972 [1]. They distorted the
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wavefront of a laser beam by letting it pass through an etched glass plate. Subsequently, the
beam was sent into a cell with methane gas, which produced backscattered light via
stimulated Brillouin scattering. This backscattered light was then sent through the glass plate
in the opposite direction, and it appeared that the distortions had disappeared. They concluded
that the cell operated as a phase conjugator.

After this experimental milestone, the field of optical phase conjugation developed
rapidly. Phase conjugation in liquid CS, by Brillouin scattering [2] and Raman scattering [3]
was demonstrated experimentally, and in 1977 Hellwarth [4] and Yariv and Pepper [5]
proposed to construct a phase conjugator based on four-wave mixing in liquids or crystals.
The great advantages of that scheme, as compared to Brillouin scattering, are that the
response time of the medium is negligible, the frequency shift with the acoustic frequency of
the medium is absent, and the required laser power is much less. Compared to three-wave
mixing, four-wave mixing has the advantage that there are no phase-matching conditions for
the various waves. Less than a year later, wavefront reversal by four-wave mixing in liquid
CS, [6,7] and a lithium formate crystal [8] was realized experimentally.

A variety of other techniques for constructing a phase conjugator have been proposed. If
an intense laser irradiates a thin metal film on a substrate, then the reflectivity changes by an
amount which is proportional to the local intensity. In this fashion, the intensity pattern of the
beam can be written on the film, and it can be shown that one of the reflected waves is the
time-reversed replica of the original wave [9,10]. Another method of phase conjugation in
thin films is described in [11,12]. A metal surface is coated with a thin layer of a nonlinear
transparent material. Through multiple reflections in the layer, the incident beam can excite a
surface plasmon wave on the metal, which in turn generates a conjugated wave. A
disadvantage of this method is that the reflection coefficient is relatively low. Besides four-
wave mixing in liquids and crystals, other bulk media have been proposed and analyzed. Heer
and Griffen [13] observed a forward propagating phase-conjugated signal in sodium vapor,
and Ducloy and Bloch [14,15] have studied the theoretical aspects of this configuration in
detail. Less common media for four-wave mixing are organic dye molecules in a solid matrix
[16] and microparticles suspended in a liquid [17]. Manneberg [18] has suggested to utilize
the fifth-order nonlinear susceptibility of a bulk material to produce phase-conjugated
radiation. The most extensively studied method for optical phase conjugation is four-wave
mixing in photorefractive crystals like BaTiO;, SBN and LiNbO; [19-29]. Here, the incident
light liberates electrons or holes in the crystal, which move to the dark regions and form a
local space-charge distribution. This results in local changes of the stress in the medium,
which in turn alters the refractive index locally (Pockels effect). Scattering from this light-
induced diffraction grating can then produce a phase-conjugated signal. Although these phase
conjugators are usually operated in the four-wave mixing configuration, in principle there is
no need for external pumps. A self-pumped phase conjugator was first observed
experimentally by Feinberg [30] with a BaTiO; crystal. Although photorefractive self-
pumped phase conjugators, based on internal reflection, can be constructed easily, it is not
exactly clear how this mechanism works, as illustrated by the interesting measurements of
Gower and Hribek [31]. A disadvantage of these phase conjugators is the very slow response
time, although it can be as short as several picoseconds [32].
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Phase conjugators are mainly designed for the purpose of wavefront-distortion correction.
The physical mechanism of this process is intuitively easy to understand due to the analogy
between phase conjugation and time reversal, but the theoretical justification for a realistic
system is fairly complex [33-37]. If the incident field is a pulse, rather than a stationary wave,
the situation is even more complicated [38-43], and can lead to instabilities [44], bistability
[45], and deterministic chaos [46]. Also, resonators where one or more of the ordinary mirrors
are replaced by phase-conjugating mirrors have been studied [47-51]. A remarkable effect
was predicted [52-54] and confirmed experimentally [55,56]. If light is incident upon an
ordinary mirror (dielectric), and a phase conjugator is placed behind the mirror, then the usual
specularly-reflected wave disappears completely if the reflectivity of the phase conjugator
equals unity.

These days, phase conjugators are readily available commercially, and they have become
a standard device in optical experiments. For the numerous applications of optical phase
conjugation and the many ways of constructing phase conjugators we refer to the existing
reviews on this topic [57-61]. The subject has also found its way into the modern literature on
nonlinear optics [62-64]. Another application of phase conjugation, and of a more speculative
nature, is phase conjugation of atomic or molecular radiation [65,66]. When an exited atom
decays to the ground state, it emits a photon. If this atom is placed near a phase conjugator,
this photon can reflect at the phase conjugator. Based on the argument of time reversal, this
photon will focus back on the atom, and it can be re-absorbed. It has been predicted that this
would effectively increase the lifetime of the excited state, a phenomenon which could be
potentially interesting for enhancement of chemical reactions. It turned out, at least in theory,
that this intuitive prediction is incorrect, and that in effect lifetimes become shorter [67-70],
although this conclusion has met some controversy [71-73]. The reason for this lies in the fact
that near a phase conjugator also the vacuum field acquires a phase-conjugated image,
containing real photons. This phase-conjugated vacuum, sometimes referred to as quantum
noise [74], induces a more rapid decay from the excited state to the ground state, thereby
reducing the lifetime. On the other hand, it also induces upward transitions, which leads to a
permanent population of the excited state of the atom, simply because the atom is located near
a phase conjugator. We have proposed [75] an experimental scheme to measure this
spontaneous excitation of atoms through a measurement of the probe absorption profile.
There must be a second line in the profile, which appears at a different frequency than the
natural absorption line when the pump beams of the four-wave mixer are slightly off
resonance with the atomic transition. Any observation of this second line in the profile would
confirm a spontaneous population of the excited state in a phase-conjugating environment (it
should be noted that it is essential that the phase conjugator is of the four-wave mixing type,
as described below). When an atom is pumped continuously by a laser, it emits steady-state
resonance fluorescence with a three-line spectral distribution, known as the Mollow triplet
[76]. We have shown [77] that the phase-conjugated image is again a triplet, although the
lines in the image are shifted with respect to their original locations.
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2. DESCRIPTION OF THE PHASE CONJUGATOR

When a phase conjugator is needed for a specific system, like a light amplifier, then a
self-pumped photorefractive crystal or a four-wave-mixing Brillouin mirror [78] are probably
among the best choices. In other situations, such devices might not operate adequately. For
instance, if the phase conjugator is applied as one of the mirrors in a resonator, then photons
can be incident on the phase conjugator under any angle of incidence, and the field to be
conjugated can be very weak. In this case, the above-mentioned choices don't work, due to
the requirements on the angle of incidence and the high threshold for the input power. In this
paper we investigate in very detail the properties of a realistic phase conjugator, operating in
the four-wave mixing configuration. We put no restrictions on the angle of incidence, like in a
paraxial approximation, or on the polarization, and we allow the field to have evanescent
components. These evanescent waves have attracted much attention recently due to the rapid
developments in near-field optics, where the evanescent part of the radiation field plays a
crucial role. It has become necessary to study the phase conjugation of evanescent waves, in
addition to the more common situation of pure traveling waves [79-81, 35]. We shall consider
both types of input waves within a single theory. Furthermore, a dielectric constant other than
unity is included, and the full tensorial nature of the interaction is accounted for (with some
slight approximations). Also, the common slowly-varying amplitude approximation has been
avoided.

The situation under consideration and the choice of coordinate system is illustrated in
Fig. 1. Two strong monochromatic counterpropagating laser beams (the pumps) illuminate
the sides of a nonlinear transparent medium. The slab has a thickness 4 in the z-direction,
extending from z = 0 to z = -A, a width L along the propagation direction of the beams, which
we shall take as the y-direction with the medium occupying the region -L/2 <y < L/2, and is
infinite in extend perpendicular to the page of the figure. A weak field is incident on the layer
from the positive z-direction, and the four-wave mixing process inside the medium is
expected to generate the phase-conjugated image of this field. Since the coupling of the
various waves through the nonlinear interaction is tensorial, the operation of the phase
conjugator will depend on the polarization of the pumps. In order to retain the symmetry for

rotation about the z-axis, we take the pumps to be linearly polarized in the z-direction.
To be specific, for the electric components of the two incident counterpropagating pump
fields we take

E(r,t) =e, Re E ¢ "Ry+@D) 2.1)
E(r,t), =e, Re Ey &/KV=01) 2.2)

so that field 1 (2) with complex amplitude £, (£;) propagates in the -y (y) -direction. Both
waves have a wave number £ and corresponding angular frequency @ =ck >0. It is
assumed that the pumps illuminate the two sides y = L/2 and y = -L/2 evenly, and that the
fields are zero in the regions z > 0 and z < -A. The nonlinear material (to be specified below),
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Figure 1: Schematic setup of a phase conjugator based on four-wave mixing in a
nonlinear crystal. Shown are the two pump beams (labeled 1 for the beam coming
from the right, and labeled 2 for the beam incident from the left) and the weak
incident light.

together with the two pumps, forms the phase conjugator.

3. MAXWELL'S EQUATIONS

Radiation inside and outside the medium is represented by its electric and magnetic field
components, E(r,t) and B(r,t), respectively, and charges and currents in the medium are
described by a polarization field P(r,¢). It will turn out to be convenient to work with the
time-Fourier-transformed fields, defined as

o]

E(r,w)= Jdte"“”E(r,t) , 3.1)
—0
with inverse
11" ier s
E(r,t)zz— Jda)e‘“"’E(r,w) . (3.2)
T

Since the electric field is real
E(r.0) = E(r,1) , (3.3)

we have in the Fourier domain
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E(r,a))*: l:f(r,—a)) . (3.4)

On occasion we will need the positive frequency part of E(r,?), which is defined as

o]

E(r,t)(’L):%I do e E(r,0) (3.5)
0

and the negative frequency part, which is the same integral but over the range —o<w <0.
From (3.4) we then have

E) = Ee®) (3:6)
and therefore the total field is
Er,t)=Ewr ) + Er,)O) | (3.7)

which can also be represented as

o0

E(r,0) =1Rej dwe 't E(r,o) . (3.8)
T 0
In this last form it is most obvious that we need the field for positive frequencies only,
although we shall see later that it is convenient for the present problem to use both positive
and negative frequencies. The magnetic field and the polarization will be transformed
similarly.
The three fields are related by Maxwell's equations, which read in the Fourier domain

2 2
Vx(VxE(r,0) -2 E(r,0)=—2—P(r.0) , (3.9)
c c’g,
é(r,m):—iwﬁ(r,a)) . (3.10)
w

This set of two equations is equivalent to the more commonly encountered set of four
equations [82]. Equations (3.9) and (3.10) have to hold simultaneously, and for all » and w.
The expression for ﬁ(r,co) inside the medium will be derived below, and outside (vacuum)
we set I3(r,a)) = 0. At the boundaries z = 0, z = -A, y = -L/2 and y = -L/2, Maxwell's
equations imply that (l:? +P/ o)l » EH and B must be continuous across the boundary. In
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addition, we have the requirement that without the medium the solution must reduce to the
sum of the two pump fields plus the weak incident field.

4. POLARIZATION

Polarization of a medium is caused by the presence of an electric field, which induces
dipole moments in the atoms or molecules. Therefore, it should be possible to express P(r,t)
in terms of E(r,f), and the most general (local and causal) relation in the Fourier domain is
[83,84]

o0 o0 o0

~ 1
P(r,a)):goz | I doj ... J do, 6(0 - ...—w,)
(27T) —© —©
n=1
x 7N (@y,....0,) E(r,a0).. E(r,0,) . (4.1)

Here, ;2(”) (@1,...,m,) is the n-fold Fourier transform of the n-th order susceptibility function,
which is a Cartesian tensor of rank n+1, and the colon in Eq. (4.1) indicates the tensor
product with the n electric field vectors at the different indicated frequencies. It is assumed
that the medium is homogeneous, so that ;2(”) (@y,...,0,) is independent of r.

As a first simplification, we assume that the medium is inversion invariant. Then it
follows immediately that all even susceptibilities ;2(2) , ;2(4) ,... are identically zero [83,84].
Furthermore, we know that the values of ;2(") decrease very rapidly with increasing 7, so it
is perfectly justified to retain only the n = 1 and n = 3 terms in Eq. (4.1). We write

P(r,0)=P(r,0)V + P(r,0)® | (4.2)

in obvious notation.

The two remaining tensors ;2(1) and ;2(3) have 3° = 9 and 3* = 81 Cartesian
components, respectively, which are all different functions of one and three frequencies,
respectively. As a second assumption we take the medium to be isotropic, e.g., invariant for
inversion in a plane and for rotation about an axis. Then it can be shown [83, 84] that ;2(1)
has only three non-zero Cartesian components, which are all equal, and that ;2(3) has 21 non-
zero components. Among these 21 components there are only three different ones, which are
not even independent. With the relations listed in [83, 84], it is relatively easy to derive that
the two tensor products reduce to

D) :a=37Q@pa , (4.3)

;2(3)(0)1,502,(03):11 bc= ;Zgg,y(wl,wz,wg(b-c)a + ;Zggcy(wl,wz,wg(wc)b
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+78) (@09, 03)(a b)e (4.4)

for arbitrary vectors a, b and c. These two expressions are then substituted into Eq. (4.1). We
can use the intrinsic permutation symmetry of the tensor components, like
;A(g,}x(a)l,a)z,ag) = ;Qg}y (w,w3,w7) , which holds in any medium, to change integration
variables. Then we obtain for the two contributions to the polarization

Pr,o)V =¢, ;D (@)E@r,0) , (4.5)
ﬁ(r,w)(3)=3i02 Jdo, [ do, | doys@-o-0,-0y)
477 _» —0 —
x 73, (01,0,03) E(r,0))[E(r,0,) - E(r,3)] , (4.6)

and we notice that only the tensor components ;2% (w) and ;”(g},y(a)l,a)z,ag) appear in

these expressions. This great simplification followed from symmetry only.
From relation (3.4) for E(r,w) we find that the tensor components have the property

70@) =700 , 4.7)
fg)yy(wlawzaws)* = ﬂzy(cgc}/y(_a)l —0,~03) . (4.8)

It is convenient to introduce the dielectric constant of the medium

@) =1+ Q) (4.9)
which obeys
s(w)" =¢e(-w) . (4.10)

If we substitute the above relations into Maxwell's equation (3.9), then we obtain the
equation for the electric field

2 2
Vx(Vx E(r,0) - £(0) 5 E(r,0) =
c c7g,

P(r,0)? 4.11)

whereas (3.10) for the magnetic field remains unchanged. For I3(r,a))(3) on the right-hand
side we have to substitute the right-hand side of Eq. (4.6). The boundary conditions are now
that (g(w)E(r,w) + ﬁ(r,w)(3) 1&5) 1, l:](r,a)) | and lAi(r,a)) must be continuous. The
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appearance of () in Eq. (4.11) is the standard linear contribution to the polarization. The
nonlinear part is P(r,w)(3 ) , as given by Eq. (4.6). The integrand in Eq. (4.6) has three factors
E (r,m), each at a different frequency, and these frequencies are integrated over. Hence Eq.
(4.11) is not a single equation for E (r,w) at a fixed w, but a continuous set which couples
every Fourier spectral component E (r,») with every other one.

