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ABSTRACT 

We have studied theoretically optical phase conjugation through four-wave mixing in a 
slab of nonlinear material. When two strong counterpropagating laser beams irradiate a 
nonlinear crystal, the third-order susceptibility is activated, and can couple to an external 
weak probe field. A four-wave mixing process then generates a phase-conjugated or 
time-reversed replica of this incident probe field. We have investigated the mechanism of 
the production of phase-conjugated radiation in such a configuration by solving the 
nonlinear Maxwell equations for the electric field. The electric field in the material 
satisfies a set of two coupled wave equations, which couple positive and negative 
frequency components of the electric field. It is shown that the polarization of the pumps 
and the tensorial nature of the interaction can be accounted for by a simple polarization 
operator in the wave equations. Maxwell's equations for the field in the layer admit plane-
wave solutions, although the dispersion relations are very different from the usual linear 
relation between the frequency and the wave number. The coupling between the two 
waves exhibits a strong resonance near the frequency of the pump beams. These plane-
wave modes can be matched across the boundaries to the probe field and the reflected 
and transmitted waves, which we will assume to be plane traveling or evanescent waves. 
The response of the material can then be expressed in terms of Fresnel reflection and 
transmission coefficients for both s- and p-polarization. We have derived simple matrix 
equations for the set of Fresnel coefficients, which can be solved numerically, and we 
have also obtained closed-form analytical solutions for the various Fresnel coefficients. It 
is indicated that our solutions reduce to earlier results in the appropriate limits.  
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1. INTRODUCTION 

When an electromagnetic wave travels through a medium, like the atmosphere, an optical 
fiber, or an amplifier, it builds up distortions during the propagation due to, for instance, 
inhomogeneities in the index of refraction of the material. Since Maxwell's equations for 
wave propagation are time-reversal invariant, it should be possible, in principle, to erase these 
distortions by sending the wave back through the medium and forcing it to evolve according 
the time-reversed Maxwell equations. This procedure would require, however, that the 
distorted wave which is incident on the medium for the second time is the time-reversed 
replica of the distorted wave, rather than the distorted wave itself. For this reason it is of great 
practical importance to develop techniques for the time reversal of wavefronts.  

Devices which generate a time reversed wave for a certain input wave are collectively 
called 'phase conjugators', for the following reason. Let the electric field vector of a plane-
wave component of a propagating electromagnetic wavefront be of the form 

 
)(Re),( ti

oinc eEt ω−⋅= rkrE ε  , (1.1) 
 

where the amplitude oE , the wave vector k, and the angular frequency ω are real. The 
polarization vector ε can be complex, and the notation inc indicates the incident wave. The 
corresponding time reversed image is then 

 
)(Re),(),( ti

oincpc eEtt ω+⋅=−= rkrErE ε  , (1.2) 

 
which is the same as 

 
)(*Re),( ti

opc eEt ω−⋅−= rkrE ε  , (1.3) 

 
and this is again 

 

( ) tii
opc eeEt ω−⋅= *Re),( rkrE ε  . (1.4) 

 
It is seen that replacing t by -t is equivalent to taking the complex conjugate of the spatial part 
(the phase) of the wave, and hence the name 'phase conjugation'. For an arbitrary wave this 
can be done for each plane-wave component of the spatial Fourier spectrum. It follows from 
Eq. (1.3), when compared to Eq. (1.1), that the phase conjugated (pc) wave has -k as its wave 
vector, and therefore this pc wave travels in the direction opposite to the inc wave, as could 
be expected from a time-reversed replica. Another important observation that follows from 
Eq. (1.4) is that the polarization vector ε also has to be conjugated in order to obtain the 
correct time-reversed behavior.  

The first experimental demonstration of wavefront-distortion correction after phase 
conjugation was given by Zel'dovich and co-workers in 1972 [1]. They distorted the 
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wavefront of a laser beam by letting it pass through an etched glass plate. Subsequently, the 
beam was sent into a cell with methane gas, which produced backscattered light via 
stimulated Brillouin scattering. This backscattered light was then sent through the glass plate 
in the opposite direction, and it appeared that the distortions had disappeared. They concluded 
that the cell operated as a phase conjugator.  

After this experimental milestone, the field of optical phase conjugation developed 
rapidly. Phase conjugation in liquid CS2 by Brillouin scattering [2] and Raman scattering [3] 
was demonstrated experimentally, and in 1977 Hellwarth [4] and Yariv and Pepper [5] 
proposed to construct a phase conjugator based on four-wave mixing in liquids or crystals. 
The great advantages of that scheme, as compared to Brillouin scattering, are that the 
response time of the medium is negligible, the frequency shift with the acoustic frequency of 
the medium is absent, and the required laser power is much less. Compared to three-wave 
mixing, four-wave mixing has the advantage that there are no phase-matching conditions for 
the various waves. Less than a year later, wavefront reversal by four-wave mixing in liquid 
CS2 [6,7] and a lithium formate crystal [8] was realized experimentally.  

A variety of other techniques for constructing a phase conjugator have been proposed. If 
an intense laser irradiates a thin metal film on a substrate, then the reflectivity changes by an 
amount which is proportional to the local intensity. In this fashion, the intensity pattern of the 
beam can be written on the film, and it can be shown that one of the reflected waves is the 
time-reversed replica of the original wave [9,10]. Another method of phase conjugation in 
thin films is described in [11,12]. A metal surface is coated with a thin layer of a nonlinear 
transparent material. Through multiple reflections in the layer, the incident beam can excite a 
surface plasmon wave on the metal, which in turn generates a conjugated wave. A 
disadvantage of this method is that the reflection coefficient is relatively low. Besides four-
wave mixing in liquids and crystals, other bulk media have been proposed and analyzed. Heer 
and Griffen [13] observed a forward propagating phase-conjugated signal in sodium vapor, 
and Ducloy and Bloch [14,15] have studied the theoretical aspects of this configuration in 
detail. Less common media for four-wave mixing are organic dye molecules in a solid matrix 
[16] and microparticles suspended in a liquid [17]. Manneberg [18] has suggested to utilize 
the fifth-order nonlinear susceptibility of a bulk material to produce phase-conjugated 
radiation. The most extensively studied method for optical phase conjugation is four-wave 
mixing in photorefractive crystals like BaTiO3, SBN and LiNbO3 [19-29]. Here, the incident 
light liberates electrons or holes in the crystal, which move to the dark regions and form a 
local space-charge distribution. This results in local changes of the stress in the medium, 
which in turn alters the refractive index locally (Pockels effect). Scattering from this light-
induced diffraction grating can then produce a phase-conjugated signal. Although these phase 
conjugators are usually operated in the four-wave mixing configuration, in principle there is 
no need for external pumps. A self-pumped phase conjugator was first observed 
experimentally by Feinberg [30] with a BaTiO3 crystal. Although photorefractive self-
pumped phase conjugators, based on internal reflection, can be constructed easily, it is not 
exactly clear how this mechanism works, as illustrated by the interesting measurements of 
Gower and Hribek [31]. A disadvantage of these phase conjugators is the very slow response 
time, although it can be as short as several picoseconds [32].  
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Phase conjugators are mainly designed for the purpose of wavefront-distortion correction. 
The physical mechanism of this process is intuitively easy to understand due to the analogy 
between phase conjugation and time reversal, but the theoretical justification for a realistic 
system is fairly complex [33-37]. If the incident field is a pulse, rather than a stationary wave, 
the situation is even more complicated [38-43], and can lead to instabilities [44], bistability 
[45], and deterministic chaos [46]. Also, resonators where one or more of the ordinary mirrors 
are replaced by phase-conjugating mirrors have been studied [47-51]. A remarkable effect 
was predicted [52-54] and confirmed experimentally [55,56]. If light is incident upon an 
ordinary mirror (dielectric), and a phase conjugator is placed behind the mirror, then the usual 
specularly-reflected wave disappears completely if the reflectivity of the phase conjugator 
equals unity.  

These days, phase conjugators are readily available commercially, and they have become 
a standard device in optical experiments. For the numerous applications of optical phase 
conjugation and the many ways of constructing phase conjugators we refer to the existing 
reviews on this topic [57-61]. The subject has also found its way into the modern literature on 
nonlinear optics [62-64]. Another application of phase conjugation, and of a more speculative 
nature, is phase conjugation of atomic or molecular radiation [65,66]. When an exited atom 
decays to the ground state, it emits a photon. If this atom is placed near a phase conjugator, 
this photon can reflect at the phase conjugator. Based on the argument of time reversal, this 
photon will focus back on the atom, and it can be re-absorbed. It has been predicted that this 
would effectively increase the lifetime of the excited state, a phenomenon which could be 
potentially interesting for enhancement of chemical reactions. It turned out, at least in theory, 
that this intuitive prediction is incorrect, and that in effect lifetimes become shorter [67-70], 
although this conclusion has met some controversy [71-73]. The reason for this lies in the fact 
that near a phase conjugator also the vacuum field acquires a phase-conjugated image, 
containing real photons. This phase-conjugated vacuum, sometimes referred to as quantum 
noise [74], induces a more rapid decay from the excited state to the ground state, thereby 
reducing the lifetime. On the other hand, it also induces upward transitions, which leads to a 
permanent population of the excited state of the atom, simply because the atom is located near 
a phase conjugator. We have proposed [75] an experimental scheme to measure this 
spontaneous excitation of atoms through a measurement of the probe absorption profile. 
There must be a second line in the profile, which appears at a different frequency than the 
natural absorption line when the pump beams of the four-wave mixer are slightly off 
resonance with the atomic transition. Any observation of this second line in the profile would 
confirm a spontaneous population of the excited state in a phase-conjugating environment (it 
should be noted that it is essential that the phase conjugator is of the four-wave mixing type, 
as described below). When an atom is pumped continuously by a laser, it emits steady-state 
resonance fluorescence with a three-line spectral distribution, known as the Mollow triplet 
[76]. We have shown [77] that the phase-conjugated image is again a triplet, although the 
lines in the image are shifted with respect to their original locations.  
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2. DESCRIPTION OF THE PHASE CONJUGATOR 

When a phase conjugator is needed for a specific system, like a light amplifier, then a 
self-pumped photorefractive crystal or a four-wave-mixing Brillouin mirror [78] are probably 
among the best choices. In other situations, such devices might not operate adequately. For 
instance, if the phase conjugator is applied as one of the mirrors in a resonator, then photons 
can be incident on the phase conjugator under any angle of incidence, and the field to be 
conjugated can be very weak. In this case, the above-mentioned choices don't work, due to 
the requirements on the angle of incidence and the high threshold for the input power. In this 
paper we investigate in very detail the properties of a realistic phase conjugator, operating in 
the four-wave mixing configuration. We put no restrictions on the angle of incidence, like in a 
paraxial approximation, or on the polarization, and we allow the field to have evanescent 
components. These evanescent waves have attracted much attention recently due to the rapid 
developments in near-field optics, where the evanescent part of the radiation field plays a 
crucial role. It has become necessary to study the phase conjugation of evanescent waves, in 
addition to the more common situation of pure traveling waves [79-81, 35]. We shall consider 
both types of input waves within a single theory. Furthermore, a dielectric constant other than 
unity is included, and the full tensorial nature of the interaction is accounted for (with some 
slight approximations). Also, the common slowly-varying amplitude approximation has been 
avoided.  

The situation under consideration and the choice of coordinate system is illustrated in 
Fig. 1. Two strong monochromatic counterpropagating laser beams (the pumps) illuminate 
the sides of a nonlinear transparent medium. The slab has a thickness ∆ in the z-direction, 
extending from z = 0 to z = -∆, a width L along the propagation direction of the beams, which 
we shall take as the y-direction with the medium occupying the region -L/2 <y < L/2, and is 
infinite in extend perpendicular to the page of the figure. A weak field is incident on the layer 
from the positive z-direction, and the four-wave mixing process inside the medium is 
expected to generate the phase-conjugated image of this field. Since the coupling of the 
various waves through the nonlinear interaction is tensorial, the operation of the phase 
conjugator will depend on the polarization of the pumps. In order to retain the symmetry for 
rotation about the z-axis, we take the pumps to be linearly polarized in the z-direction.  

To be specific, for the electric components of the two incident counterpropagating pump 
fields we take 

 
)(

11 Re),( tyki
z eEt ω+−= erE  , (2.1) 

 
)(

22 Re),( tyki
z eEt ω−= erE  , (2.2) 

 
so that field 1 (2) with complex amplitude E1 (E2) propagates in the -y (y) -direction. Both 
waves have a wave number k  and corresponding angular frequency 0>= kcω . It is 
assumed that the pumps illuminate the two sides y = L/2 and y = -L/2 evenly, and that the 
fields are zero in the regions z > 0 and z < -∆. The nonlinear material (to be specified below), 
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Figure 1: Schematic setup of a phase conjugator based on four-wave mixing in a 
nonlinear crystal. Shown are the two pump beams (labeled 1 for the beam coming 

from the right, and labeled 2 for the beam incident from the left) and the weak 
incident light.  

together with the two pumps, forms the phase conjugator.  

3. MAXWELL'S EQUATIONS 

Radiation inside and outside the medium is represented by its electric and magnetic field 
components, ),( trE  and ),( trB , respectively, and charges and currents in the medium are 
described by a polarization field ),( trP . It will turn out to be convenient to work with the 
time-Fourier-transformed fields, defined as 

 

∫
∞

∞−
= ),(),(ˆ tedt ti rErE ωω  , (3.1) 

 
with inverse 

 

∫
∞

∞−

−= ),(ˆ
2
1),( ωω
π

ω rErE tiedt  . (3.2) 

 
Since the electric field is real 

 

),(),( * tt rErE =  , (3.3) 
 

we have in the Fourier domain 
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),(ˆ),(ˆ * ωω −= rErE  . (3.4) 
 

On occasion we will need the positive frequency part of ),( trE , which is defined as 
 

∫
∞

−+ =
0

)( ),(ˆ
2
1),( ωω
π

ω rErE tiedt  , (3.5) 

 
and the negative frequency part, which is the same integral but over the range 0<<−∞ ω . 
From (3.4) we then have  

 

( )*)()( ),(),( +− = tt rErE  , (3.6) 
 

and therefore the total field is 
 

)()( ),(),(),( −+ += ttt rErErE  , (3.7) 
 

which can also be represented as 
 

∫
∞

−=
0

),(ˆRe1),( ωω
π

ω rErE tiedt  . (3.8) 

 
In this last form it is most obvious that we need the field for positive frequencies only, 
although we shall see later that it is convenient for the present problem to use both positive 
and negative frequencies. The magnetic field and the polarization will be transformed 
similarly.  

The three fields are related by Maxwell's equations, which read in the Fourier domain 
 

),(ˆ),(ˆ)),(ˆ( 2

2

2

2
ω

ε

ωωωω rPrErE
occ

=−×∇×∇  , (3.9) 

 

),(ˆ),(ˆ ω
ω

ω rErB ×∇−=
i  . (3.10) 

 
This set of two equations is equivalent to the more commonly encountered set of four 
equations [82]. Equations (3.9) and (3.10) have to hold simultaneously, and for all r and ω. 
The expression for ),(ˆ ωrP  inside the medium will be derived below, and outside (vacuum) 
we set ),(ˆ ωrP  = 0. At the boundaries z = 0, z = -∆, y = -L/2 and y = -L/2, Maxwell's 
equations imply that ⊥+ )/ˆˆ( oεPE , ||Ê  and B̂  must be continuous across the boundary. In 
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addition, we have the requirement that without the medium the solution must reduce to the 
sum of the two pump fields plus the weak incident field.  