5. WEAK INCIDENT FIELD

A major complication with expression (4.6) for I‘A’(r,a))(3 ) is that E (r,w) represents the
total electric field at position r inside the medium. It contains contributions from (i) the
external pump fields which propagate through the medium, (ii) multiple reflections of these
fields at the boundaries y =+ L/2 when & #1, (iii) the field incident from the region z > 0,
and (iv) any radiation which is generated by the linear and nonlinear interactions. In the
Fourier domain, the pump fields (2.1) and (2.2) attain the form

E(r,o)y =re, {6(@-@)E e ™ +5(w+a)Ef ™ | (5.1)

E(r,w)y =re, {8(@—-@)Eye™ + S(w+@)Efe ™ . (5.2)

These fields are incident from the right and the left, respectively, on the medium. Without the
nonlinear interaction we could apply the superposition principle, and solve for the reflection
and transmission of the pumps and of the incident field separately. In the linear case, where
f’(r,a))(3) =0, there is no coupling in Maxwell's equations between Fourier components
E (r,®) with different frequencies @, and consequently the field inside the medium due to the
external pumps would have the form E(r,w) =e(r)d(w —@) + e(r)*S(w + @) , with e(r) to
be determined by matching the boundary conditions at y =% L/2. Therefore, for the present
situation we assume that the electric field can be written as

E(r,0)=E(r,0) +er)S(@—-a)+er)S(w+d) , (5.3)

with e(r) representing the strong part due to the pumps, and still to be determined, and
E (r,®)' the remaining weak part, also still to be determined. It should be noted that the form
of e(r) could be affected by the nonlinear interaction.

Next we substitute the right-hand side of Eq. (5.3) into the integrand of Eq. (4.6) three
times (for ® = @, @, and @3), and carry out the triple integration over the three frequencies.
This yields a host of terms which, symbolically, are of the forms (E')3, (E')ze, E'¢® and €.
Under the assumption of a weak incident field, we can neglect the terms of the form (£')’ and
(E')’e, compared to the contributions from E'e¢” and ¢’. With this approximation, the third-
order polarization takes on the following form

ﬁ(r,w)m =p(r)S(w-o)+ p(r)*S(w+a)+q(r)d(w-30) +q(r) (v +3D)

294



Phase Conjugation in a Layer of Nonlinear Material 295

* jgoz )(Cigfy(a) 20,0,0){e(r)-e(r}E(r,0 —2®)'
Vs

+ 79 (0 +25,-5,-@) {e(r)* - e(r) E(r.0 + 2@)

+129) (0.0.-2)+ 73, (0.-@,@)} {e(r) e(r) E(r,0)

179, @,0-20,0)+ 20 @,0,0 - 20)} te(r) - E(r,0 - 20) Je(r)

+ (29, @.0-2)+ 70, @~@.0)} te(r)* E(r,0)}e(r)

+179),(-8.0,8) + 1), (-8.@.0)} fe(r)- E(r,0) }e(r)"

+{;(xxyy( D,0+20,-0)

Sg,y( O,~0,0+20) {e(r)* E(r w+20) e(r)” (5.4)

Here, the abbreviations p(r) and ¢(r) stand for

p(r)= 450 {;()(gc}y(w @,~0)+ ch}y (@,-o,0)}{e(r)-e(r) }e(r)
’ jgoz ;2)(36)”( ®,0,0){e(r)-e(r)e(r)” (5.5)
q(r): 2 lg&y(“_’ﬁﬁ)}{e(r)~e(r)}e(r) ) (5.6)

Expression (5.4) has to be substituted into the right-hand side of Maxwell's equation (4.11),
together with the form (5.3) for E (r,w).

We notice that the first two terms on the right-hand side of Eq. (5.4) contain the same -
functions as Eq. (5.3), and they are responsible for the nonlinear contribution to e(r), as
compared to an ordinary dielectric. The next two terms are J~functions at @ =+3w , and
these are responsible for third-harmonic generation in the medium. All terms inside the square
brackets are proportional to a Fourier component of E', at various frequencies. In deriving
Eq. (5.4) we have not used the specific form of the pump fields, but only that they are
monochromatic with frequency @ , and much stronger than the field to be conjugated.
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6. SEPARATION OF EQUATIONS

The third-order polarization has the form

P(r,0)®) = P(r,0) + p(r)6(0-) + p(r)*5(w+@) , (6.1)
which is identical in form to Eq. (5.3). If we then write

B(r,0) = B(r,0) + b(r)5(w-o) + b(r)*5(o + @) (6.2)

for the magnetic field, with

l%(r,a))'=—iV><E(r,a))' , (6.3)
1)

b(r)=- éV xe(r) , (6.4)

then Maxwell's equations are certainly satisfied if E (r,w)' and e(r) obey the separate

equations
A a)2 A [02 A
Vx(VxE(r,a))')—g(a))—zE(r,a))’= 3 P(r,o) , (6.5)
¢ g,
—2 —2
O @
Vx(Vxe(r)) - e(@)—-e(r) =——p(r) , (6.6)
c c“g,
simultaneously.

We see from Eq. (5.5) that p(r) is determined by e(r), and is independent of the presence
of E (r,m)' in the medium. Therefore, the fields e(r) and b(r) satisfy the nonlinear Maxwell
equations, with p(r) as the nonlinear term, and they do not couple to the weak field. At the
sides y =1 L/2 of the medium the quantities (e(@)e(r)+ p(r)/&,) | , e(r)” and b(r) must
be continuous across the boundary. The external fields are given by the e(r) parts of the
pump fields, which are

e(r)=me, E; e thy , (6.7)

e(r), =me, Ey ™ | (6.8)
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for our particular choice of linearly-polarized pumps. We have to take into account, of course,
that these fields also reflect at the boundaries. After solving for e(r), we can substitute the
result into Eq. (5.4), which then gives us f’(r,co)' for the right-hand side of Eq. (6.5). But
then Egs. (6.3) and (6.5) form a set of regular nonlinear Maxwell equations for the weak
fields E (r,w)' and l}(r,a))’ , which now only depend parametrically on the solution e(r). In
this fashion, the sets of equations for e(r) and E (r,w)" are completely decoupled, which is a
great simplification.

It is worthwhile to note at this point that the separation between the sets of equations for
the strong and the weak fields is not a consequence of the neglect of the (E')3 and (E')ze terms
in the nonlinear polarization. The fields E (r,m), B(r,w) and IA’(r,a))(3 ) will always have
these o-function contributions due to the pump fields, and these can always be singled out in a
set of separate equations. We also mention that the E' field inside the medium has to be
matched across the boundaries y =+ L/2 with an E' field outside. As we shall see later, the
production of phase-conjugated radiation is not energy conserving, and external energy has to
be supplied. The E (r,w)'" component of the radiation which crosses the boundaries at
y==*L/2, interferes with the pump fields and this gives rise to an effective depletion of the
pump fields. We shall not take into account this effect, but refer to the literature for some of
the consequences of pump depletion [85-88]. This is consistent with the assumption of a weak
incident field, and the corresponding omission of the (E’)3 and (E')ze terms, since pump
depletion can only be significant in cases where the incident field has an intensity comparable
to the intensity of the pump beams.

3)
7. APPROXIMATIONS ON Z(

Maxwell's equation (6.5) is a wave equation for E (r,m)', which has ﬁ(r,a))’ on the
right-hand side as a source term. A non-zero P' for a given frequency ® will therefore
generate radiation E' at that frequency. The general form of P (13(3) minus the two p-
terms) is given by Eq. (5.4). We shall assume that the incident field has a frequency spectrum,
which is reasonably centered around @ ~ @ , but it does not necessarily have to be in close
resonance. In view of Eq. (3.4), the incident field then also has spectral components for
o ~— . Since this radiation propagates into the crystal, the weak field has at least a non-
zero spectral distribution for @ ~+ @ . The third, fifth and sixth terms in square brackets in
Eq. (5.4) are proportional to E (r,m)', and consequently ﬁ(r,a))' is non-zero for o ~t w .
The first and the fourth term are proportional to E (r,o-2w)', and if we take @ ~ 3@ , then
this becomes E (r,~ )" which is non-zero due to the incident field. In the same way, the
second and the seventh term give a contribution to P' for @ ~—3@ , which is induced by the
incident field. We see that the incoming field with frequencies @ ~+ @ generates a ﬁ(r,a))'
at w~*® and at o ~*+3w . As a source in the wave equation, this produces radiation
E (r,w) at w ~*w,x3w . Then again, this field E' induces polarization P at o~+5,
etc. The conclusion is that the nonlinear interaction generates radiation at the harmonics
tw,+3w, 5w, ... of the incident field, but not in the gaps between these peaks. The
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unfortunate situation is that the wave equation (6.5) couples the spatial evolution and
frequency dependence of all peaks.

In order to resolve this complication, we assume that the medium is such that if the third-
order susceptibility jgg,y (w1,w7,m3) is vanishingly small if one of its arguments @;, @, or
s 1s in the neighborhood of +£3® . Then it follows by inspection from Eq. (5.4), in the same
way as argued above, that the equations for E (r,m)' at o ~w and w ~—w couple together,
but that the coupling with E(r,0) at higher harmonics disappears. This does not imply that
there is no higher-harmonics generation due to the incident field or the pumps (the g-terms),
but only that the wave equations decouple.

Although the approximation above is sufficient for the further development of the theory,
we make a few more assumptions in order to simplify the notation. First, we suppose that @
is sufficiently far away from a resonance of the medium. This implies (page 58 of [84]) that
;2(3 ) and the dielectric constant & are real, and that they do not vary appreciably over a large
frequency range around @ and —-® . Second, we assume the validity of Kleinman's
conjecture [89], which states that ;2)(;},), (01,0, ,m3) is invariant under a permutation of its
arguments. With these assumptions, the medium is described by only two parameters, which

are
e=¢(w) , (7.1
1=, @.6.-0) (7.2)
and they obey
c¥*=¢>0, ;(*zz. (7.3)

The additional restriction & > 0 expresses that the medium must be non-metallic, as is
obvious.
The polarizations for the strong and the weak fields now reduce to

p(r) =7 jg‘; [2te)- () "1e) + e -e}e(r)”) (7:4)
T
P(r,0) =y :’ ‘o [2ter)- r) ) Er,0) + 24e0)* B0 ()
T

+2{e(r)-E(r,o)}e(r)* + {e(r)-e(r)} E(r,0 - 2@)'

+2e(r)- E(r,o - 2@)'}e(r) ] , foro~o , (7.5)
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3g,

P(r.oy =74
4r

2Ae(r)-e(r) Y E(r,0) + 2{e(r)* E(r,0)}e(r)

+2{e(r)-E(r,o) e(r)* + {e(r)* - e(r)VE(r,o + 2@)

+2{e(r)* E(r,o+2o)}e(r)*| , foro~-@ . (7.6)

Notice that the last two expressions only hold for frequencies near the peaks @ ~ @ and
o ~ — , respectively, rather than for the entire frequency range as in Eq. (5.4).

8. Pump FIELDS

The pump fields are incident on the medium from the right and the left, as shown in Fig.
1. They partially reflect at the sides y ==+ L/2, and are partially transmitted in the medium.
Since the pumps are linearly polarized in the z-direction, we try a solution of the form

e(r)=me, () . 8.1)

The polarization, Eq. (7.4), becomes

9
)= x ez S ) (8.2)
and Maxwell's equation (6.6) simplifies to

dz—f+1€2[s+2 | FD) P/ () =0 (8.3)

The boundary conditions then require that f{y) and df/dy are continuous at y=+L/2.

We shall see in the next section that | ¥ || f(») |2 <<¢&, so the term | || f(») |2 can
safely be neglected in Eq. (8.3). This is equivalent to neglecting the contribution of the
nonlinear interaction to the propagation of the pump fields in the medium. Then the problem
reduces to the problem of reflection and transmission of two plane waves incident on a layer
of dielectric material [90]. Inside the medium we set

fO)=a e_i];y‘/; +ap eﬂgy‘/Z , (8.4)

with oy and o, to be determined, and this solution has to be matched to the external fields
(6.7) and (6.8), and the reflected fields. We find explicitly
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5 e%il;L (e-)

B Wz +1)2 _(\/;_1)2621'1&\@

[(JZ FDE + (e ~DEs, e""Lﬂ . @®)

ar2
in terms of the (complex) amplitudes £, and E; of the pump fields.

9. POLARIZATION OPERATOR

With the solution for e(r) from the previous section, we can now construct ﬁ(r,w)' as
given by Eqgs. (7.5) and (7.6). First we substitute e(r)=rze, f(y), which gives ﬁ(r,co)’ in
terms of f{y), and subsequently we use (8.4) for f(y). Then we find that terms with factors
exp(iZil;y«/; ) appear at various places. These exponentials vary with approximately half the
pump-laser wavelength in their y-dependence. Such fast oscillations average out to zero
quickly in their interaction with fields of twice their wavelength, and therefore we will
neglect these contributions to the nonlinear polarization. We then obtain

P(r.o) =35, x{( o1 |’ +|ay )P E(r,0) + a1y P E(r,0-20)'}

foro~w , 9.1)
P(roy =3z, 7|y P +|aa )P E(r,0) + (0103)* P E(r,0+20)}

for o ~-w . 9.2)

Here we have introduced the polarization operator (tensor) P , which is defined by its action
on an arbitrary vector v according to

<13>v=v+2ez(ez-v)=vH+3vL . 9.3)

Here, the notation || and L refers to the orientation with respect to the xy-plane, as it did in
the boundary conditions. The expressions (9.1) and (9.2) have to be substituted into the wave
equation (6.5) for E (r,m)'. We then notice that on the right-hand side the field E (r,w)
appears, multiplied by (3/2) ¥ (o |2 +|ay |2). Therefore, this parameter accounts for the
nonlinear interaction of E (r,w)" with itself. On the other hand, the factor (3/2) yaja; is the
coupling parameter for the interaction between E (r,w)' and a different spectral component,
E (r,ot2w)', of the field. The two coupling parameters can be varied independently by a
proper choice of the amplitudes £, and E, of the pump beams. For instance, for a transparent
medium (¢ = 1) we have o = E| and o = E,, which shows the independence of these
parameters clearly. It is the parameter (3/2)yajap which couples the spectral components
with frequencies @ ~® and @ ~ ® , and this interaction is responsible for the generation of
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phase-conjugated radiation. If we want to maximize the efficiency, then | oo | must be large
compared to | o |2 +lap |2 . This would require

lay|=lay |, 9.4)

and with Eq. (8.4) this means that the two counterpropagating beams must have equal
strength inside the medium. With Eq. (8.5) this becomes

e 1 (e -0 igy) | 9.5)
(Ve +)(E/ Ey) + (ﬁ_l)eﬂﬁ

in terms of the amplitude ratio Ej/E, of the pump beams. We notice that this includes their
phases as well, so Eq. (9.5) imposes a phase-matching condition on the beams. Two possible
solutions are E}/E, =*1. For a transparent medium, ¢ = 1, Eq. (9.5) reduces to | £} |=|E> |,
and therefore two pumps of equal intensity is sufficient. Moreover, for € = 1 we have o = E)
and o = E,.

Let us now introduce the dimensionless complex-valued coupling parameter

y=3xma; ©-6)
and the real parameter

Yo =l7lsgn(x) , 9.7)
with obviously |y, |=|y|. Then we can write

Y=, em" , 0, real, (9.8)
and the second coupling parameter becomes

3 (e P +lar =2y, . (9.9)
In terms of these parameters, the nonlinear polarization becomes

Pr,0) =y, 6, B RE(r0)+ P Ero-20)) , 0 ~@ | (9.10)

P(r,0)=y,c, P 2E(r,0) + P (o 2@)) , 0~ . (9.11)
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The phase ), depends in a complicated way on the phases of the pump beams, at least for
e#1. In any case, any random fluctuations in the phases of the pumps are reflected in
fluctuations of &,,. If there is some phase noise in the pump beams, leading to a finite
bandwidth of the lasers, then the factors exp(+i6,,) in the nonlinear polarization become
random processes with zero average. In this fashion, the nonlinear interaction will be washed
out since the second terms on the right-hand sides of Eqgs. (9.10) and (9.11) will vanish, on
average. Therefore, the pump frequency @ has to be well-stabilized.

In practical situations the intensities of the pump beams will be almost equal, so that
| E{ |=| E>|. Then the coupling strength |y, | has an order of magnitude of |y, |~| ;(Elz [,
which is proportional to the laser intensity. Media where the nonlinear coupling is
proportional to the pump intensity are called Kerr media, although here the dependence on the
intensity is only parametric.

A typical value of a third-order susceptibility is y ~ 107> m*/V?* (p. 531 of ref. 84), and
an extremely strong pulsed laser has an intensity of 10" W/m?, which corresponds to an
electric field strength of 3 X 10" V/m, and a coupling parameter of |y,| ~ 0.1. This order of
magnitude is a very upper limit. For moderate CW lasers or nanosecond pulses, values in the
range of |y,| ~ 10™ - 107 are more realistic. In any case, the parameter |7,| is always small
compared to unity, and therefore the nonlinear polarization in the wave equation is a small
term. Since this term is the one that is going to produce the phase-conjugated signal, it might
seem that this scheme of four-wave mixing is not a very efficient way of generating phase-
conjugated radiation. Such an opinion would be based on considering the term with P(r,w)'
as the source term in the wave equation. We shall see that the mechanism of generating a
phase-conjugated signal by four-wave mixing is more subtle.

10. POSITIVE AND NEGATIVE FREQUENCY PARTS

For the remainder of this paper we shall only be concerned with the weak fields, and
therefore we shall drop the primes on E(r,®)', etc. It is worthwhile to note that P(r,®), as
given by Egs. (9.10) and (9.11), obeys the relation

P(r,0)*=P(r-o) (10.1)
which guarantees that P(r,f) is real (section 3). If we want to find the Fourier inverse

P(r,t), we can use either Eq. (3.2) or Eq. (3.5), with E — P . Since ﬁ(r,co) in Eq. (9.10) is
given for positive @ only, it is easiest to find the positive frequency part first. We obtain

PP =y, B REG0D 1% 20 B nOn | (10.2)

and then P(r,t)(_) follows from a complex conjugation of the right-hand side. Most
interesting to notice is that the positive frequency part of the polarization acquires a
contribution which is proportional to the negative frequency component of the electric field.
The factor exp(—2iwt) assures that P(r,t)(+) only has positive frequencies. We see that the
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nonlinear interaction can transform a negative frequency field into a positive frequency field,
which is reminiscent of time reversal and is the basis of the mechanism of phase conjugation
by this device.

11. COUPLED WAVE EQUATIONS

For the remainder of this paper we shall only be concerned with the weak fields, and
therefore we shall drop the primes on E(r,®)', etc. When we substitute Egs. (9.10) and
(9.11) into the wave equation (6.5), we get

Vx(VxE(r a)))——(5+2)/0P)E(r W)= 3
c? c

2
a)_ {yE(ra) 20), w~o (11.1)

y*E(r,o0+20), ©~-0

This equations couples the spectral components of E (r,w) at different frequencies. Suppose
we consider a fixed frequency @, with

0, ~@ . (11.2)

If we set w=w, in the top line of Eq. (11.1), then we see that E(r,a)a) couples to
E(r,w, —2w) . We therefore introduce

Op =0, —2@, op~— (11.3)

and if we take @ = wp, in the bottom line of Eq. (11.1) then we find that E (r,wp) couples to
the spectral component E (r,op +2w), which is E (r,o,). This shows that frequencies
couple in pairs, with the frequencies related as @, and @j,. Consequently, the electric field
obeys the set of two coupled wave equations

2 2
Vx(Vx E(r,0q) ~ 2% (e + 27, P) E(r.0.) =y 2L F E(r,ap) . (11.4)
C C
2 2
A a) > A
Vx(VxE(r,a)b))——§(5+270P)E(r,a)b)= —12’ E(r,o,) . (11.5)

c

It is important to notice that this set couples a spectral component with a positive frequency,
o, , with a component with a negative frequency, @y, and such that

W, +|wp|=2@ | (11.6)
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indicating that the two frequencies are a distance 2@ apart. This, of course, reflects the fact
that in a four-wave mixing process two photons with frequency @ are involved. Figure 2
shows the four-wave mixing process, as it occurs at the atomic level inside the medium. Two
pump photons are absorbed, while in between a photon with frequency w, is emitted. From
energy conservation we then see that a second photon with frequency | @y | has to be emitted
as the final stage of the process, with | @y, | given by Eq. (11.6). Since o, is the frequency of
the incident light (see below), we conclude that the incident wave is amplified in this process.
It also shows that it takes two pump laser photons to create a single phase-conjugated, |wy, |,
photon.

12. PLANE WAVES

When the source of the incident field is far away from the surface of the medium, the
incident field will be a traveling plane wave. On the other hand, when the source is close to
the xy-plane, then the radiation will consist of spherical waves, as happens for instance when
an atomic dipole is located in close vicinity of the medium [65]. In that case, the incident field
can be represented as an angular spectrum integral, which is a superposition of plane waves
[91-93]. Apart from the usual traveling waves, the angular spectrum also contains evanescent
waves, which are waves that decay exponentially along the z-axis and travel along the xy-
plane. In order to cover this possibility, we shall allow the incident field to be either traveling
or evanescent.

)

=1

y

gL o=

Figure 2: Energy level diagram for four-wave mixing in an atom. The thick line is
the atomic ground state. An @ pump photon is absorbed, bringing the atom to
approximately an excited state (upper thin line). Then an @, photon is emitted, and
subsequently a second @ photon is absorbed. Finally, the atom returns to the
ground state under emission of the phase-conjugated photon with frequency —wy, .
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In order for this approach to be useful, it is necessary that the nonlinear medium supports
plane-wave modes, which can be matched across the boundary to the incident field.
Fortunately, these plane wave solutions do exist, and they have the form

E(r,o,)=Eae™*" | E(r,op)=Ebe*" (12.1)

with the polarization vectors @ and b and the wave vector k to be determined. The overall
constant £ has to be the same in both waves in order to cancel out in the coupled wave
equations (11.4) and (11.5). Both the w,-wave and the @}, -wave have the same wave vector
k. For a traveling incident wave or a partial wave of the angular spectrum we have that the
parallel component of the wave vector is real. It is only possible to match the waves across
the boundary if all waves involved have wave vectors with the same parallel components.
Therefore, we shall assume that the parallel component of k (its component in the xy-plane,
k| ) is real, and that it is the same k| as of the incident wave, and consequently supposed to
be given. The z-components of the various wave vectors are determined by the dispersion
relation of either the vacuum or the medium, and they can be complex-valued.

Since w,, is positive, the corresponding electric field in the time domain follows from
Egs. (3.5) and (3.7):

E(r,t)c Eae'®"®a) 4 oo (12.2)
which is a plane wave with wave vector k. For the @y, -wave we first use Eq. (3.4) to find the

field at the positive frequency —w, =| @y, | as E(r—wp) = E(r,0p)" = E*b* exp[—i(k*-r)].
The field in the time domain then has the form

E(r,t)oc E*p*/ R lopl) | (12.3)

and this is a plane wave with wave vector -k . For a traveling wave, k is real, and hence the
two waves form a counterpropagating pair. For an evanescent @, -wave, decaying in the -z-
direction, the @y -wave is also evanescent, and it also decays in the -z-direction. These
evanescent waves travel along the xy-plane, and since kH is real, they counterpropagate.

13. SET OF EQUATIONS FOR THE WAVE VECTOR

We shall introduce the dimensionless wave vector

K="k, (13.1)
a)a

with @, /c the wave number of an @,-wave in free space. Furthermore we define the
dimensionless frequency parameter p as
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p=—2b _Z0 "% (13.2)

which is positive. For plane waves on resonance with the pump frequency @ we have
o =w,; =—op, and p=1. In general, p will be close to unity, and p - 1 can be considered
the dimensionless detuning from resonance. Then we substitute the solutions (12.1) into the
wave equations (11.4) and (11.5), which gives

—(lc-a)lc+/c2a—($+2yoﬁ)a=7<ﬁb , (13.3)
—(k-b)x +k2b— p*(c+2y,P)b=y*p* Pa , (13.4)

with x2 =x -« Here, ¢, 7,, ¥ and p are given, and the problem becomes to determine
what solutions a, b, xthis set admits.

The action of the polarization operator P on a vector v yields a parallel and a
perpendicular part, as shown in Eq. (9.3), and the set (13.3), (13.4) can be split accordingly.
We then obtain the equivalent set of four equations

—(K-a)ch_+(K2—£—670)aj_:3ybj_, (13.5)
—(lc-b)KJ_+[K2—p2(£+67/0)]bl:37/*p2al, (13.6)
~(x-a)x +(x? ~&-27)a =7b, . (13.7)
~( by +[K7 = (e 4 270)b = 7" P (13.8)

which have to be satisfied simultaneously for a solution a, b, x.

14. TRANSVERSE SOLUTION

For a linear medium, all plane-wave solutions are transverse (k 'perpendicular' to the
polarization vector in the sense of k -a =0, although k can have complex components), so let
us try the same here:

k-a=0, x-b=0. (14.1)
An obvious possibility for the solution of Egs. (13.5) and (13.6) is then

ay=b =0 . (14.2)
Then Eqs (13.7) and (13.8) become, in matrix form
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K‘z—(8+27 ) -7 (“HJ
0 =0 . 14.3
( —y*p? kP - pre+2,)) ) (143

The solution a = bH =0 would give a = b = 0, so the only possibility is

2_ —_
de{" (e+2r0) 7 ]:o, (14.4)
-7'p K= —p(e+2y,)
and this is
(% = (e + 27 )l = pP(e+27)] - 72p* =0 . (14.5)

This relates the dimensionless wave number K to the frequency parameter p, so this equation
is the dispersion relation for this class of solutions.

Equation (14.5) is a quadratic equation for K2 , S0 it has two solutions. We define the two
branches, labeled 1 and 2, as the solutions

1 2
k= [L(e+27,) p2+1+5\/(p2—1)2+[ﬁj : (14.6)
o

where we have introduced the parameter &

1, forp>1 (v, <o)
o= , (14.7)
-1, for p<l (w, > o)

for reasons explained below. Also, we write x, to indicate that it is a solution of the type
considered in this section.

In an ordinary dielectric a wave with frequency @, would have a wave number
(w,/ c)\/z , and for a wave with frequency —aj, this would be (—wp / c)\/z . With Eq. (13.1)
this corresponds to k> =¢ and k2 = ng, respectively. If we take the limit y, = 0 in the
solution (14.6) we find

D Ve, P pie, (14.8)

which are the respective limits for an @,-wave and an @p-wave in a dielectric. This is a
consequence of the introduction of ¢ in the solution (14.6). With this convention, the solution
with label (1) is essentially the w,-wave E(r,w,), and due to the nonlinear interaction the
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wp component E (r,mp) can be excited. In the same way, the solution (2) is an @y -wave
with an @, part mixed in when y #0. Figure 3 illustrates the solution of the dispersion
relation (14.5) as a function of the frequency @, in units of @ :

y=a (14.9)
w

The discontinuity at p = 1, or v =1, is due to the J in the solution, and both curves jump by
the amount of 2|y, |.

15. NON-TRANSVERSE SOLUTION

In order to derive a second, independent, solution we start from Eqs. (13.3) and (13.4).
First we take the dot product with «; and write the result as a single matrix equation. We then
obtain the relation

0.5
0.75 1 1.25

Figure 3: Dispersion relation for s-waves. Shown is the dimensionless wave number
as a function of the dimensionless frequency. The thick curves are represented by
the right-hand side of Eq. (14.6), for =1 and y, = 0.1. The thin lines are the values
for y, — 0, which are V& for solution 1 and p\/; for solution 2, as indicated by
Eq. (14.8). Both curves have a discontinuity at v =1.
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K- K
Ma( “J:Mb[ iaLj , (15.1)
K-b K'J_bJ_
in terms of the matrices
&g+2
Mf( S 7 J (15.2)
¥ £+2y,
2
sz—z( Yo 7 J . (15.3)
7 2y,

It is interesting to notice that both matrices have a non-vanishing determinant, and can
therefore be inverted. Then Eq. (15.1) implies that Eq. (14.2) follows from Eq. (14.1) and vice
versa. In other words, the solution of the previous section is the only transverse solution.
Knowing this, we will now derive a solution which is necessarily not transverse, and thereby
also automatically independent of the solution of the previous section.

When we take the dot product with e, in Eqs. (13.5) and (13.6), multiply by « 1 and
put the result in matrix form, we find

M, (’&%Jz,(i ("“‘j , (15.4)
ch_bL K-b
with
2
MC:[K (e46r0) ¥ J . (15.5)
=3p%y K° = p (e+6y,)

We notice that Eq. (15.4) relates the same 'variables' as Eq. (15.1), but in a different way.

Then we eliminate x 1a; and x J_b n in Eq. (15.4) with the help of relation (15.1), which
yields
o, M v, -2y 5 20 (15.6)
e My Mg=x7)| . .

The solution x-a=0,x-b=0 are the s-waves from the previous section. A non-trivial
solution exists if

det (M, M, M, -x*1)=0, (15.7)
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with / the 2 X 2 unit matrix. Equation (15.7) is the equivalent of Eq. (14.4) for the s-waves, so
it provides the dispersion relation for this second class of solutions for the coupled waves. An
interesting difference is that in Eq. (15.7) both K2 (through M) and K'i appear separately,
whereas Eq. (14.4) only contains k2. As explained before, we shall take x, as an
independent variable, and eliminate k2 =x? — k2 . The solution of Eq. (15.7) is then Q"ound to

1 I

be

(12) 27, YV

Kp = 1o Qe+ 97,0y + 3@ +27,){ P2 +1F 807 -1 + 1+ )(p” + ey)[”j
e+2y,
(15.8)
with the abbreviation
Zl(ﬁ
= (15.9)

I (e+3y,)(e+97,) )

We notice that x,, goes over in i for K = 0, both for the 1 and the 2 solution, and that for

7o —> 0 we have
kDo Ve, &P pie, (15.10)

as in Eq. (14.8).

16. S-WAVES

It follows from Eq. (14.2) that the polarization vectors @ and b for solutions of the first
kind are perpendicular to the z-axis, and with a combination of Egs. (14.1) and (14.2) we see
that x a= 0,x,-b=0. Therefore, vectors a and b are also perpendicular to x E and
therefore perpendicular to the plane defined by K| and the z-axis (recall that we assume K|

to be real). Since all wave vectors have the same k| , represented by the dimensionless JE
this is the plane of incidence of the incident wave, and the vectors @ and b are perpendicular
to that plane. Solutions of this type are said to be s-polarized, and we reflect that in the
notation with a subscript s on the wave number «; as in Eq. (14.6).

Given x,,, we define the unit vector for s-polarization as

I”

1
e =—(K||><ez) , (16.1)
o

with K| the magnitude of K- Then both a=a | and b= b| must be proportional to e, and
since the two equations in the matrix equation (14.3) are dependent by construction, @ and b
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are only determined up to an overall, common, constant. We shall take this normalization
constant different for the 1 and the 2 solutions of the dispersion relation. For « = K§l) we set

ajg=e;, b=y ne;, (16.2)
whereas for the solution with x = ng) we take

ag=ymes, by=es, (16.3)

with 77; and 77, to be determined. The factors y* and y are taken out for later convenience.
Then we substitute this in one of the equations of the set (14.3) and solve for 7; and 7, . We

obtain
2
{Ks } —-pP (‘9'"270)
. 1 (16.5)
Py~ (e +27,)
With the explicit expressions for Kgl) and ng) it can be verified that
2
-2
m = 2 =7 (16.6)
(6+27) P> ~1+45 \/<p2 )%+ {2’”]
e+2y,
and that the two parameters are related as
2
n=-pmn. (16.7)

For y -0 (nonlinear interaction turned off) we have K§1) —>JZ , Eq. (14.8), and
therefore 777 approaches the limit

2

> —L (16.8)

e(l-p?)

for p#1. Then y*71— 0, and by — 0. So, without the nonlinear interaction, only the w,, -
wave survives for the solution labeled with 1. It then follows from Eq. (16.3) that in this same
limit the @, wave disappears in solution 2. Therefore, solutions 1 and 2 are essentially @, -
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waves and w@p-waves, respectively, and due to the nonlinear interaction they couple to the
oy -wave and the o, -wave, respectively.