4. POLARIZATION 

Polarization of a medium is caused by the presence of an electric field, which induces 
dipole moments in the atoms or molecules. Therefore, it should be possible to express ),( trP  
in terms of ),( trE , and the most general (local and causal) relation in the Fourier domain is 
[83,84] 

 

∫ ∫
∞

∞−

∞

=

∞

∞−
−

−−= ∑ )...(...
)2(
1),(ˆ 1

1
11 nn

n
no dd ωωωδωω

π
εωrP  

 

             ),(ˆ)...,(ˆ:),...,(ˆ 11
)(

nn
n ωωωωχ rErE×  . (4.1) 

 
Here, ),...,(ˆ 1

)(
n

n ωωχ  is the n-fold Fourier transform of the n-th order susceptibility function, 
which is a Cartesian tensor of rank n+1, and the colon in Eq. (4.1) indicates the tensor 
product with the n electric field vectors at the different indicated frequencies. It is assumed 
that the medium is homogeneous, so that ),...,(ˆ 1

)(
n

n ωωχ  is independent of r.  
As a first simplification, we assume that the medium is inversion invariant. Then it 

follows immediately that all even susceptibilities )2(χ̂ , )4(χ̂ ,... are identically zero [83,84]. 
Furthermore, we know that the values of )(ˆ nχ  decrease very rapidly with increasing n, so it 
is perfectly justified to retain only the n = 1 and n = 3 terms in Eq. (4.1). We write  

 
)3()1( ),(ˆ),(ˆ),(ˆ ωωω rPrPrP +=  , (4.2) 

 
in obvious notation.  

The two remaining tensors )1(χ̂  and )3(χ̂  have 32 = 9 and 34 = 81 Cartesian 
components, respectively, which are all different functions of one and three frequencies, 
respectively. As a second assumption we take the medium to be isotropic, e.g., invariant for 
inversion in a plane and for rotation about an axis. Then it can be shown [83, 84] that )1(χ̂  
has only three non-zero Cartesian components, which are all equal, and that )3(χ̂  has 21 non-
zero components. Among these 21 components there are only three different ones, which are 
not even independent. With the relations listed in [83, 84], it is relatively easy to derive that 
the two tensor products reduce to 

 

aa )(ˆ:)(ˆ 1
)1(

1
)1( ωχωχ xx=  , (4.3) 

 

bcaacbcba ))(,,(ˆ))(,,(ˆ:),,(ˆ 321
)3(

321
)3(

321
)3( ⋅+⋅= ωωωχωωωχωωωχ xyxyxxyy  
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                                      cba ))(,,(ˆ 321
)3( ⋅+ ωωωχ xyyx  , (4.4) 

 
for arbitrary vectors a, b and c. These two expressions are then substituted into Eq. (4.1). We 
can use the intrinsic permutation symmetry of the tensor components, like 

),,(ˆ),,(ˆ 231
)3(

321
)3( ωωωχωωωχ xyxyxyyx = , which holds in any medium, to change integration 

variables. Then we obtain for the two contributions to the polarization 
 

),()(ˆ),(ˆ )1()1( ωωχεω rErP xxo=  , (4.5) 
 

∫ ∫ ∫ )(
4
3),(ˆ 3213212

)3( ωωωωδωωω
π

εω −−−=
∞

∞−

∞

∞−

∞

∞−
dddorP  

 

                  )],(),()[,(),,(ˆ 321321
)3( ωωωωωωχ rErErE ⋅× xxyy  , (4.6) 

 
and we notice that only the tensor components )(ˆ )1( ωχ xx  and ),,(ˆ 321

)3( ωωωχ xxyy  appear in 
these expressions. This great simplification followed from symmetry only.  

From relation (3.4) for ),(ˆ ωrE  we find that the tensor components have the property 
 

)(ˆ)(ˆ )1(*)1( ωχωχ −= xxxx  , (4.7) 
 

),,(ˆ),,(ˆ 321
)3(*

321
)3( ωωωχωωωχ −−−= xxyyxxyy  . (4.8) 

 
It is convenient to introduce the dielectric constant of the medium 

 

)(ˆ1)( )1( ωχωε xx+=  , (4.9) 
 

which obeys 
 

)()( * ωεωε −=  . (4.10) 
 
If we substitute the above relations into Maxwell's equation (3.9), then we obtain the 

equation for the electric field 
 

)3(
2

2

2

2
),(ˆ),(ˆ)()),(ˆ( ω

ε

ωωωωεω rPrErE
occ

=−×∇×∇  , (4.11) 

 
whereas (3.10) for the magnetic field remains unchanged. For )3(),(ˆ ωrP  on the right-hand 
side we have to substitute the right-hand side of Eq. (4.6). The boundary conditions are now 
that ⊥+ )/ˆˆ)(( (3)

o),(),( εωωωε rPrE , ||),(ˆ ωrE  and ),(ˆ ωrB  must be continuous. The 
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appearance of )(ωε  in Eq. (4.11) is the standard linear contribution to the polarization. The 
nonlinear part is )3(),(ˆ ωrP , as given by Eq. (4.6). The integrand in Eq. (4.6) has three factors 

),(ˆ ωrE , each at a different frequency, and these frequencies are integrated over. Hence Eq. 
(4.11) is not a single equation for ),(ˆ ωrE  at a fixed ω, but a continuous set which couples 
every Fourier spectral component ),(ˆ ωrE  with every other one.  

5. WEAK INCIDENT FIELD 

A major complication with expression (4.6) for )3(),(ˆ ωrP  is that ),(ˆ ωrE  represents the 
total electric field at position r inside the medium. It contains contributions from (i) the 
external pump fields which propagate through the medium, (ii) multiple reflections of these 
fields at the boundaries 2/Ly ±=  when 1≠ε , (iii) the field incident from the region z > 0, 
and (iv) any radiation which is generated by the linear and nonlinear interactions. In the 
Fourier domain, the pump fields (2.1) and (2.2) attain the form 

 

})()({),(ˆ *111
ykiyki

z eEeE ωωδωωδπω ++−= −erE  , (5.1) 
 

})()({),(ˆ *222
ykiyki

z eEeE −++−= ωωδωωδπω erE  . (5.2) 
 

These fields are incident from the right and the left, respectively, on the medium. Without the 
nonlinear interaction we could apply the superposition principle, and solve for the reflection 
and transmission of the pumps and of the incident field separately. In the linear case, where 

0),(ˆ )3( =ωrP , there is no coupling in Maxwell's equations between Fourier components 
),(ˆ ωrE  with different frequencies ω, and consequently the field inside the medium due to the 

external pumps would have the form )()()()(),(ˆ * ωωδωωδω ++−= rererE , with e(r) to 
be determined by matching the boundary conditions at 2/Ly ±= . Therefore, for the present 
situation we assume that the electric field can be written as  

 

)()()()()',(ˆ),(ˆ * ωωδωωδωω ++−+= rererErE  , (5.3) 
 

with e(r) representing the strong part due to the pumps, and still to be determined, and 
)',(ˆ ωrE  the remaining weak part, also still to be determined. It should be noted that the form 

of e(r) could be affected by the nonlinear interaction.  
Next we substitute the right-hand side of Eq. (5.3) into the integrand of Eq. (4.6) three 

times (for ω = ω1, ω2 and ω3), and carry out the triple integration over the three frequencies. 
This yields a host of terms which, symbolically, are of the forms (E')3, (E')2e, E'e2 and e3. 
Under the assumption of a weak incident field, we can neglect the terms of the form (E')3 and 
(E')2e, compared to the contributions from E'e2 and e3. With this approximation, the third-
order polarization takes on the following form 

 
)3()()()()()()()(),(ˆ )3( ωωδωωδωωδωωδω +++++= ** 3-- rqrqrprprP  
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                [ )'2,(ˆ)}()(){,,2(ˆ
4

3 )3(
2 ωωωωωωχ

π

ε
−⋅−+ rErerexxyy

o  

 

                )'2,(ˆ})()(){,,2(ˆ **)3( ωωωωωωχ +⋅−−++ rErerexxyy  

 

               )',(ˆ})()()}{,,(ˆ),,(ˆ{ *)3()3( ωωωωχωωωχ rErere ⋅−+−+ xxyyxxyy  

 

               )(})'2,(ˆ)()}{2,,(ˆ),2,(ˆ{ )3()3( rerEre ωωωωωωχωωωωχ −⋅−+−+ xxyyxxyy  

 

               )(})',(ˆ)()}{,,(ˆ),,(ˆ{ *)3()3( rerEre ωωωωχωωωχ ⋅−+−+ xxyyxxyy  

 

               *)3()3( )(})',(ˆ)()}{,,(ˆ),,(ˆ{ rerEre ωωωωχωωωχ ⋅−+−+ xxyyxxyy  

 

               ),2,(ˆ{ )3( ωωωωχ −+−+ xxyy  

 

              ]**)3( )(})'2,(ˆ)()}{2,,(ˆ rerEre ωωωωωωχ +⋅+−−+ xxyy  . (5.4) 

 
Here, the abbreviations p(r) and q(r) stand for 

 

)(})()()}{,,(ˆ),,(ˆ{
4

3)( *)3()3(
2 rerererp ⋅−+−= ωωωχωωωχ

π

ε
xxyyxxyy

o  

 

       *)3(
2 )()}()(){,,(ˆ

4

3 rerere ⋅−+ ωωωχ
π

ε
xxyy

o  , (5.5) 

 

)()}()()}{,,(ˆ
4

3)( )3(
2 rerererq ⋅= ωωωχ

π

ε
xxyy

o  . (5.6) 

 
Expression (5.4) has to be substituted into the right-hand side of Maxwell's equation (4.11), 
together with the form (5.3) for ),(ˆ ωrE .  

We notice that the first two terms on the right-hand side of Eq. (5.4) contain the same δ-
functions as Eq. (5.3), and they are responsible for the nonlinear contribution to e(r), as 
compared to an ordinary dielectric. The next two terms are δ-functions at ωω 3±= , and 
these are responsible for third-harmonic generation in the medium. All terms inside the square 
brackets are proportional to a Fourier component of 'Ê , at various frequencies. In deriving 
Eq. (5.4) we have not used the specific form of the pump fields, but only that they are 
monochromatic with frequency ω , and much stronger than the field to be conjugated.  
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6. SEPARATION OF EQUATIONS 

The third-order polarization has the form 
 

)()()()()',(ˆ),(ˆ *)3( ωωδωωδωω ++−+= rprprPrP  , (6.1) 
 

which is identical in form to Eq. (5.3). If we then write  
 

)()()()()',(ˆ),(ˆ * ωωδωωδωω ++−+= rbrbrBrB   (6.2) 
 

for the magnetic field, with 
 

)',(ˆ)',(ˆ ω
ω

ω rErB ×∇−=
i  , (6.3) 

 

)()( rerb ×∇−=
ω
i  , (6.4) 

 
then Maxwell's equations are certainly satisfied if )',(ˆ ωrE  and e(r) obey the separate 
equations 

 

)',(ˆ)',(ˆ)())',(ˆ( 2

2

2

2
ω

ε

ωωωωεω rPrErE
occ

=−×∇×∇  , (6.5) 

 

)()()())(( 2

2

2

2
rprere

occ ε

ωωωε =−×∇×∇  , (6.6) 

 
simultaneously.  

We see from Eq. (5.5) that p(r) is determined by e(r), and is independent of the presence 
of )',(ˆ ωrE  in the medium. Therefore, the fields e(r) and b(r) satisfy the nonlinear Maxwell 
equations, with p(r) as the nonlinear term, and they do not couple to the weak field. At the 
sides 2/Ly ±=  of the medium the quantities ⊥+ )/)()()(( oεωε rpre , ||)(re  and )(rb  must 
be continuous across the boundary. The external fields are given by the )(re  parts of the 
pump fields, which are 

 
yki

z eE −= 11)( ere π  , (6.7) 
 

yki
z eE22)( ere π=  , (6.8) 
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for our particular choice of linearly-polarized pumps. We have to take into account, of course, 
that these fields also reflect at the boundaries. After solving for )(re , we can substitute the 
result into Eq. (5.4), which then gives us )',(ˆ ωrP  for the right-hand side of Eq. (6.5). But 
then Eqs. (6.3) and (6.5) form a set of regular nonlinear Maxwell equations for the weak 
fields )',(ˆ ωrE  and )',(ˆ ωrB , which now only depend parametrically on the solution )(re . In 
this fashion, the sets of equations for )(re  and )',(ˆ ωrE  are completely decoupled, which is a 
great simplification.  

It is worthwhile to note at this point that the separation between the sets of equations for 
the strong and the weak fields is not a consequence of the neglect of the (E')3 and (E')2e terms 
in the nonlinear polarization. The fields ),(ˆ ωrE , ),(ˆ ωrB  and )3(),(ˆ ωrP  will always have 
these δ-function contributions due to the pump fields, and these can always be singled out in a 
set of separate equations. We also mention that the 'Ê  field inside the medium has to be 
matched across the boundaries 2/Ly ±=  with an 'Ê  field outside. As we shall see later, the 
production of phase-conjugated radiation is not energy conserving, and external energy has to 
be supplied. The )',(ˆ ωrE  component of the radiation which crosses the boundaries at 

2/Ly ±= , interferes with the pump fields and this gives rise to an effective depletion of the 
pump fields. We shall not take into account this effect, but refer to the literature for some of 
the consequences of pump depletion [85-88]. This is consistent with the assumption of a weak 
incident field, and the corresponding omission of the (E')3 and (E')2e terms, since pump 
depletion can only be significant in cases where the incident field has an intensity comparable 
to the intensity of the pump beams.  

7. APPROXIMATIONS ON χ
(3)

 

Maxwell's equation (6.5) is a wave equation for )',(ˆ ωrE , which has )',(ˆ ωrP  on the 
right-hand side as a source term. A non-zero 'P̂  for a given frequency ω will therefore 
generate radiation 'Ê  at that frequency. The general form of 'P̂  ( (3)P̂  minus the two p-
terms) is given by Eq. (5.4). We shall assume that the incident field has a frequency spectrum, 
which is reasonably centered around ωω ~ , but it does not necessarily have to be in close 
resonance. In view of Eq. (3.4), the incident field then also has spectral components for 

ωω −~ . Since this radiation propagates into the crystal, the weak field has at least a non-
zero spectral distribution for ωω ±~ . The third, fifth and sixth terms in square brackets in 
Eq. (5.4) are proportional to )',(ˆ ωrE , and consequently )',(ˆ ωrP  is non-zero for ωω ±~ . 
The first and the fourth term are proportional to )'2,(ˆ ωω −rE , and if we take ωω 3~ , then 
this becomes )'~,(ˆ ωrE  which is non-zero due to the incident field. In the same way, the 
second and the seventh term give a contribution to 'P̂  for ωω 3~ − , which is induced by the 
incident field. We see that the incoming field with frequencies ωω ±~  generates a )',(ˆ ωrP  
at ωω ±~  and at ωω 3~ ± . As a source in the wave equation, this produces radiation 

)',(ˆ ωrE  at ωωω 3,~ ±± . Then again, this field 'Ê  induces polarization 'P̂  at ωω 5~ ± , 
etc. The conclusion is that the nonlinear interaction generates radiation at the harmonics 

...,5,3, ωωω ±±±  of the incident field, but not in the gaps between these peaks. The 
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unfortunate situation is that the wave equation (6.5) couples the spatial evolution and 
frequency dependence of all peaks.  

In order to resolve this complication, we assume that the medium is such that if the third-
order susceptibility ),,(ˆ 321

)3( ωωωχ xxyy  is vanishingly small if one of its arguments ω1, ω2 or 
ω3 is in the neighborhood of ω3± . Then it follows by inspection from Eq. (5.4), in the same 
way as argued above, that the equations for )',(ˆ ωrE  at ωω ~  and ωω −~  couple together, 
but that the coupling with )',(ˆ ωrE  at higher harmonics disappears. This does not imply that 
there is no higher-harmonics generation due to the incident field or the pumps (the q-terms), 
but only that the wave equations decouple.  

Although the approximation above is sufficient for the further development of the theory, 
we make a few more assumptions in order to simplify the notation. First, we suppose that ω  
is sufficiently far away from a resonance of the medium. This implies (page 58 of [84]) that 

)3(χ̂  and the dielectric constant ε are real, and that they do not vary appreciably over a large 
frequency range around ω  and ω− . Second, we assume the validity of Kleinman's 
conjecture [89], which states that ),,(ˆ 321

)3( ωωωχ xxyy  is invariant under a permutation of its 
arguments. With these assumptions, the medium is described by only two parameters, which 
are 

 
)(ωεε ≡  , (7.1) 

 

),,(ˆ )3( ωωωχχ −≡ xxyy  , (7.2) 

 
and they obey 

 

χχεε =>= ** ,0  . (7.3) 
 

The additional restriction ε > 0 expresses that the medium must be non-metallic, as is 
obvious.  