It is interesting to note that this conclusion requires p #1. Conversely, we can consider
the limit p —1 with y finite. It can be verified from the results above that for p —>1, 7
approaches the limit

-2 (16.9)
171

and therefore the amplitude factor in b is | y*7 |=1. This shows that for perfect resonance
the w,- and @j-waves have the same amplitude, no matter how small the nonlinear
interaction is. Due to the ¢ in Eq. (16.9), the value of 7; is discontinuous across the
resonance p =1. Apparently, the limits ¥ — 0 and p —1 do not commute. This also implies
that the @, -wave (with the frequency of the incident wave) can be considered near resonance
under condition | p—1|<<|y|, and off resonance for | p—1|>>|y|. In terms of @, and @
this is

|a)a—a_)|<<%a)a|;/|. (16.10)

Since in the optical domain @, is very large, the coupling parameter y can be relatively
small. With the frequency parameter v, Eq. (14.9), this resonance condition becomes
|v—1|<<%v|;/|,andsince v ~1 this is

lv—1|<<|7] . (16.11)

The various features of the amplitude parameter 77; are shown in Fig. 4. Similar conclusions
hold for the solution with ng) .

17. ,-WAVES

The right-hand side of Eq. (14.3) is zero for s-waves, because we imposed the condition
x-a=0,x-b=0.Without this condition, Egs. (13.7) and (13.8) become

2

Kp—(8+2]/0) -y a)_ K-a

w2 2 2 b =K , (17.1)
ay Kp =P (+2y,) J\?)

where we have written & =k, in the matrix to indicate that we are considering solutions of
the second type. For s-waves, the determinant of this matrix was set equal to zero, so if the
second solution is to be different, the determinant is now non-zero, and therefore has an
inverse. This gives
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al

A
0.75 1 1.25
Vv

Figure 4: Illustration of the amplitude parameter 771, multiplied by *, as a
function of the frequency v, and for £ =1, y =y, = 0.1. At the resonance
frequency v =1, the value of y+7; jumps from -1 to 1, as follows from Eq. (16.9).
The width of the graph is of the order of y, =0.1.

-1

2
m”ﬂ e [“J, (17.2)
-7*p Kp=p(e+2y,)) (Kb

from which it follows that both a | and b‘ are proportional to x E This is only possible when
a, b and « all lie in the same plane. Since both @ and b will have non-zero z-components, as
follows from Eq. (15.1), we see that @ and b lie in the plane defined by K| and e, , e.g., the
plane of incidence. Waves of this type are called p-polarized, in contrast to the s-polarized
waves for which a and b were perpendicular to the plane of incidence. This clearly shows the
independence of the two types of solutions.

In order to evaluate the polarization vectors @ and b for p-polarization, we use the fact
that these vectors must be linear combinations of K| and e, . We write

=a ez+—KH , (17.3)
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s
by=pe. +K—||K'| , (17.4)

in analogy to Egs. (16.2) and (16.3). Here, the factors a o ,BJ_ and ,B” remain to be
determined, and since the dispersion relation has two branches there will be two solutions, 1
and 2, for each parameter, just as in the case of s-waves. The factors K| in the denominators
have been split off for later convenience. In section 15, we eliminated x @, and « b, in
favor of xk-a and x-b in Eq. (15.4) by using Eq. (15.1), and this led to Eq. (15.6).

and x b, , and this yields in

Conversely, we can eliminate x -a and x -b in favor of x N 1bys

the same way

M M M -2 L =0 (17.5)
Kby

Since (x-a,x-b)+(0,0), as we imposed by Eq. (15.7), it follows from Eq. (15.1) that also
(k a .,k b, )#(0,0). The set (17.5) can only have a nontrivial solution if
det (M, My M. ~x21)=0 , (17.6)

which must hold by construction. In any case, the two equations in (17.5) are dependent, and
if we set a,=a,, bL = ﬂi’ as in Eqgs. (17.3) and (17.4), and let K| # 0, the set becomes

a, [{xﬁ — (£ +67)HE + 1o )(E+375) + 27 (26 +37,)(p — K1)
+7B, [—3(8-1—}/0)(8-%-370)-1—28(/(12,—Kﬁ) =0, (17.7)
B, [{K,% = PP+ 67,)}(E +70)E +370) + 2726 + 37, )y = K7)

+y¥a, [—3p2(g+70)(g+3y0)+2g(xf,—Kﬁ) =0 . (17.8)

Just as for s-waves, we have a 1 solution and a 2 solution of the dispersion relation,
which we would like to correspond to pure w,- and wp-waves, respectively, in the limit
y — 0. For the solution of type 1 we set

(OB ()
AV =rcal, (17.9)
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in analogy to Eq. (16.2) for s-waves. Here the parameter ¢ is the equivalent of the resonance
parameter 77; for s-waves. The factor aW s for normalization, and will be determined
below. Then we have ¢} = ,[)’(1) /(}/*a(l)) , which can be found from either Eq. (17.7) or Eq.
(17.8). We shall take Eq. (17.8), which gives

3p° (e +70)e +37,) = 26l(y)) k] ]

1= M2 _ 2 M2 _ 2 (17.10)
Wy )™ = p7(e+67p)}(E+ 7o) e +370) + 27p(26 + 37,k )™ — 1) ]
In this way, we have for y — 0
3p7 - 2(1—ch2 /)
§ - 3 (17.11)
e(l-p7)
for p#1, and this is finite, as in Eq. (16.8). In order to find the parallel components aﬁl) and
,Bﬁl) , we write Eq. (15.4) as
K -a
M, -2 1) (KLaLszz ( I |j . (17.12)
Kby <

From Eq. (15.5) we then see that with M, —KJZ_I , we effectively replace K2 by K'||2 in
matrix M, so that M. — K‘i 1 only depends on the assumed given K”2 . With Egs. (17.3) and
(17.4) the set (17.12) becomes

2 912 %
M. -k 1) (bi-J—KJ_K| {,3”] , (17.13)

both for the solutions of type 1 and type 2. The dispersion relation provides x =x,, and we
| itself. Apparently, there are two
solutions, which differ by a minus sign in their z-component of the wave vector. We shall

assume K|, given. This only determines KJZ_ and not x

come back to this point below, and assume for the time being that the choice of sign for

L
has been made. Equation (17.13) then yields, for the type 1 solution,
. aM
aﬁhﬁ{xf—(swyo)—%a}, (17.14)
et
| al

ﬂ()=7*;{41[K2—p2(8+6y0)]—3p2}. (17.15)

l PRC) I

1™ Pt
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M =1 put it

It finally remains to determine the parameter aJ(_l). We could simply take « i

seems more elegant to use this freedom to normalize the polarization vector as

a1p~a1p=1 , (17.16)

just as for s-waves, Eq. (16.2). We then find explicitly

o __ K

o) = . — (17.17)
) {K” _(5+670)_370§l}
K.+

I (D2 _K”2

The solution of type 2 follows in the same way. We now take
2 _ (2) 17.1
all=yo Bl (17.18)

instead of Eq. (17.9), and with S (f) used for normalization. Along the same lines we now
find

3(e+ 7o) +370) = 2el(x)) — /]

¢ = ,
()2 (6467003 (6 +70)(6 +370) + 275 (26 +37o)(x ) — 7]
(17.19)
which behaves as
3- 2(,02 —K||2 /€)
- 5 (17.20)
(- p%)
for ¥ — 0. The parallel components are now found to be
(2)
) {cz[zcz—(ewo)]—z}, (17.21)
I e I
|~ Pl
(2)
p =L{K2 —p (e +67,) =375 7L } : (17.22)
I e 3
p,

and as normalization we now choose
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byp by, =1, (17.23)
which gives

il

ﬁ(f):— (17.24)
{xz— 2(e+6y,)-372p? }2
[P Vo) =376P &2
K+

I (D)2 - K”2

18. EXCITATION OF PLANE-WAVE MODES

The two counterpropagating waves E (r,,) and E (r,p) , which are a solution of
Maxwell's equations inside the medium, have the appearance of a traveling plane wave
(1:’7 (r,®,)) and its phase-conjugate image (E (r,wp) ), because the @y, -wave travels in the
opposite direction of the @, -wave. If a plane wave of the form

E(r.0)inc =Eeq ™", (18.1)

is incident on the medium from the region z > 0, then it will partially reflect and partially
propagate into the medium, where it couples to the @y -wave due to the nonlinear interaction.
This counterpropagating wave can leave the crystal again at the z = 0 interface, where it
appears as the phase-conjugated replica of the incident field. We shall now consider the
coupling of the wave (18.1) to the wave modes E (r,w,) and E (r,wp) inside the material.

In order for E (r,@,)inc to be a solution of Maxwell's equations in vacuum, we have the
restrictions

k=w,/c, k-e;=0, (18.2)

for a given @, . The unit polarization vector e, , with o= s or p, will be specified below, and
the overall constant E is arbitrary. We shall assume that the parallel component, kH ,of kis
given and real. When we write k = k” + ke, , then the first equation of (18.2) is satisfied if

k2 =k? —ky Ky (18.3)

which leaves us with two possible choices for k,. For a wave traveling in the negative z-
direction, we must obviously take the negative root of (18.3). In order to avoid longitudinal
components in the spatial Fourier spectrum [94,95], which do not satisfy Maxwell's equations
separately, we shall allow the incident field to have evanescent components [96-98] which
decay in the negative z-direction. These waves are still transverse, but their wave vectors have
an imaginary z-component. Since the wave has to decay in the negative z-direction, k, must
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be negative imaginary. Therefore, for a given @, and kH, the z-component of & must be

— K —k?
k. = I
—iJkﬁ—kz

In this notation it is understood that we take the solution for which the argument of the square

chosen as

(18.4)

root is positive.
Just as for the dispersion relations, we make the various quantities dimensionless. For the
parallel component of the wave vector we define

K =k /k (18.5)

just as in Eq. (13.1). Its magnitude lies in the range OSK” <. For OSK” <1 we have a
traveling incident wave, and

K, =sing; , (18.6)

with &; the angle of incidence. For x,>1 the incident wave is evanescent, with 1/ K| a
dimensionless measure of the distance over which the wave decays exponentially in the
negative z-direction. We then introduce

K, =k, Ik, (18.7)

which is explicitly

K, = . (18.8)

The incoming wave couples with other waves inside and outside the medium, in a way
which is determined by the boundary conditions at z =0 and z = -A. This same principle as in
linear optics was first applied to nonlinear multiwave mixing in a layer by Bloembergen and
Pershan [99,100]. Obviously, all appearing waves are plane waves which have a factor
exp(ik; -r), with k; the wave vector of this particular wave. At the interface z = 0 this factor
reduces to exp(ik;)-r), and it is easy to see that the boundary conditions can only be
satisfied for all r in the xy-plane if this r-dependent factor is the same for every wave. This
implies that k; | must be the same for every wave, and consequently equal to kj of the
incident wave. The same argument holds for waves which have to be matched across the
boundary z = -4, and therefore every wave vector must have the form
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ki=k +ki.e. . (18.9)

Besides that, every wave vector, either in vacuum or the medium, has to obey the dispersion
relation for ki2 , given its frequency. From this it follows that k,-z’z = kl-z - k||2 is fixed for every
possible wave, and the only freedom we have is the choice of the sign of %; ..

The incident wave has positive frequency @,, which couples with @, -waves and
negative-frequency wy -waves inside the medium. It can not be decided a priori which plane-
wave modes will be excited by the incident field, so we have to consider all possible waves,
inside and outside, with frequencies @, and @ and given k| . Let us first look at the region
z > 0 (vacuum) and at frequency @, . Then the dispersion relation gives k,-z’z - k‘z , with
solution (18.4) for the z-component of the wave vector of the incident wave. There is only one
other solution, which is the usual specularly-reflected wave from linear optics. We shall call
this the r-wave. The z-component of k. can only be k. . =—k,, which gives in terms of x,
and K|

by = k(xe ~ Kgez) . (18.10)

and compared to the wave vector of the incident field

k:k(KH+Kaez) , (18.11)

the only difference is a minus sign in the z-component. This r-wave emanates from the
medium and either travels in the specular direction or decays in the positive z-direction. For a
traveling r-wave, the angle of reflection is of course equal to the angle of incidence. The
various waves outside the medium are pictorially represented in Fig. 5. The arrows indicate
the propagation direction in case of a traveling wave. When the wave is evanescent, it decays
in the direction away from the material.

At frequency @y, the dispersion relation in vacuum is lcl-2 = a)g /c? , which admits two
solutions for k; .. Considering z > 0 first, this @j-wave is generated by the nonlinear
interaction in the medium, and leaves the crystal through the interface z = 0. Causality
requires that we should only retain the solution which travels away from the medium, or in
case of an evanescent wave, decays in the positive z-direction. Care should be exercised,
however, since this is a negative frequency wave which travels in the direction opposite its
wave vector. A moment of thought then shows that the wave vector must be

kpe = k(e + Kpe;) (18.12)

in terms of the dimensionless parameter
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pump pump

By

Figure S: Illustration of the various waves present near the slab of nonlinear
material. The arrows indicate the propagation directions of the various waves. For
evanescent waves, the decay direction is away from the medium.

Kp = . (18.13)

The appearance of p accounts for the difference between @, and |y, | . We call this the pc-
wave, for obvious reasons. We notice that for traveling waves and p =1 this k,. is not
identical to k of the incident wave. Since

kpc= - =pk , (18.14)
we have

. K|

smepc :; , (18.15)

with 6, the angle of reflection of the pc-wave (for the case of a traveling wave).
Comparison with Eq. (18.6) then shows that the angle of reflection is related to the angle of
incidence according to
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psind,. =sinb; , (18.16)

or in terms of frequencies

|@p [sin 6. =, sinb; . (18.17)

Therefore, for @, #® the pc-wave cannot be the exact phase-conjugated replica of the
incident beam. For evanescent waves, phase conjugation never works (with the setup
considered here) because the image of a wave which decays in the negative z-direction should
be a wave which grows exponentially in the positive z-direction, as follows from the time-
reversal argument. This would clearly violate causality. Nevertheless, we retain the possibility
of evanescent incident waves, because of its relevance to applications in radiation theory.
Figure 6 illustrates the various wave vectors for the case of traveling waves, and Fig. 7 shows
the decay directions for the situation of evanescent waves. It should be noted that not all
waves have to be either all traveling or all evanescent. Just as in linear optics, there can be
situations where waves of both types appear for a given incident wave.

Next we consider the region z < -A. Since this is also vacuum, the dispersion relations for
the possible @, - and @y, -waves are the same as in z > 0. For a given k\l this allows four
possible wave vectors, but only two of these represent causal solutions. The @, -wave which
travels or decays in the negative z-direction is the transmitted ~-wave, with wave vector

k =k . (18.18)

The possible wp,-wave in z < -4 is entirely due to the nonlinear interaction (in contrast to the
w,-wave which is also present for a pure linear material), and we call this one the n/-wave.
The solution which propagates or decays in the negative z-direction has wave vector

et = k(o = Kpez) (18.19)

When the incident wave is s-polarized, then every other wave is also s-polarized, and the
same holds for p-polarization. Inside the medium, the dispersion relation is different for s-
and p-waves, so we have to distinguish between the two situations by labeling the wave
vectors of the various waves with o (s or p). The dispersion relations were shown to have two
branches, labeled 1 and 2, corresponding to an @, -wave and an @ -wave, respectively, in
the limit ¥ — 0. Since the dispersion relations only give Kzz , there are still two possibilities
for the z-components of the wave vectors, which differ by a minus sign. Both solutions have
to be retained, due to multiple reflections at the boundaries, as is most easily seen from Fig. 6.
The four possible wave vectors for a given ¢ and kH are then

ki, = k() £ Kggez) (18.20)

k>, = k(i) £ Kk ggez) (18.21)
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e. A
—p ku

inc pc r

nl i

Figure 6: This diagram shows the plane of incidence, determined by k and e, , and
the wave vectors for the case of traveling waves of all fields that are present. All
wave vectors have the same kH , but they differ in their z-component. Arrows with a
solid arrowhead are pure @, -waves, and they travel in the direction of the arrow.
Arrows with a transparent arrowhead are pure @p -waves, which travel in the
direction opposite the arrow. Inside the medium the arrowheads are shaded, and
each of them represents a set of two counterpropagating waves, with frequencies
@, and @y . In total, thirteen different waves are present simultaneously (plus the
two pump beams which are not shown).

in terms of the dimensionless wave numbers

—&EH? -k

_ (18.22)

K ,
“ —i1,K2 —(K(l))2
I o
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&) -

Ko = . (18.23)
i K”2 - (K(()-Z))Z

The four wave vectors are shown in Fig. 6 for traveling waves and Fig. 7 shows the direction
of decay of the waves in case they are evanescent. When recalling that a single wave vector
corresponds to a set of two counterpropagating waves, we see that the total number of waves
inside the medium is eight, which brings the total number of waves that couple together to
thirteen.