The polarizations for the strong and the weak fields now reduce to 
 

[ ]**
2 )()}()({)(})()({2

4

3)( rererererererp ⋅+⋅=
π

ε
χ o  , (7.4) 

 

[ )(})',(ˆ)({2)',(ˆ})()({2
4

3)'(ˆ **
2 rerErerErererP ωω

π

ε
χω ⋅+⋅= o,  

 
              )'2,(ˆ)}()({)(})',(ˆ)({2 * ωωω −⋅+⋅+ rErerererEre  
 

             ])(})'2,(ˆ)({2 rerEre ωω −⋅+  ,     for ωω ~  , (7.5) 
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[ )(})',(ˆ)({2)',(ˆ})()({2
4
3)'(ˆ **

2 rerErerErererP ωω
π

εχω ⋅+⋅= o,  

 
              )'2,(ˆ})()({)(})',(ˆ)({2 *** ωωω +⋅+⋅+ rErerererEre  
 

              ]** )(})'2,(ˆ)({2 rerEre ωω +⋅+  ,     for ωω −~  . (7.6) 
 

Notice that the last two expressions only hold for frequencies near the peaks ωω ~  and 
ωω −~ , respectively, rather than for the entire frequency range as in Eq. (5.4).  

8. PUMP FIELDS 

The pump fields are incident on the medium from the right and the left, as shown in Fig. 
1. They partially reflect at the sides 2/Ly ±= , and are partially transmitted in the medium. 
Since the pumps are linearly polarized in the z-direction, we try a solution of the form 

 
)()( yfzere π=  . (8.1) 

 
The polarization, Eq. (7.4), becomes 

 

)(|)(|
4
9)( 2 yfyfzoerp επχ=  , (8.2) 

 
and Maxwell's equation (6.6) simplifies to 

 

0)(]|)(|[ 2
4
92

2

2
=++ yfyfk

dy
fd χε  . (8.3) 

 
The boundary conditions then require that f(y) and df/dy are continuous at 2/Ly ±= .  

We shall see in the next section that εχ <<2|)(||| yf , so the term 2|)(||| yfχ  can 
safely be neglected in Eq. (8.3). This is equivalent to neglecting the contribution of the 
nonlinear interaction to the propagation of the pump fields in the medium. Then the problem 
reduces to the problem of reflection and transmission of two plane waves incident on a layer 
of dielectric material [90]. Inside the medium we set 

 
εε αα ykiyki eeyf 21)( += −  , (8.4) 

 
with α1 and α2 to be determined, and this solution has to be matched to the external fields 
(6.7) and (6.8), and the reflected fields. We find explicitly 
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 −++

−−+
=

−
ε

ε

ε
εε

εε
α Lki

Lki

Lki
eEE

e

e
1,22,1222

)1(

2,1 )1()1(
)1()1(

2 2
1

 , (8.5) 

 
in terms of the (complex) amplitudes E1 and E2 of the pump fields.  

9. POLARIZATION OPERATOR 

With the solution for e(r) from the previous section, we can now construct )',(ˆ ωrP  as 
given by Eqs. (7.5) and (7.6). First we substitute )()( yfzere π= , which gives )',(ˆ ωrP  in 
terms of f(y), and subsequently we use (8.4) for f(y). Then we find that terms with factors 

)2exp( εyki±  appear at various places. These exponentials vary with approximately half the 
pump-laser wavelength in their y-dependence. Such fast oscillations average out to zero 
quickly in their interaction with fields of twice their wavelength, and therefore we will 
neglect these contributions to the nonlinear polarization. We then obtain  

 

})'2,(ˆ)',(ˆ)|||(|{)',(ˆ 21
2

2
2

12
3 ωωααωααχεω −++= rErErP PPo

tt
 ,  

 
for ωω ~  , (9.1) 

 

})'2,(ˆ)()',(ˆ)|||(|{)',(ˆ *21
2

2
2

12
3 ωωααωααχεω +++= rErErP PPo

tt
 , 

 
for ωω −~  . (9.2) 

 

Here we have introduced the polarization operator (tensor) P
t

, which is defined by its action 
on an arbitrary vector v according to 

 

⊥+=⋅+= vvveevv 3)(2 ||zzP
t

 . (9.3) 

 
Here, the notation || and ⊥  refers to the orientation with respect to the xy-plane, as it did in 
the boundary conditions. The expressions (9.1) and (9.2) have to be substituted into the wave 
equation (6.5) for )',(ˆ ωrE . We then notice that on the right-hand side the field )',(ˆ ωrE  
appears, multiplied by )|||(|)2/3( 2

2
2

1 ααχ + . Therefore, this parameter accounts for the 
nonlinear interaction of )',(ˆ ωrE  with itself. On the other hand, the factor 21)2/3( αχα  is the 
coupling parameter for the interaction between )',(ˆ ωrE  and a different spectral component, 

)'2,(ˆ ωω ±rE , of the field. The two coupling parameters can be varied independently by a 
proper choice of the amplitudes E1 and E2 of the pump beams. For instance, for a transparent 
medium (ε = 1) we have α1 = E1 and α2 = E2, which shows the independence of these 
parameters clearly. It is the parameter 21)2/3( αχα  which couples the spectral components 
with frequencies ωω ~  and ωω ~ , and this interaction is responsible for the generation of 
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phase-conjugated radiation. If we want to maximize the efficiency, then || 21αα  must be large 
compared to 2

2
2

1 |||| αα + . This would require  
 

|||| 21 αα =  , (9.4) 
 

and with Eq. (8.4) this means that the two counterpropagating beams must have equal 
strength inside the medium. With Eq. (8.5) this becomes 

 

1
)1()/)(1(

)/()1(1

21

21 =
−++

−++
ε

ε

εε

εε
Lki

Lki

eEE

EEe  , (9.5) 

 
in terms of the amplitude ratio 21 / EE  of the pump beams. We notice that this includes their 
phases as well, so Eq. (9.5) imposes a phase-matching condition on the beams. Two possible 
solutions are 1/ 21 ±=EE . For a transparent medium, ε = 1, Eq. (9.5) reduces to |||| 21 EE = , 
and therefore two pumps of equal intensity is sufficient. Moreover, for ε = 1 we have α1 = E1 
and α2 = E2.  

Let us now introduce the dimensionless complex-valued coupling parameter 
 

212
3 αχαγ =  , (9.6) 

 
and the real parameter 

 
)sgn(|| χγγ =o  , (9.7) 

 
with obviously |||| γγ =o . Then we can write 

 
pi

o e θγγ =  ,    pθ  real,  (9.8) 

 
and the second coupling parameter becomes 

 

oγααχ 2)|||(| 2
2

2
12

3 =+  . (9.9) 

 
In terms of these parameters, the nonlinear polarization becomes 

 

})'2,(ˆ)',(ˆ2{)',(ˆ ωωωεγω θ
−+= rErErP pi

oo eP
t

 , ωω ~  , (9.10) 
 

})'2,(ˆ)',(ˆ2{)',(ˆ ωωωεγω θ
++=

− rErErP pi
oo eP
t

 , ωω −~  . (9.11) 
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The phase pθ  depends in a complicated way on the phases of the pump beams, at least for 
1≠ε . In any case, any random fluctuations in the phases of the pumps are reflected in 

fluctuations of pθ . If there is some phase noise in the pump beams, leading to a finite 
bandwidth of the lasers, then the factors )exp( piθ±  in the nonlinear polarization become 
random processes with zero average. In this fashion, the nonlinear interaction will be washed 
out since the second terms on the right-hand sides of Eqs. (9.10) and (9.11) will vanish, on 
average. Therefore, the pump frequency ω  has to be well-stabilized.  

In practical situations the intensities of the pump beams will be almost equal, so that 
|||| 21 EE ≈ . Then the coupling strength || oγ  has an order of magnitude of ||~|| 2

1Eo χγ , 
which is proportional to the laser intensity. Media where the nonlinear coupling is 
proportional to the pump intensity are called Kerr media, although here the dependence on the 
intensity is only parametric.  

A typical value of a third-order susceptibility is χ ~ 10-22 m2/V 2 (p. 531 of ref. 84), and 
an extremely strong pulsed laser has an intensity of 1018 W/m2, which corresponds to an 
electric field strength of 3 ×  1010 V/m, and a coupling parameter of |γo| ~ 0.1. This order of 
magnitude is a very upper limit. For moderate CW lasers or nanosecond pulses, values in the 
range of |γo| ~ 10 -5 - 10 -8 are more realistic. In any case, the parameter |γo| is always small 
compared to unity, and therefore the nonlinear polarization in the wave equation is a small 
term. Since this term is the one that is going to produce the phase-conjugated signal, it might 
seem that this scheme of four-wave mixing is not a very efficient way of generating phase-
conjugated radiation. Such an opinion would be based on considering the term with )',(ˆ ωrP  
as the source term in the wave equation. We shall see that the mechanism of generating a 
phase-conjugated signal by four-wave mixing is more subtle.  

10. POSITIVE AND NEGATIVE FREQUENCY PARTS 

For the remainder of this paper we shall only be concerned with the weak fields, and 
therefore we shall drop the primes on )',(ˆ ωrE , etc. It is worthwhile to note that ),(ˆ ωrP , as 
given by Eqs. (9.10) and (9.11), obeys the relation 

 

),(ˆ),(ˆ * ωω −= rPrP  , (10.1) 
 

which guarantees that ),( trP  is real (section 3). If we want to find the Fourier inverse 
),( trP , we can use either Eq. (3.2) or Eq. (3.5), with PE → . Since ),(ˆ ωrP  in Eq. (9.10) is 

given for positive ω only, it is easiest to find the positive frequency part first. We obtain 
 

}),(),(2{),( )()()( −++ += teetPt t2i-i
o

p rErErP ωθγ
t

 , (10.2) 
 

and then )(),( −trP  follows from a complex conjugation of the right-hand side. Most 
interesting to notice is that the positive frequency part of the polarization acquires a 
contribution which is proportional to the negative frequency component of the electric field. 
The factor )2exp( tiω−  assures that )(),( +trP  only has positive frequencies. We see that the 



Phase Conjugation in a Layer of Nonlinear Material 

 

303

303

nonlinear interaction can transform a negative frequency field into a positive frequency field, 
which is reminiscent of time reversal and is the basis of the mechanism of phase conjugation 
by this device.  

11. COUPLED WAVE EQUATIONS 

For the remainder of this paper we shall only be concerned with the weak fields, and 
therefore we shall drop the primes on )',(ˆ ωrE , etc. When we substitute Eqs. (9.10) and 
(9.11) into the wave equation (6.5), we get 
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=+−×∇×∇
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2
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rErE P

c
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c
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tt
. (11.1) 

 
This equations couples the spectral components of ),(ˆ ωrE  at different frequencies. Suppose 
we consider a fixed frequency aω  with  

 
ωω ~a  . (11.2) 

 
If we set aωω =  in the top line of Eq. (11.1), then we see that ),(ˆ aωrE  couples to 

)2,(ˆ ωω −arE . We therefore introduce 
 

ωωωωω −−= ~,2 bab  , (11.3) 
 

and if we take bωω =  in the bottom line of Eq. (11.1) then we find that ),(ˆ bωrE  couples to 
the spectral component )2,(ˆ ωω +brE , which is ),(ˆ aωrE . This shows that frequencies 
couple in pairs, with the frequencies related as aω  and bω . Consequently, the electric field 
obeys the set of two coupled wave equations 

 

),(ˆ),(ˆ)2()),(ˆ( 2

2

2

2
b

a
ao

a
a P

c
P

c
ω

ω
γωγε

ω
ω rErErE

tt
=+−×∇×∇  , (11.4) 

 

),(ˆ),(ˆ)2()),(ˆ( 2

2
*

2

2

a
b

bo
b

b P
c

P
c

ω
ω

γωγε
ω

ω rErErE
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It is important to notice that this set couples a spectral component with a positive frequency, 

aω , with a component with a negative frequency, bω , and such that  
 

ωωω 2|| =+ ba  , (11.6) 
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indicating that the two frequencies are a distance ω2  apart. This, of course, reflects the fact 
that in a four-wave mixing process two photons with frequency ω  are involved. Figure 2 
shows the four-wave mixing process, as it occurs at the atomic level inside the medium. Two 
pump photons are absorbed, while in between a photon with frequency aω  is emitted. From 
energy conservation we then see that a second photon with frequency || bω  has to be emitted 
as the final stage of the process, with || bω  given by Eq. (11.6). Since aω  is the frequency of 
the incident light (see below), we conclude that the incident wave is amplified in this process. 
It also shows that it takes two pump laser photons to create a single phase-conjugated, || bω , 
photon.  

12. PLANE WAVES 

When the source of the incident field is far away from the surface of the medium, the 
incident field will be a traveling plane wave. On the other hand, when the source is close to 
the xy-plane, then the radiation will consist of spherical waves, as happens for instance when 
an atomic dipole is located in close vicinity of the medium [65]. In that case, the incident field 
can be represented as an angular spectrum integral, which is a superposition of plane waves 
[91-93]. Apart from the usual traveling waves, the angular spectrum also contains evanescent 
waves, which are waves that decay exponentially along the z-axis and travel along the xy-
plane. In order to cover this possibility, we shall allow the incident field to be either traveling 
or evanescent.  

 

 

Figure 2: Energy level diagram for four-wave mixing in an atom. The thick line is 
the atomic ground state. An ω  pump photon is absorbed, bringing the atom to 

approximately an excited state (upper thin line). Then an aω  photon is emitted, and 
subsequently a second ω  photon is absorbed. Finally, the atom returns to the 

ground state under emission of the phase-conjugated photon with frequency bω− .  
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In order for this approach to be useful, it is necessary that the nonlinear medium supports 
plane-wave modes, which can be matched across the boundary to the incident field. 
Fortunately, these plane wave solutions do exist, and they have the form 

 
rkrk brEarE ⋅⋅ == i

b
i

a eEeE ),(ˆ,),(ˆ ωω  , (12.1) 
 

with the polarization vectors a and b and the wave vector k to be determined. The overall 
constant E has to be the same in both waves in order to cancel out in the coupled wave 
equations (11.4) and (11.5). Both the aω -wave and the bω -wave have the same wave vector 
k. For a traveling incident wave or a partial wave of the angular spectrum we have that the 
parallel component of the wave vector is real. It is only possible to match the waves across 
the boundary if all waves involved have wave vectors with the same parallel components. 
Therefore, we shall assume that the parallel component of k (its component in the xy-plane, 

||k ) is real, and that it is the same ||k  as of the incident wave, and consequently supposed to 
be given. The z-components of the various wave vectors are determined by the dispersion 
relation of either the vacuum or the medium, and they can be complex-valued.  

Since aω  is positive, the corresponding electric field in the time domain follows from 
Eqs. (3.5) and (3.7):  

 

..),( )( cceEt t-i a +∝ ⋅ ωrkarE  , (12.2) 
 

which is a plane wave with wave vector k. For the bω -wave we first use Eq. (3.4) to find the 
field at the positive frequency || bb ωω =−  as *),(ˆ),(ˆ bb ωω rErE =−  )](exp[ *** rkb ⋅−= iE . 
The field in the time domain then has the form 

 

..),( )|(** cceEt t|-i b*
+∝ ⋅− ωrkbrE  , (12.3) 

 
and this is a plane wave with wave vector -k*. For a traveling wave, k is real, and hence the 
two waves form a counterpropagating pair. For an evanescent aω -wave, decaying in the -z-
direction, the bω -wave is also evanescent, and it also decays in the -z-direction. These 
evanescent waves travel along the xy-plane, and since ||k  is real, they counterpropagate.  

13. SET OF EQUATIONS FOR THE WAVE VECTOR 

We shall introduce the dimensionless wave vector  
 

k
a

c
ω

=κ  , (13.1) 

 
with ca /ω  the wave number of an aω -wave in free space. Furthermore we define the 
dimensionless frequency parameter ρ as  
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a

a

a

b
ω

ωω
ω
ωρ −

=−=
2  , (13.2) 

 
which is positive. For plane waves on resonance with the pump frequency ω  we have 

ba ωωω −== , and ρ = 1. In general, ρ will be close to unity, and ρ - 1 can be considered 
the dimensionless detuning from resonance. Then we substitute the solutions (12.1) into the 
wave equations (11.4) and (11.5), which gives 

 

baaa PPo
tt

γγεκ =+−+⋅− )2()( 2κκ  , (13.3) 
 

abbb PPo
tt 2*22 )2()( ργγερκ =+−+⋅− κκ  , (13.4) 

 
with κκ ⋅=2κ . Here, ε, oγ , γ  and ρ are given, and the problem becomes to determine 
what solutions a, b, κ this set admits.  