We see from Fig. 6 that in the limit ¥ -0, &£ > 1 (completely transparent medium) only
the inc-, 1+- and t-waves will be present. For ¢ #1 there are multiple reflections at the
boundaries, so that the 1—-wave inside and the r-wave outside appear. When the nonlinear
interaction is included, the 2+ -waves come up, and the pc- and n/- waves leave the crystal.
In addition, each 1 (2)-wave couples to an @ (w,)-wave, forming a counterpropagating
pair. The sign convention for the wave vectors of the waves in the medium is chosen in such a
way that for y — 0, £ > 1, but p arbitrary, the wave vectors reduce to

ki, >k=k , (18.24)
ki >k, (18.25)
Ko = kpe (18.26)
ko > ky (18.27)

both for traveling and evanescent waves.

19. FIELDS

The incident field (18.1) gives rise to the excitation of plane-wave modes, which all have
a spatial dependence of the form exp(ik; -r) and with the wave vectors k; given in the
previous section. Next we have to specify the polarization vectors. For s-polarized waves in
vacuum we take

1
€5 :K_(Kner) > (19.1)
[

as in Eq. (16.1), and this is the same for every wave. For p-polarized waves we choose

1
€p.i :F(ki xeg) , (19.2)

1

p
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inc pc r
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nl t

Figure 7: Illustration of the directions in which the various evanescent waves decay.

and we notice that this vector is complex for evanescent waves. These polarization vectors
have the properties

Coi k=0, egies;=0, (19.3)

e.g., the waves are transverse and the polarization vectors are unit vectors. Figure 23 in
section 30 illustrates the directions of these vectors for the case of traveling waves.

The incident field has a (complex) amplitude factor F, and because the boundary
conditions are linear in the field amplitudes, every wave will have this proportionality factor
E. For the field in z > 0 we can then write

E(r,0,)=E {ea T 4 Ryeg et } , (19.4)

ik, r

E(r.op)=EPye5 pee 7, (19.5)

which has only the two complex-valued dimensionless quantities R, and P, as unknowns.
These are the Fresnel reflection coefficients for the r-wave and pc-wave, respectively, and
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they have the significance of the relative amplitude (including the phase) of the two waves
with respect to the incident wave. Notice that the phases of R, and P, depend on the phase
convention for the polarization vectors e, ;. Equations (19. 4) and (19.5) cannot be added in
order to give the total electric field in z > 0. The fields E(r w,) and E(r ®p) are two
frequency components of a, in general, continuous spectral distribution E (r,m).

In the vacuum half-space z < -A there are only two plane waves, and the electric field at
o =wm, and ® = w, can be written as

E(ro,)=ETyeq ™" (19.6)
E(r,0p)=ENg ey 1" (19.7)

with 7, and N, to be determined. These are the Fresnel transmission coefficient and the
Fresnel coefficient for the emission of the nl-wave.

Inside the medium we have four sets of coupled waves, and each set has an @, -wave and
an wp-wave. For the polarization vectors we have to take a5, b5, @y, and by, . The
vectors @, and b, are unit vectors, but the other two contain an amplitude factor (the
resonance parameters, like 777 and 77, ). The coupled wave equations are linear and so we can
multiply each solution by an arbitrary complex number, keeping in mind that both the o, -
wave and the @y, -wave in a single set must be multiplied by the same factor, as in Eq. (12.1).
With this notion, the field inside the medium attains the form

ik’

r — — ik -
10" 4 Zig ai ¥

l:?(r,wa):E{Zeraf'ae
+ 4 ik er - — ikygr
tZysayge 7 +Zysarse 0 ¢, (19.8)
~ .+. — p— ._.
E(r,ap) = E{ch, bi e*loT + 7z by ekioT

g+ o
+ 73, b3, oo Z5, b, ¢'k2o "} ) (19.9)

which has the Fresnel coefficients Zli(7 , Zzig as unknowns. Each Fresnel coefficient
describes the amount of excitation of a coupled set of waves, compared to the incident wave,
but the relative strength of the two waves in a single set is fixed.

We have added a superscript + or — on the polarization vectors. These superscripts have
the same significance as the £ in the notation for the wave vectors. As can be seen from Egs.
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(17.14), (17.15), (17.21) and (17.22), this sign comes into the definition of the parallel
components of the polarization vectors for p-waves. Explicitly,

ng) =tk , (19.10)
Kfj) =tKp, . (19.11)

For s-waves there is no dependence on this sign.

20. FRESNEL COEFFICIENTS

AMa)A(well's equations require that at the boundaries z = 0 and z = -4 the fields E B B and
(eE+P/¢g,), are continuous, both for @, and for @y, and for o= s and o= p. This yields
two sets (one for each value of o) of 12 linear equations for the 2x 8 Fresnel coefficients,
which shows that the sets are overdetermined. In this section we only look at the continuity of
E I and B , which gives 8 equations with 8 unknowns, for each o, and in the next section we
shall discuss the third boundary condition.

At the boundary z = -4, an exponential of the form exp(ik; -r) gives effectively a phase
factor exp(—ik; ;4), because exp(ikH -r) factors out. We like to express this phase in
dimensionless quantities. First we introduce the dimensionless layer thickness

I=kA , (20.1)

which equals the layer thickness in units of a wavelength of the incident field, apart from a
factor of 27z. Then the phases can be written as

¢ =x;l, (20.2)

in terms of the dimensionless z-components of the various wave vectors that were introduced
in Sec. 18. The values of i can be i = a, b, ao or fo, with o= s or p. For a traveling wave this
phase is real, but for an evanescent wave it is imaginary.

From the results for the electric field in the previous section we can obtain the
corresponding expressions for the magnetic field with the help of Eq. (3.10). If we then write
down the continuity equations for E | and B, both for w, and @y, and for z=0 and z = -4,
work out the cross products of the form k; x e ; ,which appear in the equations for B, and
rearrange the terms, then it follows that the equations divide into two sets of four equations,
for a given o. The Fresnel coefficients for the waves inside the medium are found to be a
solution of the linear set
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Zl+cr 2k,
- 0
F| 4o |- , (20.3)
o + O
Z20'
Zrs 0

with the matrices F; and F » given below. After solving Eq. (20.3), the Fresnel coefficients
for the waves in vacuum are found to be

R -1 ZI+O'
P 0 -
Zig, |= +G,| %o | (20.4)
Tye e 0 73
N ' 0 Zss

with the matrices G; and G ) given below. Solving Eq. (20.3) numerically is trivial, but an
analytical solution requires the inversion of the 4x4 matrices Fy and F), . This analytical
solution is presented partially in Sec. 22. Notice that in Eq. (20.4) we solve for T, exp(—id,)
and N exp(idp), rather than for 7, and N, . The reason is that these quantities represent
the values of the amplitudes of the »-wave and the n/-wave, respectively, at the surface z = -4,
where these waves leave the medium. On the other hand, 7, and N, would be their
amplitudes at z = 0 if the waves would be extrapolated into that region, as can be seen by
setting z = 0 in Egs. (19.6) and (19.7). Therefore, including the two exponentials gives us the
physically meaningful quantities. For traveling waves, these exponentials are only phase
factors, but for evanescent waves these are amplitude factors since the phases are imaginary.
The two matrices for s-waves are explicitly

KgtKgs Kq —Kqgs
7Ky — Kgs) y* ik + Key)

s~ —i ¢as i ¢as

(kg —Kggs)e (ky +Kgs)e

7 m(xp +Kas)e_l¢as 7 n(xp _Kas)el¢as

(K, +K[)’S) y (kg _Kﬂs)
Kp —Kps Kp +Kps

—igg, idss | 20.5
g —xpe P g+ pe) e (20)

(xp +Kﬁs)€_l¢ﬁs (xp —Kﬂs)el¢ﬂs
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1 1 7 rm
rrm r*m 1 1

s =| ias Jitas yie 9B i | (20.6)
7/* m e_i¢as }/*’71 ei¢as e_i¢ﬂs ei¢ﬁs

which contain only the dimensionless wave numbers, the various phases and the resonance
parameters 77; and 77, . For p-waves the situation is more involved, due to the complicated
expressions for the polarization vectors. With the abbreviations

“(LD 2
f=-— {e+6y,+3r5¢1} (20.7)
[
a(j)
92 =—pK—{§1 (e+6y,)+3}, (20.8)
[
2)
g3 = ‘f (Ca(e+67,)+3} (20.9)
[
1 )
94==P— {e+6y,+3r5¢2) (20.10)
[
— a(f) 2 2
q1 :—Z{KH _(3"’67/0)_370 gl} > (20'11)
KHKap
— “(ll) 2 2 2
42 =p Cilx; —p (e+6y,)]1-3p7} , (20.12)
K, K2 ”
| ®ap
ﬂ(z) 2
g3 =5 {GalK] (e +67,)] -3} (20.13)
K1 %pp
P 5, )
Ga = p—5— (K| =P (e +67,) =370 P02} (20.14)
K1 %pp

the two matrices attain the form
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qiKq + ‘71Kap q1Kq _ql’(ap
7 *(92Kp = 42K p) ¥ (a2kp + @2k p)
F,= _ —ig _ )
P (qixg —qiKgp)e “r (nKq + Q1K p)e “r
_ —ig _ i
7 (@K + Dakgple P v (qaKy —Gakgple
7(a3kq + a3k gp) 7 a3k, — a3k gp)
44Kp = 44K gp 94Kp + 44K gp
_ _ig _ idsy | (20.15)
Y@k T3k pp)e PPy gy, +gyrgp)e PP
_ —ig _ i¢
(qarp +qaxpple PP (qaxp—Gaxpple PP
q1 q 743 743
* *
Y 4q2 7 q2 q4 q4
G,=| -ig id —ig ig (20.16)
Prlge ™ qe™  ygze PP ygqze’P
—ig ig —i¢ ig
yigre P yrqre ™ que PP que'PP

21. THIRD BOUNDARY CONDITION

The Fresnel coefficients in the previous section were obtained by matching the fields
across the two boundaries of the medium with the requirement that E | and B, both for ,
and wp and for z = 0 and z = -4, must be continuous. Maxwell's equations impose a third
boundary condition, namely that (¢E +13/$0) | must be continuous. In the case of s-
polarization all fields are parallel to the surface z = 0, and therefore this condition holds
trivially, but for p-waves this gives an additional set of equations for the Fresnel coefficients,
and this set has to be satisfied simultaneously with the set of the previous section. From Egs.
(9.10) and (9.11) we derive

(EE(r,0,) + P(r,0,)/ 65) | = (6 +67,)E(r,0,)  +37 E(rop) (21.1)
(E(r,0p) + P(r,0p)/ 2,) | = (6 +67)E(r,0p) | +37"E(r.o,) | - (21.2)

Therefore, the right-hand side of Eq. (21.1), evaluated for the field inside the medium, must
match E (r,w,) | outside, both at z =0 and z = -A. In the same way, the right-hand side of Eq.
(21.2) must match E (r,®p) in vacuum.

This third boundary condition leads to a set of four equations, and when written out we
get factors of the type (¢+6y,)a, +3y 4, in Eq. (21.1), and similar ones in Eq. (21.2). It
turns out that the equations do not resemble any of the other equations which we used to solve
for the Fresnel coefficients. However, the eight g parameters in the p-wave matrices are
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complicated functions of p, & y and K> and they can be written in many alternative forms.
With the matrix methods of Secs. 15 and 17 we can derive

(8+6}/0)05J_+3}/ﬁJ_=K'H(K'HOlJ_—K'La”) , (21.3)
K

(g+6y0)ﬂL+3y*al:—g(z<”,3f;cl,3”), (21.4)
P

which holds for the polarization vector components of both the 1 and the 2 solutions. The left-
hand sides are factors which appear in the four new boundary equations, and the right-hand
sides resemble cross products. Indeed, for any wave vector k;, withi =1+, 1 2+ or 2—, we
have

kixa:kes(/c”al—/c aH) , (21.5)

and a similar relation can be found for k; x b. On the other hand, the parameters ¢; from the
previous section came from the continuity conditions for B, which also involve cross
products. For instance, g; came from

ki, <aj,=—kqye; . (21.6)

Combination of Egs. (21.3) - (21.6) then gives

1
q =—K—{(5+6}/O)aﬁ) +37/,B$)} , (21.7)
I

as an alternative form of ¢;. It appears, after deriving similar relations for the other ¢
parameters, that the third boundary condition for p-waves gives a set of four equations which
is identical to the four equations that follow from the continuity of the magnetic field.

22. ANALYTICAL SOLUTION

The Fresnel coefficients F; and P, determine the amplitude, phase and polarization of
the phase-conjugated wave. For most practical applications only these two Fresnel
coefficients are of relevance, although sometimes also R; and R p are important because
they represent radiation which is also scattered into the region z > 0, although under a
different angle. Eliminating the Fresnel coefficients Zlio. and Zi, for the field in the
medium from Egs. (20.3) and (20.4) gives explicitly
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R -1 2K,

Py 41 0
T, e it | +GoFs E (22.1)
Nge ) | o 0

for the fields outside. The most cumbersome part in the analytical evaluation of the right-hand
side of Eq. (22.1) is the inversion of the two matrices F; and F -

We have computed the 16 Fresnel coefficients analytically. For the purpose of illustration
we give the expressions for P, and R, here. All Fresnel coefficients are given in the
Appendix, although in a slightly different form. First we introduce the abbreviations

Ags = (kg + Kas)2 ei¢as — (kg — Kas)2 e_i(/jas ) (22.2)

Apg = (kp — Kﬂs)z ¢ _ (kp + Kﬂs)z L (22.3)

Then the determinant of F§ is found to be

det(Fy) =— Aas/lﬂs - 73 mm |:8Kas’(ﬂs(’(a + Kb)z

—2{(Kq + K )Kp = Kas)el¢as — (kg = Kgs)Kp + Kas)e_l¢as }
i¢ﬁs _i¢ﬂs
x{(xg +Kﬂs)(Kb_Kﬂs)e _(Ka_Kﬂs)(Kb+Kﬂs)e }
+ 78 i Ak — Kps)* s _ (Kp + K ) o Pas !
2 i9ps _ _ 2 —ifps
XA +Kps)"e (Kq —Kps)~e F s (22.4)

and the two Fresnel coefficients are

J
S det(F,)

{_ Aﬂg (Kg _Ko%s)(el%[s _e_l¢aS)

(Pas +¢ﬂs

~yZmm [SKasKﬂs(’(az ~Kf)-2e )(Kg — KoK gs Kp = Ko J(Kp =K g5)
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+ 2e_i(¢as_¢/”s)(lc§ + KoK s )(Kp + Ko )(Kp =K pg)

_ 2e_i(¢0’s+¢ﬂ~v)(/<3 — KoK s )(Kp + Ko N(Kp + K fg)

i ¢as =i ¢as

+ 7o M (kg = K ) {(Kp — Kgs) € 75 = (ky +Kgg) e )
(@5 s )H ’ (22.5)
_ 2y*m K, 41 2
Fy ST deuE,) (A + 76 M)k g5k gs (K + Kp)
_ (Pos+9ps) _ 2 _

+ (K Kﬂs)e [(rq + K )(Kp Kﬁs) Yo 771772(Ka+Kﬂy)(Kb Kas)]
_ ((Pos =P ps) 2 _ _

(Kos +Kp5)e (g + Ko )y + K g) = Vo M (K =K g )(Kp =K )]

)e*i(¢as *¢ﬂs

+ (Ko TK g )[(Ka — Ko )(Kp _Kﬂv) _702 mma (kg +Kﬂv)(Kb +Kos)]

(g —rg)e P ey — e iy + 1 ) = 7 T (g = K Y +Kw>]} -

(22.6)

It does not appear to be possible to simplify these expressions in general, but later we
shall consider some special limits of practical relevance, and derive simple expressions for all
sixteen Fresnel coefficients. These results will exhibit the main features of the Fresnel
coefficients, but not all the tiny details which are hidden in the full solution.

23. OFF RESONANCE

In order to shed some light on the structure and parameter dependence of the Fresnel
coefficients, we consider some special limits. Inspection of the four matrices which determine
the Fresnel coefficients shows that they contain three kinds of parameters. First there are the
dimensionless z-components of the wave vectors (x,, Kp, Kys and kg ), which are
mainly determined by the angle of incidence and the dielectric constant. Then we have the
phase factors exp(ti¢,,) and exp(tigp;), which are the only parameters that depend on
the dimensionless layer thickness /. Third, there are factors proportional to the nonlinear
coupling constant y, or its complex conjugate. As it turns out, for s-waves these factors only
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appear in the combination y*n; and y7,, whereas for p-waves we get y*q>, ¥y*q2, ¥ q3
and ¥ g3 . It was shown in Sec. 16 that these factors account for the resonance behavior in the
coupling to the second wave in the counterpropagating sets, depending on whether | p —1| is
much smaller or larger than |y |. This same frequency dependence governs the resonance
structure of the matrices F; and G, , and thereby the Fresnel coefficients.

In this section we consider the situation where the frequency w, of the incident field is
far off resonance with the pump frequency @ , which means | p—1|>>|y |, and we use the
fact that | 7| is very small, say 10™ ~ 10”. From Eq. (16.8) we then sece that y*n1—> 0, and
similarly every other matrix element which is proportional to y or ¥* vanishes. In this limit,
half the number of matrix elements in F,; and G, are zero, and Eqs. (20.3) and (20.4) are
easily solved for the Fresnel coefficients. For p-waves we also need

a,94 >Ve, a4 -1, (23.1)

in this limit. We find
P, =73 =N,é% =0, (23.2)

which shows that all @j,-waves disappear. Especially, P; =0 indicates that we can only
generate a phase conjugated wave when @, is sufficiently close to the resonance frequency
o , as could have been expected. The nonzero Fresnel coefficients for s-waves are found to
be

2k, (K, T Kpg) eif¢as

ZE -+ , 23.3
1s Aas ( )
Kc% ~Kas . ig, —id
R, = i (el s _ o OlS) , (23.4)
S
. 4k, K
T,e ifa = —4°8 (23.5)
Ags

and similar expressions can be derived for the p-wave coefficients. We recognize this solution
as the Fresnel coefficients for an ordinary dielectric layer [101, 102], and consequently the
nonlinear interaction has no effect at all in this limit.

Far off resonance, the set (20.3) of four coupled equations splits in two decoupled sets of
two equations for Z;5. and Zj, and a set of two equations for Z3, and Z5, . The same
holds for Eq. (20.4). Since the second set in Eq. (20.3) is homogeneous, it only admits the
solution Z3, = Z5, =0, and with Eq. (20.4) we then find P, = N, exp(i¢y) = 0. The other
set in Eq. (20.3) is inhomogeneous, and has nonzero Zf:, and Zj, as solutions, leading to
nonzero values for R, and T, exp(—i¢,). When @, is closer to resonance, the 4x 4 set does
not decouple anymore into a set for @, -waves and a set for @y, -waves.
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24. TRAVELING WAVES ON RESONANCE

Let us now consider the opposite situation of perfect resonance, o —1, and |y | very
small compared to unity. Since the limits p —1 and ¥ — 0 do not commute, this limit is
understood as | p—1|<<|y |, as shown in Sec. 16. The relative width of the resonance is
Aw, ! ®, =|y|, as indicated by Eq. (16.10), so that we could call | 7| the relative bandwidth
of the phase conjugator. In order to simplify the notation somewhat we shall from now on
assume that y, >0, and with Eq. (9.7) this is equivalent to assuming that y is positive.

With Egs. (14.8) and (15.10) we find that the solutions of the dispersion relations in the
medium reduce to

)
ng = . (24.1)
From Eqgs. (16.7) and (16.9) we find that the resonance parameters for s-waves become

o
m=-—-m=—, (24.2)
Yo

in this resonance limit. For p-waves we find for the resonance parameters

§1=—§2=—£~ (24.3)
Yo

These relations indicate that for a set of coupled waves in the medium, the @, -wave and the
oy, -wave have equal amplitude. For the g-parameters that have a resonant nature we obtain

Se _ 5

D=—q3=- N : (24.4)
Yo 7 o‘/Z
and the other g-parameters become
Jz _ 1
G1=94=V¢, Q=94 =—= - (24.5)

Ve

We shall furthermore assume that the incident wave is traveling, so that 0< K| <1. Since
p =1, also the other four waves in vacuum are traveling. With K= sin¢;, the dimensionless
wave numbers x,, Eq. (18.8), and « , Eq. (18.3), then simplify to

Ky=Kp=— 1—Kﬁ =—cosb; . (24.6)
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For the wave numbers inside the medium we find from Egs. (18.22) and (18.23) the limits

Kyo = (24.7)

(24.8)

Depending on whether K|<& or K >é&, we have traveling or evanescent waves,
respectively, inside the medium.

Since for most materials we have ¢ >1, the condition K| <¢ is automatically satisfied,
and we shall assume this in the remainder of this section. We then have

Koo =K fo =—ﬂg—sin2 o; . (24.9)

The major simplification comes from the identities &, =k} and k,; =K 5, as can be seen
from the analytical solution. All kinds of terms with &, — & g disappear, and factors of
(Kq +Kgs)(Kp — K pgs) simplify to 1-& Also, the appearance of the resonance parameters
reduces to 73771772 =—1. In the matrices F,; and G, also the phases ¢@,, =x,,/ and
$po =K pol , with [ the layer thickness parameter, appear. Since / can be a very large number,
we cannot say ¢y — @5 =0, even though x — & g, = 0. The reason is that the last identity
only holds up to order ¥, , and y,/ can easily, and will, remain finite.

Even with the above simplifications, the explicit solution for the Fresnel coefficients is
still rather complicated, and we shall only give the results for the waves outside the medium.
First we introduce the quantities

Dy =-cdet(Fy). o =s.p . (24.10)

which are explicitly

Dy = (K3 + K35 Sin gy S0 P g + 287K (1 COS Py COS P ) (24.11)
D, = L(34/(4 + )sing,, , singg,, + 2K 2K2 (1+cosd,, ,cosdg,) (24.12)
P2 a ™ ap ap Bp a*ap ap Bp/) - :

Then the Fresnel coefficients become
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1-¢

Ry === {(kg + K3y )SIn s SN B3 + 1545 g SIN(Ps + )} (24.13)
S
(6 =D{e = (s +1)} N . .
Rp = £2D” {(52Ka2 +K§p)sm¢ap sm¢/3p +iekyKep sm(¢ap +¢ﬂp)} 5
P
(24.14)
—i§e_i0p1c K (7c2+/(2 )
Py = LB sin(dys — bps) - (24.15)
DS
—i§€_i0pKaKap(€2K5+K§p) .
p= =D sin(é,p, —Ppp) (24.16)
p
, KK,
T, o ifa 0708 {2K 4K o (COS Pyg +cos¢lgs)—i(zcg +K02:s)(Sin¢as +singpe)} . (24.17)

S

: KK
T, ¢ :sz{ngaKap (cosdyp, +cosdp,) —i(g%ﬁ +K§p)(sin¢ap +singg,)}

P
(24.18)
—i6
. ; P
N, e =(1—£)l5€TKalca(sin¢as —singg,) , (24.19)
S
j i5e_i9p
N, & = (6‘—1){8—]('2‘(6‘ + 1)}€Tl(alcap(sin¢ap —singg,) . (24.20)
p

As a first observation we notice that for a transparent medium (& =1) the »-wave and the
nl-wave disappear, both for s- and p-polarization,

Ry=0, Nye%=0, (24.21)
and it can be shown that also Z|, =Z;, = 0. Therefore, all waves with their k-vector up in
Fig. 6 vanish. Outside the medium we then only have the phase conjugated and transmitted

waves, apart from the incident wave. A second feature appears when & — K”2 (e+1)=0. Then

R,=0, N,eé%=0, (24.22)
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Ry

0 30 60 0, 90

Figure 8: Fresnel reflection coefficient | R p | as a function of the angle of incidence
(in degrees). Curve (a) is for reflection at a phase conjugator (v=0.99999, = 0.05, /
=15, £=2) and curve (b) is for reflection at an ordinary dielectric layer, so
effectively for y= 0. Both curves have a zero at the Brewster angle, which is here
Op = arctan\/; =54.7°. For the linear case this is exact, and for the nonlinear case
we found from the data that | R p | vanishes at 54.4°. This small difference is due to
the fact that for the nonlinear case the formula for the Brewster angle follows from
the approximation of perfect resonance. Also interesting to see is that near 90° the
nonlinear reflection coefficient is much larger than unity, which represents
amplification with respect to the incident field. For linear media, this can obviously
never happen.

and it can be shown that also Z;, = Z;, =0. This corresponds to an angle of incidence dp
equal to

Op = arctan(\/Z) , (24.23)
which is the Brewster angle from linear optics. At this angle, the pc-wave is still present.
Figure 8 illustrates the disappearance of the r-wave for p-polarization at the Brewster angle.

Also shown is the reflection coefficient for y =0 (linear case). We mention here that all
graphs are made with the exact numerical solution, and not with approximated formulas.
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25. RESONANCE IN A TRANSPARENT MEDIUM

The phase-conjugate reflectivity has a tendency to diminish with an increasing dielectric
constant ¢, as illustrated in Fig. 9. The oscillations are due to the fact that ¢ appears in the
phases ¢y, and ¢, . In this section we consider the same case as in the previous section
(traveling waves on resonance), and in addition we assume that the medium is transparent,
e.g., £ =1. From Egs. (24.6) and (24.9) we then see that all wave numbers are equal:

Kq =Kp =Kgg =Kps =—C080; . (25.1)
We already found in the previous section that for £ =1 we have

Zin=0, Z3,=0, R,=0, Nye%=0. (25.2)
The remaining Fresnel coefficients can be simplified to

1+ ei(¢acr _¢ﬂcr)

1+ cos(@po — ¢ﬂc7) ,

1
ZI+O' :E

(25.3)

0.06

| £ |

0.03

E

Figure 9: Absolute value of the Fresnel reflection coefficient for an s-polarized
phase-conjugated wave, as a function of the dielectric constant & The parameters
are v=10.99, y=0.01, §; =45° and / =10.
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23, =0¢"0r (2", (25.4)

Py =—ise” P tantd (oo~ B0} . (25.5)

o %0 — oo 4 o 10po

T, :
’ 1+ cos(foo ~ Pp0)

(25.6)

and it is interesting to note that the coefficients for s-waves and p-waves have the same
appearance.

We already found that on resonance the two waves in each counterpropagating pair have
the same intensity. We now see from Eq. (25.4) that |Zf’0 |=|Z§La |, which implies that all
four waves that are excited in the medium in this limit have the same intensity. The intensities
of each wave, with respect to the incident wave, can be simplified to

1 1
Z+ 2: Z+ 2:_— , 257
| 10'| | 2o-| 21+COS¢O- ( )
| P, [? _1-cosdy (25.8)
1+ cos¢,
i 2
Tye =™ (25.9)
1+cos @,
where we introduced the abbreviation
Yo = bac —Ppo - (25.10)

As mentioned before, the dependence on the layer thickness / comes in through these phases,
and therefore &, =k, does not imply ¢, =0. We should expand x,, and kg5 up to
leading order in y,, , and then consider y,/ finite. We then find explicitly

Yol » (25.11)

b =CO56. (1+2sin 6))y,1 . (25.12)

1
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The intensities depend only on ¢, through cosg, , and therefore the factors din Eqgs. (25.11)
and (25.12) are irrelevant. It is interesting to notice that the relative intensities obey the

inequalities
| Zthe IZZ%, (25.13)
1T, e WaP>1 (25.14)
0<|P, P <o, (25.15)

which shows in particular that the transmitted wave is always amplified, as compared to the
incident field. Therefore, the process of reflection and transmission of the incident light is not
energy conserving, and always more energy is produced than is provided by the incident
wave. Of course, the difference is supplied by the pumps, which leads to depletion. Also
interesting to notice is that

T, e Pa P =4z |7 . (25.16)

The phase-conjugate reflectivity | P |2 can be anything in between zero and infinity. Of
course, | Py |2—>oo is a consequence of taking the limit y — 0, whereas a more detailed
analysis would show | P, |2~ 1/ ;/g . Occurrence of a reflectivity larger than unity indicates
amplification of the phase-conjugated signal with respect to the input, and an appearance of a
value of | P |2 far in excess of unity is sometimes termed self oscillation. Both phenomena
have been observed experimentally by Pepper, Fekete and Yariv [103] in liquid CS, . We can
write the reflection and transmission intensities in the alternative forms

| By P =tan* (3 45) (25.17)
T, 1P =sec* (1 45) (25.18)

which are the usual expressions, derived in a very simplified way from the beginning. The
behavior of | P |2, as predicted by Eq. (25.17) has been qualitatively verified by experiment
[103].

Only a phase-conjugated and a transmitted signal are emitted by the medium. Their total
relative intensity is | £, |2 +| T, |2 , and for an energy-conserving process, like for linear non-
absorbing media, this sum would equal unity. However, it follows from Egs. (25.8) and (25.9)
that the two emission intensities are related as

1T, P~ |B 2 =1, (25.19)
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for any angle of incidence and polarization, and any / and y,, .
Combination of the results from above gives the expressions for the Fresnel reflection
coefficients

P, :—ie_igp tan Yol , (25.20)
) 2cosb;

P, =—ie % ani—2ol_(112sin20;) (25.21)
P 2cos6; Yl '

which shows explicitly the dependence on /, y,, and the angle of incidence. We see from Eq.
(25.8) that self oscillation (P; — ) occurs if ¢, =(2n+1)z with »n integer. For a given
angle of incidence, the layer thickness must be

/= L(Zn +1)cosd; , s-waves, (25.22)

Yo

0.5

0 250 500

Figure 10: Absolute value of the Fresnel reflection coefficients for the pc-wave, both
for s- and p-polarization, as a function of the layer thickness /. The parameters are v
=1.01, y=0.01, §; =45°and ¢=1.
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0.5

0.25

0 45 91. 90

Figure 11: Absolute value of the Fresnel reflection coefficients for the pc-wave, both
for s- and p-polarization, as a function of the angle of incidence &; . The parameters
are v=10.99, y=0.01, =1 and /=10.

1=" (2n+1) cosz9,~2 . p-waves, (25.23)
Yo 1+ 2sin” 6,
withn =0, 1, 2, ... . The successive values of / are equidistant, and these /-values are different

for s-waves and p-waves. The minimum value of / for s-waves is /= (x/y,)cos6;, which is
[ ~1/y,. Since realistic values of 7, are 10° ~ 10, this requires a medium with a thickness
of at least a few centimeters. Figure 10 shows the dependence of the reflection coefficients on
the layer thickness for a given angle of incidence.