The action of the polarization operator P
t

 on a vector v yields a parallel and a 
perpendicular part, as shown in Eq. (9.3), and the set (13.3), (13.4) can be split accordingly. 
We then obtain the equivalent set of four equations 

 

⊥⊥⊥ =−−+⋅− baa γγεκ 3)6()( 2
oκκ  , (13.5) 

⊥⊥⊥ =+−+⋅− abb 2*22 3)]6([)( ργγερκ oκκ  , (13.6) 

||||
2

|| )2()( baa γγεκ =−−+⋅− oκκ  , (13.7) 

||
2*

||
22

|| )]2([)( abb ργγερκ =+−+⋅− oκκ  , (13.8) 

 
which have to be satisfied simultaneously for a solution a, b, κ.   

14. TRANSVERSE SOLUTION 

For a linear medium, all plane-wave solutions are transverse (k 'perpendicular' to the 
polarization vector in the sense of 0=⋅ ak , although k can have complex components), so let 
us try the same here: 

 
0,0 =⋅=⋅ ba κκ  . (14.1) 

 
An obvious possibility for the solution of Eqs. (13.5) and (13.6) is then  

 
0== ⊥⊥ ba  . (14.2) 

 
Then Eqs (13.7) and (13.8) become, in matrix form  
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The solution 0|||| == ba  would give a = b = 0, so the only possibility is  
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and this is  

 

0)]2()][2([ 22222 =−+−+− ργγερκγεκ ooo  . (14.5) 
 

This relates the dimensionless wave number κ  to the frequency parameter ρ, so this equation 
is the dispersion relation for this class of solutions.  

Equation (14.5) is a quadratic equation for 2κ , so it has two solutions. We define the two 
branches, labeled 1 and 2, as the solutions  
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where we have introduced the parameter δ  

 









><−

<>

=
)(1,1

)(1,1

ωωρ

ωωρ
δ

a

a

for

for
 , (14.7) 

 
for reasons explained below. Also, we write sκ  to indicate that it is a solution of the type 
considered in this section.  

In an ordinary dielectric a wave with frequency aω  would have a wave number 
εω )/( ca , and for a wave with frequency bω−  this would be εω )/( cb− . With Eq. (13.1) 

this corresponds to εκ =2  and ερκ 22 = , respectively. If we take the limit 0→oγ  in the 
solution (14.6) we find  

 

ερκεκ →→ )2()1( , ss  , (14.8) 
 

which are the respective limits for an aω -wave and an bω -wave in a dielectric. This is a 
consequence of the introduction of δ  in the solution (14.6). With this convention, the solution 
with label (1) is essentially the aω -wave ),(ˆ aωrE , and due to the nonlinear interaction the 
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bω  component ),(ˆ bωrE  can be excited. In the same way, the solution (2) is an bω -wave 
with an aω  part mixed in when 0≠γ . Figure 3 illustrates the solution of the dispersion 
relation (14.5) as a function of the frequency aω  in units of ω : 

 

ω
ω

ν a=  (14.9) 

 
The discontinuity at ρ = 1, or ν = 1, is due to the δ  in the solution, and both curves jump by 
the amount of ||2 oγ .  

15. NON-TRANSVERSE SOLUTION 

In order to derive a second, independent, solution we start from Eqs. (13.3) and (13.4). 
First we take the dot product with κ, and write the result as a single matrix equation. We then 
obtain the relation 

 
 

 

Figure 3: Dispersion relation for s-waves. Shown is the dimensionless wave number 
as a function of the dimensionless frequency. The thick curves are represented by 

the right-hand side of Eq. (14.6), for ε = 1 and 0.1=oγ . The thin lines are the values 
for 0→oγ , which are ε  for solution 1 and ερ  for solution 2, as indicated by 

Eq. (14.8). Both curves have a discontinuity at 1=ν .  
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in terms of the matrices 
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It is interesting to notice that both matrices have a non-vanishing determinant, and can 
therefore be inverted. Then Eq. (15.1) implies that Eq. (14.2) follows from Eq. (14.1) and vice 
versa. In other words, the solution of the previous section is the only transverse solution. 
Knowing this, we will now derive a solution which is necessarily not transverse, and thereby 
also automatically independent of the solution of the previous section.  

When we take the dot product with ze  in Eqs. (13.5) and (13.6), multiply by ⊥κ , and 
put the result in matrix form, we find 
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with  
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We notice that Eq. (15.4) relates the same 'variables' as Eq. (15.1), but in a different way. 
Then we eliminate ⊥⊥aκ  and ⊥⊥bκ  in Eq. (15.4) with the help of relation (15.1), which 
yields 

 

0)( 21 =







⋅
⋅

− ⊥
−

b
a

κ
κ

κabc MMM  . (15.6) 

 
The solution 0,0 =⋅=⋅ ba κκ  are the s-waves from the previous section. A non-trivial 
solution exists if  

 

0)(det 21 =− ⊥
− IMMM abc κ  , (15.7) 
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with I the 2×2 unit matrix. Equation (15.7) is the equivalent of Eq. (14.4) for the s-waves, so 
it provides the dispersion relation for this second class of solutions for the coupled waves. An 
interesting difference is that in Eq. (15.7) both 2κ  (through cM ) and 2

⊥κ  appear separately, 
whereas Eq. (14.4) only contains 2κ . As explained before, we shall take ||κ  as an 
independent variable, and eliminate 2

||
22 κκκ −=⊥ . The solution of Eq. (15.7) is then found to 

be 
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1

pκ
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ooo yyy

γε
γερερδργεγεγ m  , 

 (15.8) 
 

with the abbreviation 
 

)9)(3(

2 2
||

oo
y

γεγε

κ

++
=  . (15.9) 

 
We notice that pκ  goes over in sκ  for 0|| →κ , both for the 1 and the 2 solution, and that for 

0→oγ  we have  
 

ερκεκ →→ )2()1( , pp  , (15.10) 

 
as in Eq. (14.8).  

16. S-WAVES 

It follows from Eq. (14.2) that the polarization vectors a and b for solutions of the first 
kind are perpendicular to the z-axis, and with a combination of Eqs. (14.1) and (14.2) we see 
that 0,0 |||| =⋅=⋅ ba κκ . Therefore, vectors a and b are also perpendicular to ||κ , and 
therefore perpendicular to the plane defined by ||κ  and the z-axis (recall that we assume ||κ  
to be real). Since all wave vectors have the same ||k , represented by the dimensionless ||κ , 
this is the plane of incidence of the incident wave, and the vectors a and b are perpendicular 
to that plane. Solutions of this type are said to be s-polarized, and we reflect that in the 
notation with a subscript s on the wave number κ, as in Eq. (14.6).  

Given ||κ , we define the unit vector for s-polarization as 
 

)(1
||

||
zs ee ×= κ

κ
 , (16.1) 

 
with ||κ  the magnitude of ||κ . Then both ||aa =  and ||bb =  must be proportional to se , and 
since the two equations in the matrix equation (14.3) are dependent by construction, a and b 
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are only determined up to an overall, common, constant. We shall take this normalization 
constant different for the 1 and the 2 solutions of the dispersion relation. For )1(

sκκ ≡  we set  
 

ssss ebea 1*11 , ηγ==  , (16.2) 
 

whereas for the solution with )2(
sκκ ≡  we take  

 
ssss2 ebea == 22 ,ηγ  , (16.3) 

 
with 1η  and 2η  to be determined. The factors *γ  and γ  are taken out for later convenience. 
Then we substitute this in one of the equations of the set (14.3) and solve for 1η  and 2η . We 
obtain 
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With the explicit expressions for )1(
sκ  and )2(

sκ  it can be verified that  
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and that the two parameters are related as 

 

2
2

1 ηρη −=  . (16.7) 
 
For 0→γ  (nonlinear interaction turned off) we have εκ →)1(

s , Eq. (14.8), and 
therefore 1η  approaches the limit 

 

)1( 2

2
1

ρε
ρη
−

→  , (16.8) 

 
for 1≠ρ . Then 01* →ηγ , and 01 →sb . So, without the nonlinear interaction, only the aω -
wave survives for the solution labeled with 1. It then follows from Eq. (16.3) that in this same 
limit the aω  wave disappears in solution 2. Therefore, solutions 1 and 2 are essentially aω -
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waves and bω -waves, respectively, and due to the nonlinear interaction they couple to the 
bω -wave and the aω -wave, respectively.  

It is interesting to note that this conclusion requires 1≠ρ . Conversely, we can consider 
the limit 1→ρ  with γ  finite. It can be verified from the results above that for 1→ρ , 1η  
approaches the limit  

 

||1 γ
δη −→  , (16.9) 

 
and therefore the amplitude factor in s1b  is 1|| 1* =ηγ . This shows that for perfect resonance 
the aω - and bω -waves have the same amplitude, no matter how small the nonlinear 
interaction is. Due to the δ in Eq. (16.9), the value of 1η  is discontinuous across the 
resonance 1=ρ . Apparently, the limits 0→γ  and 1→ρ  do not commute. This also implies 
that the aω -wave (with the frequency of the incident wave) can be considered near resonance 
under condition |||1| γρ <<− , and off resonance for |||1| γρ >>− . In terms of aω  and ω  
this is  

 
|||| 2

1 γωωω aa <<−  . (16.10) 

 
Since in the optical domain aω  is very large, the coupling parameter γ  can be relatively 
small. With the frequency parameter ν, Eq. (14.9), this resonance condition becomes 

|||1| 2
1 γνν <<− , and since 1~ν  this is  

 
|||1| γν <<−  . (16.11) 

 
The various features of the amplitude parameter 1η  are shown in Fig. 4. Similar conclusions 
hold for the solution with )2(

sκ . 

17. P-WAVES 

The right-hand side of Eq. (14.3) is zero for s-waves, because we imposed the condition 
0,0 =⋅=⋅ ba κκ . Without this condition, Eqs. (13.7) and (13.8) become  
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where we have written pκκ ≡  in the matrix to indicate that we are considering solutions of 
the second type. For s-waves, the determinant of this matrix was set equal to zero, so if the 
second solution is to be different, the determinant is now non-zero, and therefore has an 
inverse. This gives 
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Figure 4: Illustration of the amplitude parameter 1η , multiplied by *γ , as a 
function of the frequency ν , and for 1=ε , 0.1== oγγ . At the resonance 

frequency 1=ν , the value of 1ηγ *  jumps from -1 to 1, as follows from Eq. (16.9). 
The width of the graph is of the order of 0.1=oγ . 
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from which it follows that both ||a  and ||b  are proportional to ||κ . This is only possible when 
a, b and κ all lie in the same plane. Since both a and b will have non-zero z-components, as 
follows from Eq. (15.1), we see that a and b lie in the plane defined by ||κ  and ze , e.g., the 
plane of incidence. Waves of this type are called p-polarized, in contrast to the s-polarized 
waves for which a and b were perpendicular to the plane of incidence. This clearly shows the 
independence of the two types of solutions.  

In order to evaluate the polarization vectors a and b for p-polarization, we use the fact 
that these vectors must be linear combinations of ||κ  and ze . We write 

 

||
||

|| κ
κ

α
α += ⊥ zp ea  , (17.3) 
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||
||

|| κ
κ
β

β += ⊥ zp eb  , (17.4) 

 
in analogy to Eqs. (16.2) and (16.3). Here, the factors ⊥α , ||α , ⊥β  and ||β  remain to be 
determined, and since the dispersion relation has two branches there will be two solutions, 1 
and 2, for each parameter, just as in the case of s-waves. The factors ||κ  in the denominators 
have been split off for later convenience. In section 15, we eliminated ⊥⊥aκ  and ⊥⊥bκ  in 
favor of a⋅κ  and b⋅κ  in Eq. (15.4) by using Eq. (15.1), and this led to Eq. (15.6). 
Conversely, we can eliminate a⋅κ  and b⋅κ  in favor of ⊥⊥aκ  and ⊥⊥bκ , and this yields in 
the same way  
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Since ),),( 00(≠⋅⋅ ba κκ , as we imposed by Eq. (15.7), it follows from Eq. (15.1) that also 

)0,0(),( ≠⊥⊥⊥⊥ ba κκ . The set (17.5) can only have a nontrivial solution if  
 

0)(det 21 =− ⊥
− IMMM cab κ  , (17.6) 

 
which must hold by construction. In any case, the two equations in (17.5) are dependent, and 
if we set ⊥⊥ = αa , ⊥⊥ = βb , as in Eqs. (17.3) and (17.4), and let 0≠⊥κ , the set becomes  
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22* =−+++−+ ⊥ κκεγεγεραγ poo  . (17.8) 

 
Just as for s-waves, we have a 1 solution and a 2 solution of the dispersion relation, 

which we would like to correspond to pure aω - and bω -waves, respectively, in the limit 
0→γ . For the solution of type 1 we set  

 
)1(

1*)1(
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= αζγβ  , (17.9) 
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in analogy to Eq. (16.2) for s-waves. Here the parameter 1ζ  is the equivalent of the resonance 
parameter 1η  for s-waves. The factor )1(

⊥α  is for normalization, and will be determined 
below. Then we have )/( )1(*)1(

1 ⊥⊥
= αγβζ , which can be found from either Eq. (17.7) or Eq. 

(17.8). We shall take Eq. (17.8), which gives 
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In this way, we have for 0→γ   
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for 1≠ρ , and this is finite, as in Eq. (16.8). In order to find the parallel components )1(

||α  and 
)1(

||β , we write Eq. (15.4) as  
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From Eq. (15.5) we then see that with IMc

2
⊥− κ , we effectively replace 2κ  by 2

||κ  in 
matrix cM , so that IMc

2
⊥− κ  only depends on the assumed given 2

||κ . With Eqs. (17.3) and 
(17.4) the set (17.12) becomes 
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both for the solutions of type 1 and type 2. The dispersion relation provides pκκ ≡  and we 
assume ||κ  given. This only determines 2

⊥κ  and not ⊥κ  itself. Apparently, there are two 
solutions, which differ by a minus sign in their z-component of the wave vector. We shall 
come back to this point below, and assume for the time being that the choice of sign for ⊥κ  
has been made. Equation (17.13) then yields, for the type 1 solution,  
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It finally remains to determine the parameter )1(
⊥α . We could simply take )1(

⊥α  = 1, but it 
seems more elegant to use this freedom to normalize the polarization vector as 

 
111 =⋅ pp aa  , (17.16) 

 
just as for s-waves, Eq. (16.2). We then find explicitly 
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The solution of type 2 follows in the same way. We now take  
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instead of Eq. (17.9), and with )2(

⊥
β  used for normalization. Along the same lines we now 

find 
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which behaves as  
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for 0→γ . The parallel components are now found to be  
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and as normalization we now choose 
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122 =⋅ pp bb  , (17.23) 

 
which gives 
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18. EXCITATION OF PLANE-WAVE MODES 

The two counterpropagating waves ),(ˆ aωrE  and ),(ˆ bωrE , which are a solution of 
Maxwell's equations inside the medium, have the appearance of a traveling plane wave 
( ),(ˆ aωrE ) and its phase-conjugate image ( ),(ˆ bωrE ), because the bω -wave travels in the 
opposite direction of the aω -wave. If a plane wave of the form 

 
rkerE ⋅= i

inca eE σω ),(ˆ  , (18.1) 
 

is incident on the medium from the region z > 0, then it will partially reflect and partially 
propagate into the medium, where it couples to the bω -wave due to the nonlinear interaction. 
This counterpropagating wave can leave the crystal again at the z = 0 interface, where it 
appears as the phase-conjugated replica of the incident field. We shall now consider the 
coupling of the wave (18.1) to the wave modes ),(ˆ aωrE  and ),(ˆ bωrE  inside the material.  