In practice, the layer thickness is fixed and the maxima are displayed in the angle-of-
incidence dependence of the Fresnel coefficients. From Egs. (25.22) and (25.23) we find for
the locations of the maxima

cosd; = Yo 1 , S-waves, (25.24)
7 2n+1
/
cosb; =70 6 , p-waves, (25.25)

T n+l+ \/(2n +1)% +24(ly, | 7)?
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Figure 12: Absolute value of the Fresnel reflection coefficient | P | for an s-polarized
pc-wave as a function of the angle of incidence ;. The parameters are v-1=1 0, /4
=6x10" £=1and /=13,603. For these values, the resonances are predicted by Eq.
(25.24) to appear for n =1, 2, ... at 6; = 30.0°, 58.7°, 68.2°, 73.2°, 76.3°, 78.5°, 80.1°,.. .
It is seen that there is some discrepancy, for instance at 30°. Near 90°, there are an
infinite number of oscillations, which cannot be resolved adequately in a graph.

with n =0, 1, 2, ... . However, if [y, /z is larger than unity, for instance, then there is no
solution &; for s-waves with n = 0. In general, there is a minimum »n=n, (can be different
for s- and p-waves) which gives the smallest angle &; for which a maximum occurs. Every
n>n, then also gives a solution, so there are an infinite number of solutions which cluster at
0; =90° (because the right-hand sides go to zero for n — o). Figure 11 shows | P, | and
| P, | as a function of ¢;, and for parameters y =0.01, v=0.99, £=1 and /=10. Here we
have y ~v, and therefore this does not correspond to the resonance limit |v—1|<<]|y |
considered in this section. For these parameters, the maxima predicted by Egs. (25.24) and
(25.25) are 88° and 84° for s-waves and p-waves, respectively. Figure 12 is drawn with
parameters closer to resonance, and the fast oscillations near 90° clearly appear, but the
peaks are not exactly at the locations predicted by Eqs. (25.24). Then in Fig. 13, we truly have
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Figure 13: Same as Fig. 12, but now with v- 1 =107, The value of this v- 1is a
factor of 10 closer to resonance, and we see that the peaks appear exactly where
predicted. The resonances are also much sharper, and their peak values are about a
factor of 10 higher.

|v—1|<<|y|, and the maxima are in the correct positions. Also, the values of the maxima
increases with decreasing |v —1], and the lines become narrower. The values of the maxima
will be calculated in the next section.

26. FREQUENCY DEPENDENCE IN A TRANSPARENT MEDIUM

In the previous section we studied the case of perfect resonance in a transparent medium, for
which the Fresnel coefficients reduced to very simple forms. In this section we retain the
possibility that @, is not necessarily close to resonance, and in this way the results will be a
generalization of the results from the previous section. We shall assume again that the
medium is transparent, y is small and all waves are traveling. Far off resonance the medium is
effectively vacuum, which implies Z;5, =7, =1 and that all other Fresnel coefficients
vanish.

The resonant behavior is governed by the parameters 77; and 7, for s-waves and by ¢
and ¢ for p-waves, whereas the wave numbers x,, K, Koo and kg, in the matrices Fj
and F), are more or less geometrical factors. Care should be exercised in approximating the
phase factors exp(tid,,) and exp(ig,. ), so for the time being we leave them as they
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stand. Let us first consider 7; and 7, , which are related according to 7= —pznz . Far off
resonance the values of 77| and 77, are finite, but on resonance they are proportional to 1/y,, .
Then we recall that 777 and 77, are always multiplied by y* and y, respectively, which
means that far off resonance their contribution is negligible. Therefore, for | p—1|>>y, we
can approximate 77; and 7, by any finite value, and for | p—1|<<y, we can replace the
relation 7= —p2772 by

m=-m . (26.1)

Since off resonance the values of 77| and 77, are irrelevant, we can use approximation (26.1)
for the entire frequency range. In Eq. (16.6) we can set ¢+ 2y, =1. Then we notice that the
factor (2 p}/o)2 under the square root sign only contributes for | p—1| <<y, , and therefore
we can replace it by 47/3 . The parameters 77; and 77, only contribute for p~1, so that we
can also set ,02 —1=2(p—1), if necessary. Combining everything gives

I
p-1+8(p-1)2 +72

m = : (26.2)

which is considerably simpler.

For p-waves the matrices Fp and Gp contain the parameters ¢; and ¢;, i = 1,...4,
which depend on the resonance parameters &; and §5. Along the same lines as above,
although much more involved, we can derive that ] = —¢5, and

.- 1+ 2K||2 263)
? p—1+5\/(p—1)2+702(1+21(“2)2 '
For the g-parameters we find
q1=91=94=44=1, (26.4)
—42=—q2=q3=q3=¢2 , (26.5)

which leaves us with ¢, as the only resonance parameter for p-waves. The wave numbers
Kqo and kg, depend in a complicated way on the various parameters, but the deviation
from their vacuum values x, and xj, , respectively, is of the order of y,, . Since there is no
resonance behavior in the wave numbers, we can set

Koo =Kqg» Kpo =Kp » (26.6)

to a good approximation. This approximation can be made in the matrices Fy and F),, but
not in the corresponding phase factors ¢, and ¢z .
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If we substitute all approximations in the matrices F; and F,, then it appears that the
equations for s-waves and p-waves are identical in form. The p-wave matrices follow from
the s-wave matrices through the substitution

m—6, Pos = ¢ap > ¢ﬂs - ¢ﬂp > (26.7)

and the same holds for the resulting Fresnel coefficients. Within the approximations of this
section, the following Fresnel coefficients vanish

Zip=0, Z3p=0, R,=0, Nye%=0, (26.8)
which generalizes Eq. (25.2). The remaining Fresnel coefficients are

ei(¢as _¢,Bs)

Zis = n? 4 e 95 (269)
Z3, = ) : (26.10)
702 7722 + ¢/ Pas0ps)
. 1= o @as=0p)
e y2nk e e 0ps) eo1D
T e o 0* 5 ﬂzé)e_i¢ﬂs , (26.12)
73 '722 + ¢ Pas0ps)

and this generalizes Eqgs. (25.3)-(25.6). The results for p-waves follow then from Eq. (26.7).
Far off resonance, 77, remains finite, and therefore y*7, — 0 and )/02 7722 — 0. We then have
Z{s =T, =1 (because then ¢, =@, ), and the other Fresnel coefficients vanish, as it should
be. On the other hand, on resonance we have y*1, = 5exp(-if,) and 7/02 7722 =1, and in this
limit we recover the results from the previous section.

We see from Eq. (26.11) that £, =0 for exp[i(dys — ¢,Bs )]=1, and it is easy to verify that
| P | is maximum for exp[i(¢ys — $p,)]1=—1, which is ¢, — g, = (2n+1x, n integer. For
a fixed value of the frequency, this leads again to conditions for the layer thickness or angle
of incidence that optimizes the pc-wave, as in Egs. (25.22) and (25.24), respectively. Under
the same condition, the absolute values of the other Fresnel coefficients are also maximum,
and the Fresnel coefficients themselves are given by
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Zy =— (26.13)
1=y n,
yn
Z3 = (26.14)
Yoty —1
. 2
F=y m——5 - (26.15)
Yot —1
2.2
; —ig, 1+
T, iba =g as _TV0 (26.16)

2. 2"
1_70 m

For perfect resonance, we have 702 7722 =1, and all Fresnel coefficients are infinite, but for
p#1 they remain finite. Seen as a function of the angle of incidence, the condition
Pas —9Pps = (2n+1)7r determines the values of ¢; where the maxima appear, similar to Eq.
(25.24) for the case of resonance. Here the condition also involves p, since these phases
depend on p. However, the values of the maxima, as given by the absolute values of the right-

0
0.98 0.99 1 1.01 1.02

Figure 14: Illustration of the frequency dependence of | P | (thick line) and | P, |
(thin line) for £ =1, y =0.01, / =660 and 6; = 45°. The peak heights are clearly
different for s- and p-waves.
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Figure 15: Graph of | P | as a function of v, for the same parameters as for Fig. 14,
except here / = 942. This change in / turns the strong maximum at v=1 into a
minimum.

hand sides of Egs. (26.13)-(26.16), do not depend on the layer thickness or the angle of
incidence. This explains why all peaks in Figs. 12 and 13 appear to have the same height. For
p-waves this is only approximately true, since ¢, replaces 77, , and we see from Eq. (26.3)
that £ has a dependence on 6; through ) =sind;. For the parameters of Fig. 12 we have
from Eq. (26.2) 1, =—1201.3, and with Eq. (26.15) this yields | P, |=3.00, in excellent
agreement with the graph. Similarly, for Fig. 13 we find 77, =—-1612.0 and | P; |=30.0.

The relation @y5 —@p; =(2n+1)7 also predicts maxima for certain values of p, because
these phases depend on p, although in a complicated way. Figure 14 shows a typical
frequency dependence of the reflection coefficients |[Fy| and |P,|. We see a strong
resonance near v = 1, and the peaks have a width of order of y,, . Since y,, can be very small,
a phase conjugator can be used to construct a narrow-band frequency filter [104]. We also see
the appearance of side bands. The peak heights of the peaks at the resonance v = 1 should be
given by Egs. (25.20) and (25.21), but the value of y,=0.01 is too large for the
approximations of Sec. 25 to hold. The very sensitive dependence on the various parameters
is illustrated with Fig. 15, where, compared to Fig. 14, only the value of the layer thickness is
changed slightly. We see that the strong peak at v =1 has disappeared, and has now become a
minimum. Figure 16 shows the same graph, but then for p-waves. Here, the peak at the
resonance frequency has come back, but it is still much weaker than the two nearest side
bands. This possible disappearance of the pc-signal at resonance was confirmed
experimentally [105].
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Figure 16: Same as Fig. 15, but here for p-waves. We see that for p-waves the
maximum at v=1 does not disappear, but it is considerably smaller than the first
side bands.

Re

-6 -4 -2 0 2 4 6

Figure 17: Polar diagram of P in the complex plane for the same parameters as in
Fig. 14. At resonance, v=1, the value of P is negative imaginary, as indicated by
Eq. (25.20) (we have 49[, =0). The arrows indicate the direction of increasing v.
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An interesting way of depicting the Fresnel coefficients as a function of the frequency is
by a representation as a polar plot in the complex plane. Figures 17 and 18 show the polar
diagrams of P, for the same parameters as in Figs. 14 and 15, respectively. The value of P,
at resonance is on the negative imaginary axis, as follows from Eq. (25.20). As the frequency
increases or decreases, the curve spirals into the origin. After every turn of 360°, the curve
goes through the origin, which corresponds to a zero of the graphs in Figs. 14 and 15. We see
that in the complex plane, the value of P, varies smoothly throughout the plane, and in a non-
trivial way, as has been known for a while [106].

For the intensities of the various waves on resonance we found the inequalities (25.14)
and (25.15). For arbitrary p we have from Egs. (26.12)

2 2.2
2 (+72n))

T, | =
U+ 72 0,0)* =272 17 11— c08(ds — )}

>1, (26.17)

which is larger than unity at any frequency. For the phase-conjugated wave we find from Eq.
(26.11)

Re

Figure 18: Same as Fig. 17, but for the parameters of Fig. 15, and the frequency
range limited to 0.99 <v <1.01. The resonance value is still on the negative
imaginary axis, but it does not correspond to a maximum of | P | anymore.

350



Phase Conjugation in a Layer of Nonlinear Material 351

1- COS(¢aS - ¢ﬂs)
(+y2n, )2 —2y2 7, > {1 coS(fg ¢ﬂs)}

|B P =2y2 772 (26.18)

which can be anything in between zero and infinity. Most remarkably is that from Egs.
(26.17) and (26.18) we obtain

2 2
Ty |7 =B |7 =1, (26.19)

as Eq. (25.19) for the limit of close resonance. Since the results for p-waves follow from the
substitutions shown in Eq. (26.7), this identity also holds for p-waves.
Finally, we mention that P, from Eq. (26.11) can be written in the alternative form

Sin[ (dzs — 9 )]

P=—iy*n (26.20)

( as— Yps ’
coslL (s ~ B )] + L7272~y 7o)

which displays more clearly that P, reduces to the earlier result (25.5) in the limit p —1.

27. SPECULAR WAVE

The most essential features of the amplitudes of the various waves are exhibited in the
approximate solutions (25.2)-(25.6), and the expressions from the previous section
incorporate the main characteristics for off-resonance excitation. Nevertheless, Eq. (26.15)
still predicts P, =co for a peak located at perfect resonance, whereas the exact solution
remains finite. Considerable deviations from the previous results can already occur for values
of yas low as 10 =3 In this section we look at the value of R, which is predicted to vanish
by Eqgs. (25.2) and (26.8). Figure 19 shows | R, | as a function of v, and for y =0.01. We see
that | Rg| is not really small, due to the finite y and another interesting feature is that the
maximum appears well off resonance. Figure 20 shows the polar diagram in the complex
plane of R as a function of v, and for the same parameters as in Fig. 19. This apparent
erratic frequency dependence only follows from considering the exact solution for finite but
small y. Figure 21 shows | R, | as a function of the angle of incidence, and we notice that a
sharp peak appears near @; = 75°. For this graph we took v—1=0.0015. For smaller values
of v—1, the sub-peaks near 90° disappear, and the main peak gets sharper and higher, and
moves closer to 90°. Obviously, such subtleties require a more detailed analysis of the
solution for Ry than given by the approximations presented in this paper, for which we only
find R =0
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Figure 19: Graph of the absolute value of the reflection coefficient for s-waves, as a
function of the frequency v. The parameters are £=1, y =0.01, / =942 and
0; = 45°, which are the same as for Fig. 15.
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Figure 20: Polar diagram in the complex plane for R as a function of v, with
0.99 <v <1.01, and for the same parameters as in Fig. 19.
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: o
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Figure 21: Illustration of | R | as a function of the angle of incidence, for £ =1,
y=0.05, /=10 and v =1.0015.

28. EVANESCENT WAVES

In the general solution, both traveling and evanescent waves are included in one
formalism, but it appears that the approximate expressions for the Fresnel coefficients are
different in form for evanescent waves than for traveling waves. In this section we consider
K> 1, e.g., the incident wave is evanescent, and a transparent medium (& =1) with y small,
which is the same situation as in Sec. 26. We shall also assume that the layer thickness is
many wavelengths. Since we shall allow for an arbitrary frequency detuning, it can happen
that the @y, -waves are traveling (x, real and x, imaginary). However, it turns out that in
that case the Fresnel coefficients for the traveling waves are zero, up to order y,, . The same
conclusion holds for a traveling incident wave and other evanescent waves, so that either all
waves are traveling or all are evanescent. Along similar lines as in Sec. 26 we find

Z15=0, Z;O_ =0, R,=0, P,=0, Naei¢b =0, Tae—i¢a =0, (28.1)
and for s-waves we obtain

1

Zys = (28.2)

B

2.2
L+y5m,
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Figure 22: The two non-zero Fresnel coefficients for evanescent waves, as a function

of the frequency. The parameters are ¢ =1, y=0.01, / =10 and x” =2.