In order for inca ),(ˆ ωrE  to be a solution of Maxwell's equations in vacuum, we have the 
restrictions 

 
ck a /ω=  ,    0=⋅ σek  , (18.2) 

 
for a given aω . The unit polarization vector σe , with σ = s or p, will be specified below, and 
the overall constant E is arbitrary. We shall assume that the parallel component, ||k , of k is 
given and real. When we write zzk ekk += || , then the first equation of (18.2) is satisfied if  

 

||||
22 kk ⋅−= kkz  , (18.3) 

 
which leaves us with two possible choices for zk . For a wave traveling in the negative z-
direction, we must obviously take the negative root of (18.3). In order to avoid longitudinal 
components in the spatial Fourier spectrum [94,95], which do not satisfy Maxwell's equations 
separately, we shall allow the incident field to have evanescent components [96-98] which 
decay in the negative z-direction. These waves are still transverse, but their wave vectors have 
an imaginary z-component. Since the wave has to decay in the negative z-direction, zk  must 
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be negative imaginary. Therefore, for a given aω  and ||k , the z-component of k must be 
chosen as 
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22
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2
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2

kki

kk
kz  . (18.4) 

 
In this notation it is understood that we take the solution for which the argument of the square 
root is positive.  

Just as for the dispersion relations, we make the various quantities dimensionless. For the 
parallel component of the wave vector we define 

 
k/|||| k=κ  , (18.5) 

 
just as in Eq. (13.1). Its magnitude lies in the range ∞<≤ ||0 κ . For 10 || <≤ κ  we have a 
traveling incident wave, and  

 
iθκ sin|| =  , (18.6) 

 
with iθ  the angle of incidence. For 1|| >κ  the incident wave is evanescent, with ||/1 κ  a 
dimensionless measure of the distance over which the wave decays exponentially in the 
negative z-direction. We then introduce  
 

kkza /=κ  , (18.7) 
 

which is explicitly 
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The incoming wave couples with other waves inside and outside the medium, in a way 

which is determined by the boundary conditions at z = 0 and z = -∆. This same principle as in 
linear optics was first applied to nonlinear multiwave mixing in a layer by Bloembergen and 
Pershan [99,100]. Obviously, all appearing waves are plane waves which have a factor 

)exp( rk ⋅ii , with ik  the wave vector of this particular wave. At the interface z = 0 this factor 
reduces to )exp( ||, rk ⋅ii , and it is easy to see that the boundary conditions can only be 
satisfied for all r in the xy-plane if this r-dependent factor is the same for every wave. This 
implies that ||,ik  must be the same for every wave, and consequently equal to ||k  of the 
incident wave. The same argument holds for waves which have to be matched across the 
boundary z = -∆, and therefore every wave vector must have the form 
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zzii k ekk ,|| +=  . (18.9) 

 
Besides that, every wave vector, either in vacuum or the medium, has to obey the dispersion 
relation for 2

ik , given its frequency. From this it follows that 2
||

22
, kkk izi −=  is fixed for every 

possible wave, and the only freedom we have is the choice of the sign of zik , .  
The incident wave has positive frequency aω , which couples with aω -waves and 

negative-frequency bω -waves inside the medium. It can not be decided à priori which plane-
wave modes will be excited by the incident field, so we have to consider all possible waves, 
inside and outside, with frequencies aω  and bω  and given ||k . Let us first look at the region 
z > 0 (vacuum) and at frequency aω . Then the dispersion relation gives 2

||
22

, kkk zi −= , with 
solution (18.4) for the z-component of the wave vector of the incident wave. There is only one 
other solution, which is the usual specularly-reflected wave from linear optics. We shall call 
this the r-wave. The z-component of rk  can only be zzr kk −=, , which gives in terms of aκ  
and ||κ  

 
)( || zar k ek κ−= κ  , (18.10) 

 
and compared to the wave vector of the incident field 

 
)( || zak ek κ+= κ  , (18.11) 

 
the only difference is a minus sign in the z-component. This r-wave emanates from the 
medium and either travels in the specular direction or decays in the positive z-direction. For a 
traveling r-wave, the angle of reflection is of course equal to the angle of incidence. The 
various waves outside the medium are pictorially represented in Fig. 5. The arrows indicate 
the propagation direction in case of a traveling wave. When the wave is evanescent, it decays 
in the direction away from the material.  

At frequency bω , the dispersion relation in vacuum is 222 / ck bi ω= , which admits two 
solutions for zik , . Considering z > 0 first, this bω -wave is generated by the nonlinear 
interaction in the medium, and leaves the crystal through the interface z = 0. Causality 
requires that we should only retain the solution which travels away from the medium, or in 
case of an evanescent wave, decays in the positive z-direction. Care should be exercised, 
however, since this is a negative frequency wave which travels in the direction opposite its 
wave vector. A moment of thought then shows that the wave vector must be 

 
)( || zbpc k ek κ+= κ  , (18.12) 

 
in terms of the dimensionless parameter 
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Figure 5: Illustration of the various waves present near the slab of nonlinear 
material. The arrows indicate the propagation directions of the various waves. For 

evanescent waves, the decay direction is away from the medium.  
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ρκ

κρ
κ

i
b  . (18.13) 

 
The appearance of ρ accounts for the difference between aω  and || bω . We call this the pc-
wave, for obvious reasons. We notice that for traveling waves and 1≠ρ  this pck  is not 
identical to k of the incident wave. Since  
 

k
c

k b
pc ρω

==
||  , (18.14) 

 
we have  

 

ρ
κ

θ ||sin =pc  , (18.15) 

 
with pcθ  the angle of reflection of the pc-wave (for the case of a traveling wave). 
Comparison with Eq. (18.6) then shows that the angle of reflection is related to the angle of 
incidence according to 
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ipc θθρ sinsin =  , (18.16) 

 
or in terms of frequencies  

 
iapcb θωθω sinsin|| =  . (18.17) 

 
Therefore, for ωω ≠a  the pc-wave cannot be the exact phase-conjugated replica of the 
incident beam. For evanescent waves, phase conjugation never works (with the setup 
considered here) because the image of a wave which decays in the negative z-direction should 
be a wave which grows exponentially in the positive z-direction, as follows from the time-
reversal argument. This would clearly violate causality. Nevertheless, we retain the possibility 
of evanescent incident waves, because of its relevance to applications in radiation theory. 
Figure 6 illustrates the various wave vectors for the case of traveling waves, and Fig. 7 shows 
the decay directions for the situation of evanescent waves. It should be noted that not all 
waves have to be either all traveling or all evanescent. Just as in linear optics, there can be 
situations where waves of both types appear for a given incident wave.  

Next we consider the region z < -∆. Since this is also vacuum, the dispersion relations for 
the possible aω - and bω -waves are the same as in z > 0. For a given ||k  this allows four 
possible wave vectors, but only two of these represent causal solutions. The aω -wave which 
travels or decays in the negative z-direction is the transmitted t-wave, with wave vector 

 
kk =t  . (18.18) 

 
The possible bω -wave in z < -∆ is entirely due to the nonlinear interaction (in contrast to the 

aω -wave which is also present for a pure linear material), and we call this one the nl-wave. 
The solution which propagates or decays in the negative z-direction has wave vector 

 
)( || zbnl k ek κ−= κ  . (18.19) 

 
When the incident wave is s-polarized, then every other wave is also s-polarized, and the 
same holds for p-polarization. Inside the medium, the dispersion relation is different for s- 
and p-waves, so we have to distinguish between the two situations by labeling the wave 
vectors of the various waves with σ (s or p). The dispersion relations were shown to have two 
branches, labeled 1 and 2, corresponding to an aω -wave and an bω -wave, respectively, in 
the limit 0→γ . Since the dispersion relations only give 2

zκ , there are still two possibilities 
for the z-components of the wave vectors, which differ by a minus sign. Both solutions have 
to be retained, due to multiple reflections at the boundaries, as is most easily seen from Fig. 6. 
The four possible wave vectors for a given σ and ||k  are then  

 

)( ||1 zk ek ασσ κ±=± κ  , (18.20) 

)( ||2 zk ek βσσ κ±=± κ  , (18.21) 
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Figure 6: This diagram shows the plane of incidence, determined by k and ze , and 
the wave vectors for the case of traveling waves of all fields that are present. All 

wave vectors have the same ||k , but they differ in their z-component. Arrows with a 
solid arrowhead are pure aω -waves, and they travel in the direction of the arrow. 

Arrows with a transparent arrowhead are pure bω -waves, which travel in the 
direction opposite the arrow. Inside the medium the arrowheads are shaded, and 
each of them represents a set of two counterpropagating waves, with frequencies 
aω  and bω . In total, thirteen different waves are present simultaneously (plus the 

two pump beams which are not shown).  

 
in terms of the dimensionless wave numbers 
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The four wave vectors are shown in Fig. 6 for traveling waves and Fig. 7 shows the direction 
of decay of the waves in case they are evanescent. When recalling that a single wave vector 
corresponds to a set of two counterpropagating waves, we see that the total number of waves 
inside the medium is eight, which brings the total number of waves that couple together to 
thirteen.  

We see from Fig. 6 that in the limit 0→γ , 1→ε  (completely transparent medium) only 
the inc-, 1+- and t-waves will be present. For 1≠ε  there are multiple reflections at the 
boundaries, so that the 1− -wave inside and the r-wave outside appear. When the nonlinear 
interaction is included, the ±2  -waves come up, and the pc- and nl- waves leave the crystal. 
In addition, each 1 (2)-wave couples to an bω  ( aω )-wave, forming a counterpropagating 
pair. The sign convention for the wave vectors of the waves in the medium is chosen in such a 
way that for 0→γ , 1→ε , but ρ arbitrary, the wave vectors reduce to  

 

tkkk =→+
σ1  , (18.24) 

rkk →−
σ1  , (18.25) 

pckk →+
σ2  , (18.26) 

nlkk →−
σ2  , (18.27) 

 
both for traveling and evanescent waves.  

19. FIELDS 

The incident field (18.1) gives rise to the excitation of plane-wave modes, which all have 
a spatial dependence of the form )exp( rk ⋅ii  and with the wave vectors ik  given in the 
previous section. Next we have to specify the polarization vectors. For s-polarized waves in 
vacuum we take  

 

)(1
||

||
, zis ee ×= κ

κ
 , (19.1) 

 
as in Eq. (16.1), and this is the same for every wave. For p-polarized waves we choose 

 

)(1
, si

i
ip k

eke ×=  , (19.2) 
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Figure 7: Illustration of the directions in which the various evanescent waves decay.  
 
and we notice that this vector is complex for evanescent waves. These polarization vectors 
have the properties 

 
0, =⋅ ii keσ  , 0,, =⋅ ii σσ ee  , (19.3) 

 
e.g., the waves are transverse and the polarization vectors are unit vectors. Figure 23 in 
section 30 illustrates the directions of these vectors for the case of traveling waves.  

The incident field has a (complex) amplitude factor E, and because the boundary 
conditions are linear in the field amplitudes, every wave will have this proportionality factor 
E. For the field in z > 0 we can then write 

 

{ }rkrk eerE ⋅⋅ += ri
r

i
a eReE ,),(ˆ σσσω , (19.4) 

 
rkerE ⋅

= pci
pcb ePE ,),(ˆ σσω , (19.5) 

 
which has only the two complex-valued dimensionless quantities σR  and σP  as unknowns. 
These are the Fresnel reflection coefficients for the r-wave and pc-wave, respectively, and 
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they have the significance of the relative amplitude (including the phase) of the two waves 
with respect to the incident wave. Notice that the phases of σR  and σP  depend on the phase 
convention for the polarization vectors i,σe . Equations (19.4) and (19.5) cannot be added in 
order to give the total electric field in z > 0. The fields ),(ˆ aωrE  and ),(ˆ bωrE  are two 
frequency components of a, in general, continuous spectral distribution ),(ˆ ωrE .  

In the vacuum half-space z < -∆ there are only two plane waves, and the electric field at 
aωω =  and bωω =  can be written as 

 
rkerE ⋅= ti

ta eTE ,),(ˆ σσω  , (19.6) 

 
rkerE ⋅= nli

nlb eNE ,),(ˆ σσω  , (19.7) 

 
with σT  and σN  to be determined. These are the Fresnel transmission coefficient and the 
Fresnel coefficient for the emission of the nl-wave.  

Inside the medium we have four sets of coupled waves, and each set has an aω -wave and 
an bω -wave. For the polarization vectors we have to take σ1a , σ1b , σ2a  and σ2b . The 
vectors σ1a  and σ2b  are unit vectors, but the other two contain an amplitude factor (the 
resonance parameters, like 1η  and 2η ). The coupled wave equations are linear and so we can 
multiply each solution by an arbitrary complex number, keeping in mind that both the aω -
wave and the bω -wave in a single set must be multiplied by the same factor, as in Eq. (12.1). 
With this notion, the field inside the medium attains the form 

 





+= ⋅−−⋅++ −+ rkrk aarE σσ σσσσω 11 ii
a eZeZE 1111),(ˆ  

 

               




++ ⋅−−⋅++ −+ rkrk aa σσ σσσσ 22 ii eZeZ 2222  , (19.8) 

 





+= ⋅−−⋅++ −+ rkrk bbrE σσ σσσσω 11 ii
b eZeZE 1111),(ˆ  

 

               




++ ⋅−−⋅++ −+ rkrk bb σσ σσσσ 22 ii eZeZ 2222  , (19.9) 

 
which has the Fresnel coefficients ±

σ1Z , ±
σ2Z  as unknowns. Each Fresnel coefficient 

describes the amount of excitation of a coupled set of waves, compared to the incident wave, 
but the relative strength of the two waves in a single set is fixed.  

We have added a superscript + or − on the polarization vectors. These superscripts have 
the same significance as the ±  in the notation for the wave vectors. As can be seen from Eqs. 
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(17.14), (17.15), (17.21) and (17.22), this sign comes into the definition of the parallel 
components of the polarization vectors for p-waves. Explicitly, 

 

pp ακκ ±=±
⊥
)1(

,  , (19.10) 

 

pp βκκ ±=±
⊥

)2(
,  . (19.11) 

 
For s-waves there is no dependence on this sign.  

20. FRESNEL COEFFICIENTS 

Maxwell's equations require that at the boundaries z = 0 and z = -∆ the fields ||Ê , B̂  and 

⊥+ )/ˆˆ( oεε PE  are continuous, both for aω  and for bω , and for σ = s and σ = p. This yields 
two sets (one for each value of σ) of 12 linear equations for the 2× 8 Fresnel coefficients, 
which shows that the sets are overdetermined. In this section we only look at the continuity of 

||Ê  and B̂ , which gives 8 equations with 8 unknowns, for each σ, and in the next section we 
shall discuss the third boundary condition.  

At the boundary z = -∆, an exponential of the form )exp( rk ⋅ii  gives effectively a phase 
factor )exp( , ∆ziik− , because )exp( || rk ⋅i  factors out. We like to express this phase in 
dimensionless quantities. First we introduce the dimensionless layer thickness  

 
∆kl =  , (20.1) 

 
which equals the layer thickness in units of a wavelength of the incident field, apart from a 
factor of 2π. Then the phases can be written as  

 
lii κφ =  , (20.2) 

 
in terms of the dimensionless z-components of the various wave vectors that were introduced 
in Sec. 18. The values of i can be i = a, b, ασ or βσ, with σ = s or p. For a traveling wave this 
phase is real, but for an evanescent wave it is imaginary.  

From the results for the electric field in the previous section we can obtain the 
corresponding expressions for the magnetic field with the help of Eq. (3.10). If we then write 
down the continuity equations for ||Ê  and B̂ , both for aω  and bω , and for z = 0 and z = -∆, 
work out the cross products of the form ii ,σek × ,which appear in the equations for B̂ , and 
rearrange the terms, then it follows that the equations divide into two sets of four equations, 
for a given σ. The Fresnel coefficients for the waves inside the medium are found to be a 
solution of the linear set 
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with the matrices sF  and pF  given below. After solving Eq. (20.3), the Fresnel coefficients 
for the waves in vacuum are found to be  
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with the matrices sG  and pG  given below. Solving Eq. (20.3) numerically is trivial, but an 
analytical solution requires the inversion of the 4×4 matrices sF  and pF . This analytical 
solution is presented partially in Sec. 22. Notice that in Eq. (20.4) we solve for )exp( aiT φσ −  
and )exp( biN φσ , rather than for σT  and σN . The reason is that these quantities represent 
the values of the amplitudes of the r-wave and the nl-wave, respectively, at the surface z = -∆, 
where these waves leave the medium. On the other hand, σT  and σN  would be their 
amplitudes at z = 0 if the waves would be extrapolated into that region, as can be seen by 
setting z = 0 in Eqs. (19.6) and (19.7). Therefore, including the two exponentials gives us the 
physically meaningful quantities. For traveling waves, these exponentials are only phase 
factors, but for evanescent waves these are amplitude factors since the phases are imaginary.  

The two matrices for s-waves are explicitly 
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which contain only the dimensionless wave numbers, the various phases and the resonance 
parameters 1η  and 2η . For p-waves the situation is more involved, due to the complicated 
expressions for the polarization vectors. With the abbreviations 
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the two matrices attain the form 

 



Phase Conjugation in a Layer of Nonlinear Material 

 

329

329












−+

+−

+−

−+

=

−

−

pp

pp

i
pb

i
pb

i
pa

i
pa

pbpb

papa

p

eqqeqq

eqqeqq

qqqq

qqqq

F

αα

αα

φ
α

φ
α

φ
α

φ
α

αα

αα

κκγκκγ

κκκκ

κκγκκγ

κκκκ

)()(

)()(

)()(

22*22*

1111

22*22*
1111

 

 

          












−+

+−

+−
−+

−

−

pp

pp

i
pb

i
pb

i
pa

i
pa

pbpb

papa

eqqeqq

eqqeqq

qqqq
qqqq

ββ

ββ

φ
β

φ
β

φ
β

φ
β

ββ

ββ

κκκκ

κκγκκγ

κκκκ
κκγκκγ

)()(

)()(

)()(

4444

3333

4444

3333

 , (20.15) 

 





















=

−−

−−

pppp

pppp

iiii

iiiip

eqeqeqeq

eqeqeqeq

qqqq
qqqq

G

ββαα

ββαα

φφφφ

φφφφ

γγ

γγ

γγ
γγ

442*2*
3311

442*2*
3311

 . (20.16) 

21. THIRD BOUNDARY CONDITION 

The Fresnel coefficients in the previous section were obtained by matching the fields 
across the two boundaries of the medium with the requirement that ||Ê  and B̂ , both for aω  
and bω  and for z = 0 and z = -∆, must be continuous. Maxwell's equations impose a third 
boundary condition, namely that ⊥+ )/ˆˆ( oεε PE  must be continuous. In the case of s-
polarization all fields are parallel to the surface z = 0, and therefore this condition holds 
trivially, but for p-waves this gives an additional set of equations for the Fresnel coefficients, 
and this set has to be satisfied simultaneously with the set of the previous section. From Eqs. 
(9.10) and (9.11) we derive  

 

⊥⊥⊥ ++=+ ),(ˆ3),(ˆ)6()/),(ˆ),(ˆ( baooaa P ωγωγεεωωε rErErrE  , (21.1) 

 

⊥⊥⊥ ++=+ ),(ˆ3),(ˆ)6()/),(ˆ),(ˆ( * aboobb P ωγωγεεωωε rErErrE  . (21.2) 

 
Therefore, the right-hand side of Eq. (21.1), evaluated for the field inside the medium, must 
match ⊥),(ˆ aωrE outside, both at z = 0 and z = -∆. In the same way, the right-hand side of Eq. 
(21.2) must match ),(ˆ bωrE  in vacuum.  

This third boundary condition leads to a set of four equations, and when written out we 
get factors of the type ⊥⊥ ++ βγαγε 3)6( o  in Eq. (21.1), and similar ones in Eq. (21.2). It 
turns out that the equations do not resemble any of the other equations which we used to solve 
for the Fresnel coefficients. However, the eight q parameters in the p-wave matrices are 
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complicated functions of ρ, ε, γ and ||κ , and they can be written in many alternative forms. 
With the matrix methods of Secs. 15 and 17 we can derive 

 
)(3)6( |||||| ακακκβγαγε ⊥⊥⊥⊥ −=++ o  , (21.3) 

 

)(3)6( ||||2
||* βκβκ

ρ

κ
αγβγε ⊥⊥⊥⊥ −=++ o  , (21.4) 

 
which holds for the polarization vector components of both the 1 and the 2 solutions. The left-
hand sides are factors which appear in the four new boundary equations, and the right-hand 
sides resemble cross products. Indeed, for any wave vector ik , with i = 1+, 1−, 2+ or 2−, we 
have 

 
)( |||| ακακ ⊥⊥ −=× si k eak  , (21.5) 

 
and a similar relation can be found for bk ×i . On the other hand, the parameters iq  from the 
previous section came from the continuity conditions for B̂ , which also involve cross 
products. For instance, 1q  came from  

 

s1p1p qk eak 1−=× ±±  . (21.6) 

 
Combination of Eqs. (21.3) - (21.6) then gives  

 

}3)6{(1 )1()1(

||
1 ⊥⊥ ++−= βγαγε

κ oq  , (21.7) 

 
as an alternative form of 1q . It appears, after deriving similar relations for the other q 
parameters, that the third boundary condition for p-waves gives a set of four equations which 
is identical to the four equations that follow from the continuity of the magnetic field.  

22. ANALYTICAL SOLUTION 

The Fresnel coefficients sP  and pP  determine the amplitude, phase and polarization of 
the phase-conjugated wave. For most practical applications only these two Fresnel 
coefficients are of relevance, although sometimes also sR  and pR  are important because 
they represent radiation which is also scattered into the region z > 0, although under a 
different angle. Eliminating the Fresnel coefficients ±

σ1Z  and ±
σ2Z  for the field in the 

medium from Eqs. (20.3) and (20.4) gives explicitly 
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for the fields outside. The most cumbersome part in the analytical evaluation of the right-hand 
side of Eq. (22.1) is the inversion of the two matrices sF  and pF .  

We have computed the 16 Fresnel coefficients analytically. For the purpose of illustration 
we give the expressions for sP  and sR  here. All Fresnel coefficients are given in the 
Appendix, although in a slightly different form. First we introduce the abbreviations 
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Then the determinant of sF  is found to be 
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and the two Fresnel coefficients are  
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 (22.6) 
 
It does not appear to be possible to simplify these expressions in general, but later we 

shall consider some special limits of practical relevance, and derive simple expressions for all 
sixteen Fresnel coefficients. These results will exhibit the main features of the Fresnel 
coefficients, but not all the tiny details which are hidden in the full solution.  

23. OFF RESONANCE 

In order to shed some light on the structure and parameter dependence of the Fresnel 
coefficients, we consider some special limits. Inspection of the four matrices which determine 
the Fresnel coefficients shows that they contain three kinds of parameters. First there are the 
dimensionless z-components of the wave vectors ( aκ , bκ , ασκ  and βσκ ), which are 
mainly determined by the angle of incidence and the dielectric constant. Then we have the 
phase factors )exp( ασφi±  and )exp( βσφi± , which are the only parameters that depend on 
the dimensionless layer thickness l. Third, there are factors proportional to the nonlinear 
coupling constant γ, or its complex conjugate. As it turns out, for s-waves these factors only 
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appear in the combination 1*ηγ  and 2ηγ , whereas for p-waves we get 2* qγ , 2* qγ , 3qγ  
and 3qγ . It was shown in Sec. 16 that these factors account for the resonance behavior in the 
coupling to the second wave in the counterpropagating sets, depending on whether |1| −ρ  is 
much smaller or larger than || γ . This same frequency dependence governs the resonance 
structure of the matrices σF  and σG , and thereby the Fresnel coefficients.  

In this section we consider the situation where the frequency aω  of the incident field is 
far off resonance with the pump frequency ω , which means |||1| γρ >>− , and we use the 
fact that || γ  is very small, say 10-5 ~ 10-8. From Eq. (16.8) we then see that 01* →ηγ , and 
similarly every other matrix element which is proportional to γ or *γ  vanishes. In this limit, 
half the number of matrix elements in σF  and σG  are zero, and Eqs. (20.3) and (20.4) are 
easily solved for the Fresnel coefficients. For p-waves we also need  

 
εε /1,,, 4141 →→ qqqq  , (23.1) 

 
in this limit. We find  

 

02 === ± bieNZP φ
σσσ  , (23.2) 

 
which shows that all bω -waves disappear. Especially, 0=σP  indicates that we can only 
generate a phase conjugated wave when aω  is sufficiently close to the resonance frequency 
ω , as could have been expected. The nonzero Fresnel coefficients for s-waves are found to 
be 
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and similar expressions can be derived for the p-wave coefficients. We recognize this solution 
as the Fresnel coefficients for an ordinary dielectric layer [101, 102], and consequently the 
nonlinear interaction has no effect at all in this limit.  

Far off resonance, the set (20.3) of four coupled equations splits in two decoupled sets of 
two equations for +

σ1Z  and −
σ1Z  and a set of two equations for +

σ2Z  and −
σ2Z . The same 

holds for Eq. (20.4). Since the second set in Eq. (20.3) is homogeneous, it only admits the 
solution 022 == −+

σσ ZZ , and with Eq. (20.4) we then find 0)exp( == biNP φσσ . The other 
set in Eq. (20.3) is inhomogeneous, and has nonzero +

σ1Z  and −
σ1Z  as solutions, leading to 

nonzero values for σR  and )exp( aiT φσ − . When aω  is closer to resonance, the 4× 4 set does 
not decouple anymore into a set for aω -waves and a set for bω -waves.  
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24. TRAVELING WAVES ON RESONANCE 

Let us now consider the opposite situation of perfect resonance, 1→ρ , and || γ  very 
small compared to unity. Since the limits 1→ρ  and 0→γ  do not commute, this limit is 
understood as |||1| γρ <<− , as shown in Sec. 16. The relative width of the resonance is 

||/ γωω∆ ≈aa , as indicated by Eq. (16.10), so that we could call || γ  the relative bandwidth 
of the phase conjugator. In order to simplify the notation somewhat we shall from now on 
assume that 0>oγ , and with Eq. (9.7) this is equivalent to assuming that χ  is positive.  

With Eqs. (14.8) and (15.10) we find that the solutions of the dispersion relations in the 
medium reduce to  

 

εκσ =







2
1

 . (24.1) 
 

From Eqs. (16.7) and (16.9) we find that the resonance parameters for s-waves become 
 

oγ
δηη −=−= 21  , (24.2) 

 
in this resonance limit. For p-waves we find for the resonance parameters  

 

oγ
δζζ −=−= 21  . (24.3) 

 
These relations indicate that for a set of coupled waves in the medium, the aω -wave and the 

bω -wave have equal amplitude. For the q-parameters that have a resonant nature we obtain  
 

εγ
δ

γ
εδ

oo
qqqq −=−=−=−= 3232 ,  , (24.4) 

 
and the other q-parameters become  

 

ε
ε 1, 4141 ==== qqqq  . (24.5) 

 
We shall furthermore assume that the incident wave is traveling, so that 10 || <≤ κ . Since 

1=ρ , also the other four waves in vacuum are traveling. With iθκ sin|| = , the dimensionless 
wave numbers aκ , Eq. (18.8), and bκ , Eq. (18.3), then simplify to  

 

iba θκκκ cos1 2
||

−=−−==  . (24.6) 
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For the wave numbers inside the medium we find from Eqs. (18.22) and (18.23) the limits  
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Depending on whether εκ <||  or εκ >|| , we have traveling or evanescent waves, 
respectively, inside the medium.  

Since for most materials we have 1>ε , the condition εκ <||  is automatically satisfied, 
and we shall assume this in the remainder of this section. We then have  

 

iθεκκ βσασ
2sin−−==  . (24.9) 

 
The major simplification comes from the identities ba κκ =  and βσασ κκ = , as can be seen 
from the analytical solution. All kinds of terms with ss βα κκ −  disappear, and factors of 

))(( sbsa βα κκκκ −+  simplify to 1-ε. Also, the appearance of the resonance parameters 
reduces to 121

2 −=ηηγ o . In the matrices σF  and σG  also the phases lασασ κφ =  and 
lβσβσ κφ = , with l the layer thickness parameter, appear. Since l can be a very large number, 

we cannot say 0=− ss βα φφ , even though 0=− ss βα κκ . The reason is that the last identity 
only holds up to order oγ , and loγ  can easily, and will, remain finite.  

Even with the above simplifications, the explicit solution for the Fresnel coefficients is 
still rather complicated, and we shall only give the results for the waves outside the medium. 
First we introduce the quantities  

 

psFD ,,)det(
16
1

== σσσ  , (24.10) 

 
which are explicitly 
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Then the Fresnel coefficients become  

 



Henk F. Arnoldus and Thomas F. George 

 

336 

336

)}sin(sinsin){(1 22
sssasssa

s
s i

D
R βααβαα φφκκφφκκε

+++
−

= , (24.13) 

 

)}sin(sinsin){(
)}1(){1( 222

2

2
||

pppapppa
p

p i
D

R βααβαα φφκεκφφκκε
ε

εκεε
+++

+−−
= , 

 (24.14) 
 

)sin(
)( 22

ss
s

sasa
i

s D
ei

P
p

βα
αα

θ

φφ
κκκκδ

−
+−

=
−

 , (24.15) 

 

)sin(
)( 222

pp
p

papa
i

p D
ei

P
p

βα
αα

θ

φφ
ε

κκεκκδ
−

+−
=

−

 , (24.16) 

 

)}sin)(sin()cos(cos2{ 22
sssasssa

s

sai
s i

D
eT a βααβαα

αφ φφκκφφκκ
κκ

++−+=−  , (24.17) 

 

)}sin)(sin()cos(cos2{ 222
pppapppa

p

pai
p i

D
eT a βααβαα

αφ φφκκεφφκεκ
ε

κκ
++−+=−  ,  

 (24.18) 
 

)sin(sin)1( ssa
s

i
i

s D
eieN

p
b βαα

θ
φ φφκκδε −−=

−
 , (24.19) 

 

)sin(sin)}1(){1( 2
|| pppa

p

i
i

p D
eieN

p
b βαα

θ
φ φφκκ

ε
δεκεε −+−−=

−
 . (24.20) 

 
As a first observation we notice that for a transparent medium ( 1=ε ) the r-wave and the 

nl-wave disappear, both for s- and p-polarization, 
 

0,0 == bieNR φ
σσ  , (24.21) 

 
and it can be shown that also 021 == −−

σσ ZZ . Therefore, all waves with their k-vector up in 
Fig. 6 vanish. Outside the medium we then only have the phase conjugated and transmitted 
waves, apart from the incident wave. A second feature appears when 0)1(2

|| =+− εκε . Then  
 

0,0 == bi
pp eNR φ  , (24.22) 
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Figure 8: Fresnel reflection coefficient |R| p  as a function of the angle of incidence 
(in degrees). Curve (a) is for reflection at a phase conjugator (ν = 0.99999, γ = 0.05, l 

= 15, ε = 2) and curve (b) is for reflection at an ordinary dielectric layer, so 
effectively for γ = 0. Both curves have a zero at the Brewster angle, which is here 

εθB arctan=  = 54.7o. For the linear case this is exact, and for the nonlinear case 
we found from the data that |R| p  vanishes at 54.4o. This small difference is due to 
the fact that for the nonlinear case the formula for the Brewster angle follows from 
the approximation of perfect resonance. Also interesting to see is that near 90o the 

nonlinear reflection coefficient is much larger than unity, which represents 
amplification with respect to the incident field. For linear media, this can obviously 

never happen.  

 
and it can be shown that also 021 == −−

σσ ZZ . This corresponds to an angle of incidence Bθ  
equal to  

 
)arctan( εθ =B  , (24.23) 

 
which is the Brewster angle from linear optics. At this angle, the pc-wave is still present. 
Figure 8 illustrates the disappearance of the r-wave for p-polarization at the Brewster angle. 
Also shown is the reflection coefficient for 0=γ  (linear case). We mention here that all 
graphs are made with the exact numerical solution, and not with approximated formulas.  
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25. RESONANCE IN A TRANSPARENT MEDIUM 

The phase-conjugate reflectivity has a tendency to diminish with an increasing dielectric 
constant ε, as illustrated in Fig. 9. The oscillations are due to the fact that ε appears in the 
phases ασφ  and βσφ . In this section we consider the same case as in the previous section 
(traveling waves on resonance), and in addition we assume that the medium is transparent, 
e.g., 1=ε . From Eqs. (24.6) and (24.9) we then see that all wave numbers are equal:  

 
iba θκκκκ βσασ cos−====  . (25.1) 

 
We already found in the previous section that for 1=ε  we have  

 

0,0,0,0 21 ==== −− bieNRZZ φ
σσσσ  . (25.2) 

 
The remaining Fresnel coefficients can be simplified to  
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Figure 9: Absolute value of the Fresnel reflection coefficient for an s-polarized 
phase-conjugated wave, as a function of the dielectric constant ε. The parameters 

are ν = 0.99, γ = 0.01, iθ  = 45o and l = 10.  
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and it is interesting to note that the coefficients for s-waves and p-waves have the same 
appearance.  