*
75, =% , (28.3)
L+y5m,

The results for p-waves follow from the substitution 7, — 75, as in Eq. (26.7). Referring to
Fig. 7, we notice that the only waves, other than the incident wave, inside the medium
survive, which are the ones that seem to emanate from the surface z = 0. Far off resonance we
find Z;; -1, Z5, — 0, as it should be. On resonance we have 7/02 7722 =1, and Egs. (28.2)
and (28.3) reduce to

1 S R
Zjy =5 Zys =55e o (28.4)

showing that both waves have equal intensity. The frequency dependence is entirely
accounted for by 77, , unlike for traveling waves where we also had a p dependence in the
phases ¢, and @p . For s-waves there is no dependence on K> but for p-waves the
parameter §, has a K| dependence, as can be seen in Eq. (26.3). Figure 22 shows the two
Fresnel coefficients as a function of the frequency.
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29. BICHROMATIC SOLUTION OF PLANE WAVES

The set of coupled wave equations, Egs. (11.4) and (11.5), expresses that the electric field
E (r,®) (which is in general a continuous function of ), evaluated at w=w, and at
o =y, must be related according to these equations. In analogy to the monochromatic
solutions in linear optics, it might seem that here we can find a bichromatic solution, such that
l:?(r,a)) <« o(w—-w,) around w=w,, l:',‘(r,a)) o« o(w—awp) around w=wp, and zero
elsewhere. If we would substitute this into the more general equation (11.1), then the left-
hand side would be proportional to 6(@w —@,) and the right-hand side to J(@w —wp), which
shows that the two delta functions would not cancel. Also, a solution of this form does not
obey the condition (3.4) for E (r,m) . Equation (3.4) expresses that if we are given the field at
o =w,, then we also know the field at @ =—-w,, and vice versa. A bichromatic solution
must have the form

E(r,0)= E(r,0,)8(0—a,) + E(r,0,)5(®-o,)
+ E(r,0p)8(0—wp) + E(r,0)5 (0 —wp) . (29.1)

Here we have introduced w, =—-ay, and wj, =—w,, so that @, and w/ are positive and @y,
and @y, are negative. Then we have o, +w, =2® and wp + @y =—2m , which shows that
o, and @/ are symmetrically located around @ , and @y and @p have —@ in their middle.
In the notation of Eq. (29.1) it should be understood that l:?(r,a)a) is meant to be the
amplitude of E(r,0) at o= ®, , and not E(r,o= ®,). When we substitute the right-hand
side of Eq. (29.1) into the top line of Eq. (11.1), then both the right-hand side and the left-
hand side have a term proportional to §(w—®,) and a term proportional to S(w—-w,).
Therefore, we can separate the equations for w, and @, , and then the delta functions cancel.
The equation at @, is then exactly Eq. (11.4). In the same way, the bottom line of Eq. (11.1)
reproduces Eq. (11.5). Then, from E (r,a))* =FE (r,—®) we have the relations

EA(r,a)['l) = E'(r,wb)* , l:?(r,a)l;) = l:f(r,a)a )* . (29.2)

For the positive frequency part of the field, only the contributions of @, and @/ contribute,
and with Eq. (3.5) we find

E(r,t)) = %[é’(r,wa)e_iw”t v E(r,ap) el } , (29.3)
T

in terms of a solution E(r,a)a) , E(r,a)b) of the set (11.4), (11.5). For the field itself we add
the negative frequency part, as in Eq. (3.7), and this is equivalent to
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E(r.f)=—Re [E(r,wa)e_iwat + E(r,ap) ¢ 1@t } , (29.4)
T

in view of Eq. (3.6).

For the situation where the layer is illuminated by a monochromatic polarized plane wave
of the form (18.1), the solution for E(r,a)a) and E(r,a)b) in z > 0 takes the form as given
by Egs. (19.4) and (19.5). Then the field in z > 0 is explicitly

o€o,pc

1 i . o —kE r—a)!
E(r,t)=—Re Eegel(kr @af) +ER0e0’,,el(k”r @al) | ¥ p¥ ek el( kper w”t)] (29.5)
7

This shows clearly that the frequency of the pc-wave is @, . If the wave is traveling, then its
wave vector is real, and equal to —k pe - For p ~1 we have —k pe = —k , as shown in Sec. 18,
and therefore the incident wave and the phase conjugated wave are almost counterpropagating
indeed. Interference between the two waves gives rise to observable fringes [107,108].

30. HELICITY

When the incident field is s- (p-) polarized, then all other waves are also s- (p-) polarized.
As pointed out in Sec. 1, below Eq. (1.4), a well-operating phase conjugator does not only
reverse the propagation direction of the incident wave, but it also conjugates the polarization
vector, if complex. As pointed out by others [109,110], this implies that a phase conjugator
should preserve the handedness, or helicity, of the wave. Whether or not the phase conjugator
under discussion does that is hidden in the s-p formalism. In order to investigate this question,
we first consider the reflection of a polarized plane wave with arbitrary polarization.

Equation (29.5) represents the field in z > 0 for either s- or p-polarized waves. Since the
coupled wave equations are linear in the fields, an arbitrary superposition of solutions is again
a solution. We replace E by E, and sum over o. The first term on the right-hand side of Eq.
(29.5) then contains the factor ZG E e, , which we write as

E e.=rmE & , 30.1
(oo o
o

with £, >0, and & normalized as ¢-&*=1. Then E, is the amplitude of the incident field
and &is the polarization vector. Given E,, and g, E follows from

Es=nE,(s-e;) , (30.2)

since the polarization vectors e, are normalized as e, -e; =1 (without the star). So we set
E—>rnE,(¢ es;) inEq. (29.5) and sum over o This yields
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E(r,t)=E,Re ge!kr=wal) | ik r=aa0) ZRJ (6-e5)eq

o =Ss,p
" ei(_kpc~r—ﬂ)at) ZP:- (8* . e;)ez_)pc , (303)
O :S,p
where we have used
D (eep)eg=¢ . (30.4)

o =S5,p

Then we introduce the (unnormalized) polarization vectors for the »-wave and the pc-wave by

&= D Ro(e-e5)eq, (30.5)
o=s,p
k * *
Epe= Y Pr(E"eg)eq pe - (30.6)
o=5,p

The three contributions to the field of Eq. (30.3) are then
E(r,)ipe = E,Re g/ * ") | (30.7)
E(r,t), =E,Reg, ¢! *rT=@l) (30.8)

E(r,0) pe = EgRegpe e 770! (30.9)

in obvious notation.

In order to see what happens to the helicity upon reflection, let us consider traveling
waves, and normal incidence. Let us take the x- and y- directions as the directions of the unit
p- and s- polarization vectors of the incident wave. It then follows from Fig. 23 that the other

p-polarization vectors are e, ,,. =e, and e, , =—e, . The polarization vectors for s-waves
are all the same, e;; =e,,. Since for normal incidence, there is no distinction between s-
)

polarization and p-polarization, the corresponding Fresnel coefficients must obey

P, =P, (30.10)
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(30.11)

The minus sign on the right-hand side of Eq. (30.11) is a consequence of the sign conventions
for the polarization vectors, as follows most easily from Fig. 23. The polarization vectors for
the r-wave, Eq. (30.5) and the pc-wave, Eq. (30.6), then simplify to

& =Ry& , (30.12)

Epc=Fe" . (30.13)

Then we write Ry =R, exp(i¢), By =F,exp(i¢,.), with R, >0, F, >0, and the phases
real. The r-wave and the pc-wave then become

E(r.1), =E, R, Re g'krT=Cal*0r) (30.14)

E(r,0) po = By ByRe g" ¢ ¥pe @l ~0pe) (30.15)

For the polarization vector of the incident wave we now take, as an example, the spherical
unit vector

g:—i(exmy) . (30.16)

7

To see the rotation of the E vector, we set r = 0 in Eq. (30.7), which then gives

E0,8) e = —LEO {e, cos(w,t) + e, sin(w,t)} . (30.17)

7

This vector rotates counterclockwise in the xy-plane with increasing time. Since the
propagation direction is the negative z-direction, this vector rotates clockwise when you look
into the oncoming beam. Therefore, the inc-wave is right-circularly polarized. Similarly, for
the r-wave we have

E(0,1), = —LEO R, {e, cos(w,t —¢@,) + ey, sin(w,t —@,)} , (30.18)

NG

which also rotates counterclockwise in the xy-plane. But since the specular wave travels in the
positive z-direction, the E vector rotates counterclockwise when looking into the oncoming
beam, so that the r-wave is left- circularly polarized. Then, the pc-wave is
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Figure 23: Illustration of the phase conventions for the polarization vectors, as
determined by Egs. (19.1) and (19.2).

E(O,t)pc = —%Eo P, {e, cos(w,t + ¢pc) —e, sin(w,t + ¢pc)} , (30.19)
which rotates clockwise. The propagation direction is the positive z-direction, so when
looking into the beam, we see a clockwise rotation, and therefore this wave is right-circularly
polarized, just as the incident wave. This shows that the helicity is preserved for the phase
conjugated wave, unlike for the specular wave. It is interesting to notice that this conclusion
is independent of the values of the Fresnel coefficients.

31. SUMMARY AND CONCLUSIONS

We have theoretically studied optical phase conjugation by four-wave mixing in a layer
of nonlinear material. The present presentation is a greatly expanded version of an earlier
account [111]. No restrictions were imposed on the angle of incidence, the value of the
dielectric constant, the third-order susceptibility, the frequency mismatch with the pump
beams or the layer thickness. Also included is the possibility that the incident wave is
evanescent rather than traveling. Maxwell's equations for the geometry shown in Fig. 1 were
solved (almost) exactly, and this proceeded essentially in three steps.

First we worked out the expression for the third-order nonlinear polarization under the
assumption that we have two strong counterpropagating and monochromatic laser beams
incident on the medium from the left and the right. The field to be conjugated has to be weak
compared to the intensity of the pump beams. It then appears that we can derive a set of two
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coupled wave equations for the weak field only, which couple a positive- and a negative-
frequency component of the Fourier spectral distribution of the radiation. The presence of the
pumps enters the equations only parametrically through the third-order polarization, which
contains a parameter that is proportional to the third-order susceptibility and the pump
intensity.

As the second step we studied the fundamental plane-wave solutions of the coupled wave
equations. It appeared that the solutions split into two categories, which could be identified as
standard s-polarized and p-polarized waves. We found that the s-waves are transverse, but the
p-waves are not. We have derived dispersion relations for both the s-waves and the p-waves,
and we found that each has two branches, each corresponding in a particular way to the two
waves in the set. Subsequently we evaluated the relative amplitudes of the two coupled
waves, and their polarization vectors. The coupling between the waves could be expressed in
terms of resonance parameters, like 77; and 7, for s-waves, which depend in a crucial and
sensitive way on the frequency difference between the incident field and the pump beams,
and the nonlinear coupling parameter 7.

The third step involves the excitation of plane waves inside the medium by an external
field. We assumed an incident plane-wave field, with given amplitude, polarization,
frequency and wave vector (which includes the angle of incidence for traveling waves). We
have shown that, in general, an incident plane wave does not excite just a single set of two
coupled waves in the medium, but that the situation is much more complex. The general
picture is summarized in Fig. 6 for traveling and in Fig. 7 for evanescent waves. The wave
vectors, and thereby the reflection and refraction angles, follow from the requirement that all
wave vectors must have the same parallel components, and that the magnitude of the wave
vectors is determined by the dispersion relations. The only unknowns are the relative
amplitudes of the various waves, with respect to the amplitude of the incident wave, and these
are the Fresnel coefficients. They represent both the intensities and the phases of the various
waves. We were able to obtain the sixteen Fresnel coefficients by matching the fields across
the two boundaries, according to Maxwell's equations. We have studied the solutions both
analytically and numerically, and we have derived simplified expressions for limiting
situations.

APPENDIX

The numerical evaluation of the Fresnel coefficients is done by solving the set of four
linear equations, Eq. (20.3), both for s-polarization and p-polarization, by Gauss elimination
and pivoting. On the other hand, we can solve this set analytically, as indicated in Sec. 22.
The results are rather cumbersome, but of great value for the study of the properties of these
coefficients. For reference, we give the full result for the 16 Fresnel coefficients in this
Appendix.

The solution of Eq. (20.3) is formally given by
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zZ 1

- )

Zio | _ox, (Fy) 7t (A.1)
73 0

20

2y 0

This shows that we only need the first column of the inverse of F; . Therefore, the solution
can be written as

Zl+g fO‘l

Zio- _ 2k, |~ Jo2 ’ (A2)
Zrs det(F;) Jo3

A% —fo4

with f; the minor of (£ );, thatis, the determinant of the 3 x 3 matrix which remains after
row 1 and column i are crossed out in F; .
For s-waves we find

fSl :(Ka +Kas)el¢as [(Kb +Kﬂs)2 e_l¢ﬂs —(Kb —Kﬂs)z el¢ﬂs}
_702771772{ 2K gy (K + Kp)NKp + Kg)

s {(xq + K gy )(xp — Kﬂs)el¢ﬁs

—(kp —Kg5)e

(g g oy + g )e }} ’ (A3)
Js2=(Kq = Kas)e_i¢as [(Kb + Kﬁs)z e_i¢ﬁs —(kp — K gy )2 ei¢ﬁS}
_702 mm |:2K,3s(l(a +xp)Kp — Ky )

(K +Kgs)e O {1y + K g i — K g ) PP

—(Kq — K gg)(Kp + Kﬂs)e_i¢ﬁs }} , (A.4)
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fs3==r"m |:2chs (kg +Kp)icp + K gg)

— (i~ 1) P (1 + Koy )i — K

—ifos }

— (kg — Ko )Kp +Kpg)e

)ei ¢ﬂs 2 ei Pas

2
70 ’71772(Ka+Kﬂs {(xp —Kgs)

_(K-b +Kagg)2 e_i¢as }:| ,

Js4 :_7*771|:2Kas (kg +Kp)(Kp— K g5 )

—(kp + K g PP (1 + Ky i — K )€ P
(kg — Ky (K + Ky )e )
+75 i (kg — Kﬁs)e_wjﬁs Ky —Kgg) > 7

— (Kb + KaS)Z e_l¢0£S }i| ,
in terms of which the determinant of F, becomes

det(Fy) =4 (fo1 — fs2) + Kas(fs1 + f52)

+yming(fs3 = fsa) + K ps(fs3 + f5a)} -

(A.5)

(A.6)

(A.7)

The Fresnel coefficients for the fields inside the medium are then given by Eq. (A.2), and the
Fresnel coefficients for the waves outside the material follow from Eq. (20.4). In terms of the

functions fy,..., f34 we find explicitly

2,
det(Fy)

Ry=-1+

Ust = fs2 +ym(fs3 — fsa)} >

(A.8)
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Jug
2K, %
b= det(F){y m(fs1 = fs2) + fs3 = Fsat (A.9)
N
i 2K —i id i
Tye % = qer) s f =% fg @ fy =P fy (A.10)
N
] —i¢ idg¢
s e T fy = fp) e g P f (A1D)
For p-waves the functions f);...., fp4 are
~ . B » B ”
I =(g3x4 +q3Kap)el¢ap [(Q6Kb+Q6Kﬂp)ze “pr —(q6Kp —%Kﬂp)z ¢ ﬂp}
~7a |:2Kﬂp(q5‘76’(a +q5q6Kp)(qakp + qakop)
— i¢ap - = i¢ﬂp
—(qaxp —qargple " {(qskq + 45K gp N d6Kp — q6k pp)e
—(gsky -7 7 10 A12
(95K 4 — 5K pp)dekp + q6K pp)e s (A.12)
_ —ig, _ i _ ip
Fp2 =(@3Ka — G5k gp)e P [(%Kb + sk gp) e PP —(qekp —Qox pp) e ﬂp}
-4 {2K pp(a5d6Ka + q56Kp)(94Kp ~ dax,,)
B P ~ B y
—(qaKp + qakgp)e Yar {(qsicq + G5 ) q6Kb — Tk pp)e PP
—(gsky—7 7 19 A13
(95kq — 45K gp)q6kp + 6K pp)e H s (A.13)

I3 ==7"2x4p (939454 + 43945 ) (q6Kp + 6K 1)
p 1% Bp

_ i} _ _ ig,
—(aekp — 6k pp)e P {(a3Ka + T3KapNqaxp — qakgple

363



364 Henk F. Arnoldus and Thomas F. George

_ _ —ig
—(q3K4 — QSKap)(‘MKb + Q4Kap)e ap}
2 ¢ap

+72 (g5K4 +qsz<ﬂp>e P80 {(qurcy - Qakgp)”e

— 2 —ig,
—(94Kp + qa4kgp) e “p}} ;

fpa=-v *[2"ap (9394% 4 + 43945965 — A6K pp)

_ —ig _ _ i¢,
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2 — 2 i,
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in terms of which we obtain
det(F) = g3k (fp1 = fp2) + @38 p(fp1 + [p2)

+ 7{q5Ka(fp3 _fp4) + qSKﬂp(fpS’ +fp4)} >
and

2K

R,=-1+ dt(F){q3(fp1 Jp)+ras(fp3—Spa)} s

L9 «
P = Gaiy 4 = o)+ 46U = )

Tp _l¢“ =d ‘[(F ){ ( l¢apfpl ¢apfp2)

ryaste PP frs =P 1L

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)
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) 2 —i¢y P,
pel% =—detf;p){7*94(e & P fo i P fp2)

(A.20)

+Q6(6_i¢ﬁpfp3 _ei¢ﬂpfp4)}
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