We already found that on resonance the two waves in each counterpropagating pair have 
the same intensity. We now see from Eq. (25.4) that |||| 21

++ = σσ ZZ , which implies that all 
four waves that are excited in the medium in this limit have the same intensity. The intensities 
of each wave, with respect to the incident wave, can be simplified to  
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where we introduced the abbreviation 

 
βσασσ φφφ −=  . (25.10) 

 
As mentioned before, the dependence on the layer thickness l comes in through these phases, 
and therefore βσασ κκ =  does not imply 0=σφ . We should expand ασκ  and βσκ  up to 
leading order in oγ , and then consider loγ  finite. We then find explicitly 
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The intensities depend only on σφ  through σφcos , and therefore the factors δ in Eqs. (25.11) 
and (25.12) are irrelevant. It is interesting to notice that the relative intensities obey the 
inequalities  

 

4
1|| 2

2,1 ≥+
σZ  , (25.13) 

 

1|| 2 ≥− aieT φ
σ  , (25.14) 

 

∞<≤ 2||0 σP  , (25.15) 
 

which shows in particular that the transmitted wave is always amplified, as compared to the 
incident field. Therefore, the process of reflection and transmission of the incident light is not 
energy conserving, and always more energy is produced than is provided by the incident 
wave. Of course, the difference is supplied by the pumps, which leads to depletion. Also 
interesting to notice is that  

 
2

1
2 ||4|| +− = σ

φ
σ ZeT ai  . (25.16) 

 
The phase-conjugate reflectivity 2|| σP  can be anything in between zero and infinity. Of 

course, ∞→2|| σP  is a consequence of taking the limit 0→γ , whereas a more detailed 
analysis would show 22 /1~|| oP γσ . Occurrence of a reflectivity larger than unity indicates 
amplification of the phase-conjugated signal with respect to the input, and an appearance of a 
value of 2|| σP  far in excess of unity is sometimes termed self oscillation. Both phenomena 
have been observed experimentally by Pepper, Fekete and Yariv [103] in liquid 2CS . We can 
write the reflection and transmission intensities in the alternative forms 

 

)(tan|| 2
122

σσ φ=P  , (25.17) 

 

)(sec|| 2
122

σσ φ=T  , (25.18) 

 
which are the usual expressions, derived in a very simplified way from the beginning. The 
behavior of 2|| σP , as predicted by Eq. (25.17) has been qualitatively verified by experiment 
[103].  

Only a phase-conjugated and a transmitted signal are emitted by the medium. Their total 
relative intensity is 22 |||| σσ TP + , and for an energy-conserving process, like for linear non-
absorbing media, this sum would equal unity. However, it follows from Eqs. (25.8) and (25.9) 
that the two emission intensities are related as  

 

1|||| 22 =− σσ PT  , (25.19) 
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for any angle of incidence and polarization, and any l and oγ .  
Combination of the results from above gives the expressions for the Fresnel reflection 

coefficients 
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which shows explicitly the dependence on l, oγ  and the angle of incidence. We see from Eq. 
(25.8) that self oscillation ( ∞→σP ) occurs if πφσ )12( += n  with n integer. For a given 
angle of incidence, the layer thickness must be  

 

i
o

nl θ
γ
π cos)12( +=  ,     s-waves, (25.22) 

 
 

 

Figure 10: Absolute value of the Fresnel reflection coefficients for the pc-wave, both 
for s- and p-polarization, as a function of the layer thickness l. The parameters are ν 

= 1.01, γ = 0.01, iθ  = 45o and ε = 1.  
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Figure 11: Absolute value of the Fresnel reflection coefficients for the pc-wave, both 
for s- and p-polarization, as a function of the angle of incidence iθ . The parameters 

are ν = 0.99, γ = 0.01, ε = 1 and l = 10.  
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with n = 0, 1, 2, ... . The successive values of l are equidistant, and these l-values are different 
for s-waves and p-waves. The minimum value of l for s-waves is iol θγπ cos)/(= , which is 

ol γ/1~ . Since realistic values of oγ  are 10-5 ~ 10-8, this requires a medium with a thickness 
of at least a few centimeters. Figure 10 shows the dependence of the reflection coefficients on 
the layer thickness for a given angle of incidence.  

In practice, the layer thickness is fixed and the maxima are displayed in the angle-of-
incidence dependence of the Fresnel coefficients. From Eqs. (25.22) and (25.23) we find for 
the locations of the maxima 
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Figure 12: Absolute value of the Fresnel reflection coefficient |P| s for an s-polarized 
pc-wave as a function of the angle of incidence iθ . The parameters are ν - 1 = 10 -4, γ 
= 6 x 10 -4, ε = 1 and l = 13,603. For these values, the resonances are predicted by Eq. 
(25.24) to appear for n = 1, 2, ... at iθ  = 30.0o, 58.7o, 68.2o, 73.2o, 76.3o, 78.5o, 80.1o,.. . 
It is seen that there is some discrepancy, for instance at 30o. Near 90o, there are an 

infinite number of oscillations, which cannot be resolved adequately in a graph.  

 
with n = 0, 1, 2, ... . However, if πγ /ol  is larger than unity, for instance, then there is no 
solution iθ  for s-waves with n = 0. In general, there is a minimum onn =  (can be different 
for s- and p-waves) which gives the smallest angle iθ  for which a maximum occurs. Every 

onn >  then also gives a solution, so there are an infinite number of solutions which cluster at 
o90=iθ  (because the right-hand sides go to zero for ∞→n ). Figure 11 shows || sP  and 

|| pP  as a function of iθ , and for parameters 01.0=γ , 99.0=ν , 1=ε  and 10=l . Here we 
have νγ ~ , and therefore this does not correspond to the resonance limit |||1| γν <<−  
considered in this section. For these parameters, the maxima predicted by Eqs. (25.24) and 
(25.25) are o88  and o84  for s-waves and p-waves, respectively. Figure 12 is drawn with 
parameters closer to resonance, and the fast oscillations near o90  clearly appear, but the 
peaks are not exactly at the locations predicted by Eqs. (25.24). Then in Fig. 13, we truly have  
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Figure 13: Same as Fig. 12, but now with ν - 1 = 10 -5. The value of this ν - 1 is a 
factor of 10 closer to resonance, and we see that the peaks appear exactly where 

predicted. The resonances are also much sharper, and their peak values are about a 
factor of 10 higher.  

 
|||1| γν <<− , and the maxima are in the correct positions. Also, the values of the maxima 

increases with decreasing |1| −ν , and the lines become narrower. The values of the maxima 
will be calculated in the next section.  

26. FREQUENCY DEPENDENCE IN A TRANSPARENT MEDIUM 

In the previous section we studied the case of perfect resonance in a transparent medium, for 
which the Fresnel coefficients reduced to very simple forms. In this section we retain the 
possibility that aω  is not necessarily close to resonance, and in this way the results will be a 
generalization of the results from the previous section. We shall assume again that the 
medium is transparent, γ is small and all waves are traveling. Far off resonance the medium is 
effectively vacuum, which implies 11 ==+

σσ TZ  and that all other Fresnel coefficients 
vanish.  

The resonant behavior is governed by the parameters 1η  and 2η  for s-waves and by 1ζ  
and 2ζ  for p-waves, whereas the wave numbers aκ , bκ , ασκ  and βσκ  in the matrices sF  
and pF  are more or less geometrical factors. Care should be exercised in approximating the 
phase factors )exp( ασφi±  and )exp( ασφi± , so for the time being we leave them as they 
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stand. Let us first consider 1η  and 2η , which are related according to 2
2

1 ηρη −= . Far off 
resonance the values of 1η  and 2η  are finite, but on resonance they are proportional to oγ/1 . 
Then we recall that 1η  and 2η  are always multiplied by *γ  and γ , respectively, which 
means that far off resonance their contribution is negligible. Therefore, for oγρ >>− |1|  we 
can approximate 1η  and 2η  by any finite value, and for oγρ <<− |1|  we can replace the 
relation 2

2
1 ηρη −=  by  

 
21 ηη −=  . (26.1) 

 
Since off resonance the values of 1η  and 2η  are irrelevant, we can use approximation (26.1) 
for the entire frequency range. In Eq. (16.6) we can set 12 =+ oγε . Then we notice that the 
factor 2)2( oργ  under the square root sign only contributes for oγρ <<− |1| , and therefore 
we can replace it by 24 oγ . The parameters 1η  and 2η  only contribute for 1~ρ , so that we 
can also set )1(212 −≈− ρρ , if necessary. Combining everything gives  
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=  , (26.2) 

 
which is considerably simpler.  

For p-waves the matrices pF  and pG  contain the parameters iq  and iq , i = 1,..,4, 
which depend on the resonance parameters 1ζ  and 2ζ . Along the same lines as above, 
although much more involved, we can derive that 21 ζζ −≈ , and  
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For the q-parameters we find  
 

14411 ==== qqqq  , (26.4) 
 

23322 ζ===−=− qqqq  , (26.5) 
 

which leaves us with 2ζ  as the only resonance parameter for p-waves. The wave numbers 
ασκ  and βσκ  depend in a complicated way on the various parameters, but the deviation 

from their vacuum values aκ  and bκ , respectively, is of the order of oγ . Since there is no 
resonance behavior in the wave numbers, we can set  

 
ba κκκκ βσασ == ,  , (26.6) 

 
to a good approximation. This approximation can be made in the matrices sF  and pF , but 
not in the corresponding phase factors ασφ  and βσφ .  
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If we substitute all approximations in the matrices sF  and pF , then it appears that the 
equations for s-waves and p-waves are identical in form. The p-wave matrices follow from 
the s-wave matrices through the substitution  

 
psps ββαα φφφφζη →→→ ,,22  , (26.7) 

 
and the same holds for the resulting Fresnel coefficients. Within the approximations of this 
section, the following Fresnel coefficients vanish 
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which generalizes Eq. (25.2). The remaining Fresnel coefficients are  
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and this generalizes Eqs. (25.3)-(25.6). The results for p-waves follow then from Eq. (26.7). 
Far off resonance, 2η  remains finite, and therefore 02* →ηγ  and 02

2
2 →ηγ o . We then have 

11 ==+
ss TZ  (because then sa αφφ = ), and the other Fresnel coefficients vanish, as it should 

be. On the other hand, on resonance we have )exp(2* piθδηγ −=  and 12
2

2 =ηγ o , and in this 
limit we recover the results from the previous section.  

We see from Eq. (26.11) that 0=sP  for 1)](exp[ =− ssi βα φφ , and it is easy to verify that 
|P| s  is maximum for 1)](exp[ −=− ssi βα φφ , which is πφφ βα )12( +=− nss , n integer. For 

a fixed value of the frequency, this leads again to conditions for the layer thickness or angle 
of incidence that optimizes the pc-wave, as in Eqs. (25.22) and (25.24), respectively. Under 
the same condition, the absolute values of the other Fresnel coefficients are also maximum, 
and the Fresnel coefficients themselves are given by 
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For perfect resonance, we have 12

2
2 =ηγ o , and all Fresnel coefficients are infinite, but for 

1≠ρ  they remain finite. Seen as a function of the angle of incidence, the condition 
πφφ βα )12( +=− nss  determines the values of iθ  where the maxima appear, similar to Eq. 

(25.24) for the case of resonance. Here the condition also involves ρ, since these phases 
depend on ρ. However, the values of the maxima, as given by the absolute values of the right-  
 

 

Figure 14: Illustration of the frequency dependence of |P| s  (thick line) and |P| p  
(thin line) for 1=ε , 0.01=γ , 660=l  and o45=iθ . The peak heights are clearly 

different for s- and p-waves.  
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Figure 15: Graph of |P| s  as a function of ν, for the same parameters as for Fig. 14, 
except here l = 942. This change in l turns the strong maximum at ν = 1 into a 

minimum.  

hand sides of Eqs. (26.13)-(26.16), do not depend on the layer thickness or the angle of 
incidence. This explains why all peaks in Figs. 12 and 13 appear to have the same height. For 
p-waves this is only approximately true, since 2ζ  replaces 2η , and we see from Eq. (26.3) 
that 2ζ  has a dependence on iθ  through iθκ sin|| = . For the parameters of Fig. 12 we have 
from Eq. (26.2) 3.12012 −=η , and with Eq. (26.15) this yields 00.3|| =sP , in excellent 
agreement with the graph. Similarly, for Fig. 13 we find 0.16122 −=η  and 0.30|| =sP .  

The relation πφφ βα )12( +=− nss  also predicts maxima for certain values of ρ, because 
these phases depend on ρ, although in a complicated way. Figure 14 shows a typical 
frequency dependence of the reflection coefficients || sP  and || pP . We see a strong 
resonance near ν = 1, and the peaks have a width of order of oγ . Since oγ  can be very small, 
a phase conjugator can be used to construct a narrow-band frequency filter [104]. We also see 
the appearance of side bands. The peak heights of the peaks at the resonance ν = 1 should be 
given by Eqs. (25.20) and (25.21), but the value of 01.0=oγ  is too large for the 
approximations of Sec. 25 to hold. The very sensitive dependence on the various parameters 
is illustrated with Fig. 15, where, compared to Fig. 14, only the value of the layer thickness is 
changed slightly. We see that the strong peak at ν = 1 has disappeared, and has now become a 
minimum. Figure 16 shows the same graph, but then for p-waves. Here, the peak at the 
resonance frequency has come back, but it is still much weaker than the two nearest side 
bands. This possible disappearance of the pc-signal at resonance was confirmed 
experimentally [105].  
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Figure 16: Same as Fig. 15, but here for p-waves. We see that for p-waves the 
maximum at ν = 1 does not disappear, but it is considerably smaller than the first 

side bands.  

 

Figure 17: Polar diagram of sP  in the complex plane for the same parameters as in 
Fig. 14. At resonance, ν = 1, the value of sP  is negative imaginary, as indicated by 

Eq. (25.20) (we have 0=pθ ). The arrows indicate the direction of increasing ν.  
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An interesting way of depicting the Fresnel coefficients as a function of the frequency is 
by a representation as a polar plot in the complex plane. Figures 17 and 18 show the polar 
diagrams of sP  for the same parameters as in Figs. 14 and 15, respectively. The value of sP  
at resonance is on the negative imaginary axis, as follows from Eq. (25.20). As the frequency 
increases or decreases, the curve spirals into the origin. After every turn of o360 , the curve 
goes through the origin, which corresponds to a zero of the graphs in Figs. 14 and 15. We see 
that in the complex plane, the value of sP  varies smoothly throughout the plane, and in a non-
trivial way, as has been known for a while [106].  

For the intensities of the various waves on resonance we found the inequalities (25.14) 
and (25.15). For arbitrary ρ we have from Eqs. (26.12)  
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which is larger than unity at any frequency. For the phase-conjugated wave we find from Eq. 
(26.11) 
 
 

 

Figure 18: Same as Fig. 17, but for the parameters of Fig. 15, and the frequency 
range limited to 1.010.99 ≤≤ ν . The resonance value is still on the negative 
imaginary axis, but it does not correspond to a maximum of |P| s  anymore.  
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which can be anything in between zero and infinity. Most remarkably is that from Eqs. 
(26.17) and (26.18) we obtain 

 

1|||| 22 =− ss PT  , (26.19) 
 

as Eq. (25.19) for the limit of close resonance. Since the results for p-waves follow from the 
substitutions shown in Eq. (26.7), this identity also holds for p-waves.  

Finally, we mention that sP  from Eq. (26.11) can be written in the alternative form  
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which displays more clearly that sP  reduces to the earlier result (25.5) in the limit 1→ρ .  

27. SPECULAR WAVE 

The most essential features of the amplitudes of the various waves are exhibited in the 
approximate solutions (25.2)-(25.6), and the expressions from the previous section 
incorporate the main characteristics for off-resonance excitation. Nevertheless, Eq. (26.15) 
still predicts ∞=sP  for a peak located at perfect resonance, whereas the exact solution 
remains finite. Considerable deviations from the previous results can already occur for values 
of γ as low as 310 − . In this section we look at the value of sR , which is predicted to vanish 
by Eqs. (25.2) and (26.8). Figure 19 shows || sR  as a function of ν, and for 01.0=γ . We see 
that || sR  is not really small, due to the finite γ, and another interesting feature is that the 
maximum appears well off resonance. Figure 20 shows the polar diagram in the complex 
plane of sR  as a function of ν, and for the same parameters as in Fig. 19. This apparent 
erratic frequency dependence only follows from considering the exact solution for finite but 
small γ. Figure 21 shows || sR  as a function of the angle of incidence, and we notice that a 
sharp peak appears near o75=iθ . For this graph we took 0015.01 =−ν . For smaller values 
of 1−ν , the sub-peaks near o90  disappear, and the main peak gets sharper and higher, and 
moves closer to o90 . Obviously, such subtleties require a more detailed analysis of the 
solution for sR  than given by the approximations presented in this paper, for which we only 
find 0=sR .  
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Figure 19: Graph of the absolute value of the reflection coefficient for s-waves, as a 
function of the frequency ν. The parameters are 1=ε , 0.01=γ , 942=l  and 

o45=iθ , which are the same as for Fig. 15.  

 

 

Figure 20: Polar diagram in the complex plane for sR  as a function of ν, with 
1.010.99 ≤≤ ν , and for the same parameters as in Fig. 19.  
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Figure 21: Illustration of |R| s  as a function of the angle of incidence, for 1=ε , 
0.05=γ , 10=l  and 1.0015=ν .  

28. EVANESCENT WAVES 

In the general solution, both traveling and evanescent waves are included in one 
formalism, but it appears that the approximate expressions for the Fresnel coefficients are 
different in form for evanescent waves than for traveling waves. In this section we consider 

1|| >κ , e.g., the incident wave is evanescent, and a transparent medium ( 1=ε ) with γ small, 
which is the same situation as in Sec. 26. We shall also assume that the layer thickness is 
many wavelengths. Since we shall allow for an arbitrary frequency detuning, it can happen 
that the bω -waves are traveling ( bκ  real and aκ  imaginary). However, it turns out that in 
that case the Fresnel coefficients for the traveling waves are zero, up to order oγ . The same 
conclusion holds for a traveling incident wave and other evanescent waves, so that either all 
waves are traveling or all are evanescent. Along similar lines as in Sec. 26 we find  
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and for s-waves we obtain  
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Figure 22: The two non-zero Fresnel coefficients for evanescent waves, as a function 
of the frequency. The parameters are 1=ε , 0.01=γ , 10=l  and 2=||κ .  
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The results for p-waves follow from the substitution 22 ζη → , as in Eq. (26.7). Referring to 
Fig. 7, we notice that the only waves, other than the incident wave, inside the medium 
survive, which are the ones that seem to emanate from the surface z = 0. Far off resonance we 
find 11 →+

sZ , 02 →−
sZ , as it should be. On resonance we have 12

2
2 =ηγ o , and Eqs. (28.2) 

and (28.3) reduce to  
 

pi
ss eZZ θδ −−+ ==

2
1,

2
1

21  , (28.4) 

 
showing that both waves have equal intensity. The frequency dependence is entirely 
accounted for by 2η , unlike for traveling waves where we also had a ρ dependence in the 
phases sαφ  and sβφ . For s-waves there is no dependence on ||κ , but for p-waves the 
parameter 2ζ  has a ||κ  dependence, as can be seen in Eq. (26.3). Figure 22 shows the two 
Fresnel coefficients as a function of the frequency.  
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29. BICHROMATIC SOLUTION OF PLANE WAVES 

The set of coupled wave equations, Eqs. (11.4) and (11.5), expresses that the electric field 
),(ˆ ωrE  (which is in general a continuous function of ω), evaluated at aωω =  and at 

bωω = , must be related according to these equations. In analogy to the monochromatic 
solutions in linear optics, it might seem that here we can find a bichromatic solution, such that 

)(),(ˆ aωωδω −∝rE  around aωω = , )(),(ˆ bωωδω −∝rE  around bωω = , and zero 
elsewhere. If we would substitute this into the more general equation (11.1), then the left-
hand side would be proportional to )( aωωδ −  and the right-hand side to )( bωωδ − , which 
shows that the two delta functions would not cancel. Also, a solution of this form does not 
obey the condition (3.4) for ),(ˆ ωrE . Equation (3.4) expresses that if we are given the field at 

aωω = , then we also know the field at aωω −= , and vice versa. A bichromatic solution 
must have the form 

 

)(),(ˆ)(),(ˆ),(ˆ '' aaaa ωωδωωωδωω −+−= rErErE  
 

             )(),(ˆ)(),(ˆ '' bbbb ωωδωωωδω −+−+ rErE  . (29.1) 
 

Here we have introduced ba ωω −='  and ab ωω −=' , so that aω  and 'aω  are positive and bω  
and 'bω  are negative. Then we have ωωω 2' =+ aa  and ωωω 2' −=+ bb , which shows that 

aω  and 'aω  are symmetrically located around ω , and bω  and 'bω  have ω−  in their middle. 
In the notation of Eq. (29.1) it should be understood that ),(ˆ aωrE  is meant to be the 
amplitude of ),(ˆ ωrE  at aωω = , and not ),(ˆ aωω ≡rE . When we substitute the right-hand 
side of Eq. (29.1) into the top line of Eq. (11.1), then both the right-hand side and the left-
hand side have a term proportional to )( aωωδ −  and a term proportional to )( 'aωωδ − . 
Therefore, we can separate the equations for aω  and 'aω , and then the delta functions cancel. 
The equation at aω  is then exactly Eq. (11.4). In the same way, the bottom line of Eq. (11.1) 
reproduces Eq. (11.5). Then, from ),(ˆ),(ˆ * ωω −= rErE  we have the relations  

 
*'*' ),(ˆ),(ˆ,),(ˆ),(ˆ abba ωωωω rErErErE ==  . (29.2) 

 

For the positive frequency part of the field, only the contributions of aω  and 'aω  contribute, 
and with Eq. (3.5) we find  
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in terms of a solution ),(ˆ aωrE , ),(ˆ bωrE  of the set (11.4), (11.5). For the field itself we add 
the negative frequency part, as in Eq. (3.7), and this is equivalent to  
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in view of Eq. (3.6).  

For the situation where the layer is illuminated by a monochromatic polarized plane wave 
of the form (18.1), the solution for ),(ˆ aωrE  and ),(ˆ bωrE  in z > 0 takes the form as given 
by Eqs. (19.4) and (19.5). Then the field in z > 0 is explicitly  
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This shows clearly that the frequency of the pc-wave is 'aω . If the wave is traveling, then its 
wave vector is real, and equal to pck− . For 1≈ρ  we have kk −≈− pc , as shown in Sec. 18, 
and therefore the incident wave and the phase conjugated wave are almost counterpropagating 
indeed. Interference between the two waves gives rise to observable fringes [107,108].  

30. HELICITY 

When the incident field is s- (p-) polarized, then all other waves are also s- (p-) polarized. 
As pointed out in Sec. 1, below Eq. (1.4), a well-operating phase conjugator does not only 
reverse the propagation direction of the incident wave, but it also conjugates the polarization 
vector, if complex. As pointed out by others [109,110], this implies that a phase conjugator 
should preserve the handedness, or helicity, of the wave. Whether or not the phase conjugator 
under discussion does that is hidden in the s-p formalism. In order to investigate this question, 
we first consider the reflection of a polarized plane wave with arbitrary polarization.  

Equation (29.5) represents the field in z > 0 for either s- or p-polarized waves. Since the 
coupled wave equations are linear in the fields, an arbitrary superposition of solutions is again 
a solution. We replace E by σE  and sum over σ. The first term on the right-hand side of Eq. 
(29.5) then contains the factor ∑σ σσ eE , which we write as  

 

εoEE πσ
σ

σ =∑ e  , (30.1) 

 
with 0>oE , and ε normalized as 1* =⋅εε . Then oE  is the amplitude of the incident field 
and ε is the polarization vector. Given oE  and ε, σE  follows from  

 
)( σσ π e⋅= εoEE  , (30.2) 

 
since the polarization vectors σe  are normalized as 1=⋅ σσ ee  (without the star). So we set 

)( σπ e⋅→ εoEE  in Eq. (29.5) and sum over σ. This yields  
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where we have used  

 
εε =⋅∑

= ps
(
,

)
σ

σσ ee  . (30.4) 

 
Then we introduce the (unnormalized) polarization vectors for the r-wave and the pc-wave by 
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The three contributions to the field of Eq. (30.3) are then  

 
)(Re),( ti

oinc aeEt ω−⋅= rkrE ε  , (30.7) 
 

)(Re),( ti
ror areEt ω−⋅= rkrE ε  , (30.8) 
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Re),( ti
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a*pceEt ω−⋅−
=

rkrE ε  , (30.9) 

 
in obvious notation.  

In order to see what happens to the helicity upon reflection, let us consider traveling 
waves, and normal incidence. Let us take the x- and y- directions as the directions of the unit 
p- and s- polarization vectors of the incident wave. It then follows from Fig. 23 that the other 
p-polarization vectors are xpcp ee =,  and xrp ee −=, . The polarization vectors for s-waves 

are all the same, yis ee =, . Since for normal incidence, there is no distinction between s-

polarization and p-polarization, the corresponding Fresnel coefficients must obey 
 

sp PP =  , (30.10) 
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sp RR −=  . (30.11) 

 
The minus sign on the right-hand side of Eq. (30.11) is a consequence of the sign conventions 
for the polarization vectors, as follows most easily from Fig. 23. The polarization vectors for 
the r-wave, Eq. (30.5) and the pc-wave, Eq. (30.6), then simplify to 

 
εε sr R=  , (30.12) 

 
∗= εε *spc P  . (30.13) 

 
Then we write )exp( ros iRR φ= , )exp( pcos iPP φ= , with 0≥oR , 0≥oP , and the phases 
real. The r-wave and the pc-wave then become  

 
)(Re),( rar ti
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rkrE ε  . (30.15) 

 
For the polarization vector of the incident wave we now take, as an example, the spherical 
unit vector  

 

)(
2

1
yx iee +−=ε  . (30.16) 

 
To see the rotation of the E vector, we set r = 0 in Eq. (30.7), which then gives 

 

)}sin()cos({
2

1),0( ttEt ayaxoinc ωω eeE +−=  . (30.17) 

 
This vector rotates counterclockwise in the xy-plane with increasing time. Since the 
propagation direction is the negative z-direction, this vector rotates clockwise when you look 
into the oncoming beam. Therefore, the inc-wave is right-circularly polarized. Similarly, for 
the r-wave we have  

 

)}sin()cos({
2

1),0( rayraxoor ttREt φωφω −+−−= eeE  , (30.18) 

 
which also rotates counterclockwise in the xy-plane. But since the specular wave travels in the 
positive z-direction, the E vector rotates counterclockwise when looking into the oncoming 
beam, so that the r-wave is left- circularly polarized. Then, the pc-wave is  
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Figure 23: Illustration of the phase conventions for the polarization vectors, as 
determined by Eqs. (19.1) and (19.2).  

 

)}sin()cos({
2

1),0( '' pcaypcaxoopc ttPEt φωφω +−+−= eeE  , (30.19) 

 
which rotates clockwise. The propagation direction is the positive z-direction, so when 
looking into the beam, we see a clockwise rotation, and therefore this wave is right-circularly 
polarized, just as the incident wave. This shows that the helicity is preserved for the phase 
conjugated wave, unlike for the specular wave. It is interesting to notice that this conclusion 
is independent of the values of the Fresnel coefficients.  

31. SUMMARY AND CONCLUSIONS 

We have theoretically studied optical phase conjugation by four-wave mixing in a layer 
of nonlinear material. The present presentation is a greatly expanded version of an earlier 
account [111]. No restrictions were imposed on the angle of incidence, the value of the 
dielectric constant, the third-order susceptibility, the frequency mismatch with the pump 
beams or the layer thickness. Also included is the possibility that the incident wave is 
evanescent rather than traveling. Maxwell's equations for the geometry shown in Fig. 1 were 
solved (almost) exactly, and this proceeded essentially in three steps.  

First we worked out the expression for the third-order nonlinear polarization under the 
assumption that we have two strong counterpropagating and monochromatic laser beams 
incident on the medium from the left and the right. The field to be conjugated has to be weak 
compared to the intensity of the pump beams. It then appears that we can derive a set of two 
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coupled wave equations for the weak field only, which couple a positive- and a negative-
frequency component of the Fourier spectral distribution of the radiation. The presence of the 
pumps enters the equations only parametrically through the third-order polarization, which 
contains a parameter that is proportional to the third-order susceptibility and the pump 
intensity.  

As the second step we studied the fundamental plane-wave solutions of the coupled wave 
equations. It appeared that the solutions split into two categories, which could be identified as 
standard s-polarized and p-polarized waves. We found that the s-waves are transverse, but the 
p-waves are not. We have derived dispersion relations for both the s-waves and the p-waves, 
and we found that each has two branches, each corresponding in a particular way to the two 
waves in the set. Subsequently we evaluated the relative amplitudes of the two coupled 
waves, and their polarization vectors. The coupling between the waves could be expressed in 
terms of resonance parameters, like 1η  and 2η  for s-waves, which depend in a crucial and 
sensitive way on the frequency difference between the incident field and the pump beams, 
and the nonlinear coupling parameter γ.  

The third step involves the excitation of plane waves inside the medium by an external 
field. We assumed an incident plane-wave field, with given amplitude, polarization, 
frequency and wave vector (which includes the angle of incidence for traveling waves). We 
have shown that, in general, an incident plane wave does not excite just a single set of two 
coupled waves in the medium, but that the situation is much more complex. The general 
picture is summarized in Fig. 6 for traveling and in Fig. 7 for evanescent waves. The wave 
vectors, and thereby the reflection and refraction angles, follow from the requirement that all 
wave vectors must have the same parallel components, and that the magnitude of the wave 
vectors is determined by the dispersion relations. The only unknowns are the relative 
amplitudes of the various waves, with respect to the amplitude of the incident wave, and these 
are the Fresnel coefficients. They represent both the intensities and the phases of the various 
waves. We were able to obtain the sixteen Fresnel coefficients by matching the fields across 
the two boundaries, according to Maxwell's equations. We have studied the solutions both 
analytically and numerically, and we have derived simplified expressions for limiting 
situations.  

APPENDIX 

The numerical evaluation of the Fresnel coefficients is done by solving the set of four 
linear equations, Eq. (20.3), both for s-polarization and p-polarization, by Gauss elimination 
and pivoting. On the other hand, we can solve this set analytically, as indicated in Sec. 22. 
The results are rather cumbersome, but of great value for the study of the properties of these 
coefficients. For reference, we give the full result for the 16 Fresnel coefficients in this 
Appendix.  

The solution of Eq. (20.3) is formally given by 
 



Phase Conjugation in a Layer of Nonlinear Material 

 

361

361



















=





















−

−

+

−

+

0
0
0
1

)(2 1

2

2

1

1

σ

σ

σ

σ

σ

κ F

Z
Z
Z
Z

a  . (A.1) 

 
This shows that we only need the first column of the inverse of σF . Therefore, the solution 
can be written as  
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with ifσ  the minor of iF 1)( σ , that is, the determinant of the 3× 3 matrix which remains after 
row 1 and column i are crossed out in σF .  

For s-waves we find  
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in terms of which the determinant of sF  becomes  
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The Fresnel coefficients for the fields inside the medium are then given by Eq. (A.2), and the 
Fresnel coefficients for the waves outside the material follow from Eq. (20.4). In terms of the 
functions 41,..., ss ff  we find explicitly  
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For p-waves the functions 41,..., pp ff  are  
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in terms of which we obtain 
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