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Abstract 
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1.  Multidimensional linear recurrence relations 
A multidimensional linear recurrence relation (or partial difference equation) may 
be written in the form [1]: 
 

  RM;)AM(B)M(f)M(B
N

1k
kAk

∈−= ∑
=

rrrrr
   . (1) 

The quantity B(  
r 
M ) depends on the set of n variables {x1, x2, ... , xn} with which 

one associates a point, M, in an n-dimensional Euclidean space having for 
coordinates the same set of numbers.  The position vector of that point is denoted 
  
r 

M , and the recurrence relation is valid for all points belonging to region R.  One 
also refers to B(  

r 
M ) as the quantity B evaluated at point M.  Equation (1) is an (N 

+ 1)-term linear recurrence relation, expressing that B(  
r 
M ) is linearly related to N 

other values of B evaluated at points with position vectors { kAM
rr

− ; k = 1,..., N}.  
Coefficients )M(f

kA
r

 are labeled by the corresponding shifts kA
r

 and may also 
depend on the evaluation point M.  When these coefficients are independent of 
the evaluation point, the linear recurrence relation has constant coefficients.  
While Eq. (1) states that the recurrence is valid for points M in region R, in 
general the values of B in that region are not uniquely determined unless its 
values at some other points are specified.  Assume that the values of B are known 
at “boundary” points, lJ , corresponding to position vectors l

r
J , according to: 

 
  ll

r
λ=)J(B    ;     l  = 1, 2, ..   . (2) 

The boundary points form a boundary region Rb = { l

r
J ;  l  = 1, 2, ... } and 

the lλ ’s are called initial values.  Consider the set of points RJ which can be 
reached following any number of displacements made of the elements of set A = 
{ kA

r
; k = 1, ... , N}, and leaving any given boundary point, without encountering 

any of the other boundary points.  A solution to Eq. (1) satisfying the boundary 
conditions (2) exists and is unique, if and only if R ⊂ RJ.  If there is a boundary 
point which cannot be linked to any of the points in R without encountering 
another boundary point, then the solution does not depend on the initial value 
associated with this boundary point.  If region Rb does not contain such boundary 
points, it is then called a minimal boundary.  For all practical purposes, we will 
assume that R = RJ and that Rb is a minimal boundary.  Thus the solution of Eq. 
(1) satisfying the initial value conditions (2) is a linear combination of all the 
initial values listed in Eq. (2).  We shall write this as [1]: 
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  ∑λ=

l
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rrr
)M,J(C)M(B    . (3) 

The quantity )M,J(C
rr

l  is called the combinatorics function.  Its construction is 
based on all possible paths leaving the boundary point lJ  and reaching the 
evaluation point M by successive displacements belonging to set A, while 
avoiding all other boundary points.  The construction of a combinatorics function 
is presented in the following paragraph. 
 A given path leaving lJ  and reaching M is identified by two labels, ω and 
q.  The former label is the number of displacements in this path, and the latter is 
used to distinguish the various discrete paths having the same number of 
displacements ω.  Consider a given path (ωq) with displacements q

1δ
r

, q
2δ

r
, ..., q

iδ
r

, 
..., q

ωδ
r

, made in this order, leaving lJ  and reaching M.  Let iS  be the point on 
this path reached after the ith displacement, q

iδ
r

.  The position vector of that point 
is: 
 

  ;...,,1,0i;JS
i

0j

q
ji ω=δ+= ∑

=

rrr
l MS;JSo

rrrr
l == ω    . (4a) 

In this equation we have introduced for convenience the nil displacement, 
 
  0q

0
rr

=δ    ;   ∀  q   . (4b) 

On the (ωq)-path, point iS  is reached following displacements q
1δ

r
, q

2δ
r

, ..., q
iδ

r
.  

With this point one associates the quantity )S(f iq
i

r

δ , and with the (ωq)-path one 
associates the product 
 

  ∏
ω

=
δω =

0i
i

q )S(f)M,J(F q
i

rrr
l    , (5a) 

where the coefficient associated with the nil displacement is unity: 
 
  S,1)S(f)S(f 0q

0

rrr
∀==δ    . (5b) 

The combinatorics function is then given by: 
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 By adding to the right-hand side of Eq. (1) a term, I(  
r 

M ), which may depend 
on the evaluation point, the recurrence relation becomes inhomogeneous, 
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=

∈−+=
N
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The solution of Eq. (7) satisfying the boundary conditions of Eq. (2) is given by 
[2]: 
  ∑∑

∈
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The combinatorics function C(  
r 
L ,  

r 
M ) is constructed based on all possible paths 

(made of displacements belonging to set A) connecting point L and the evaluation 
point M and avoiding the boundary points.  Equivalently, one may also view the 
solution of the inhomogeneous equation as the sum of two terms: the solution of 
the homogeneous equation and the particular solution of the inhomogeneous 
equation corresponding to all the initial values iλ  = 0.   
 
2.  One-dimensional two-term recurrence relations 
A.  General method 
With appropriate scaling, a two-term recurrence on a function u(x) subject to the 
initial value condition, 
 

  u(xo) = λ   , (9a) 

may be written as: 
 
  u(x) = p(x) u(x–1) + q(x)   , (9b) 

where p(x) and q(x) are known functions.  The solution of Eq. (9) is well known 
[3] and may be obtained by the method of “variation of parameters,” which relies 
on the knowledge of the solution u1(x) of the homogeneous equation, and then 
searching for v(x) such that u(x) = v(x) u1(x).  A special solution may also be 
obtained as an ascending continued fraction for x > xo [3].  The combinatorics 
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function technique may also be used to recover the same result [4].  For 
definiteness, let us assume that x > xo.  Set A contains only one element which is 
the displacement by one unit in the direction of the positive x-axis.  The function 
associated with this displacement is f1(x) = p(x), and the inhomogeneous term is 
I(x) = q(x).  Region R for which the solution is obtained uniquely in terms of λ is 
the one containing the points with coordinate x such that x – xo is a positive 
integer, say n.  There exists only one path connecting any two points of 
coordinates y and x for which x – y = m is a positive integer.  Thus the one-
dimensional combinatorics function associated with this path is 
 

  ∏
=

=+=
m

1j
1)y,y(C,)jy(p)x,y(C    , (10) 

and the solution of Eq. (9) follows: 
 

  ∑
=

+++λ=
m

1j
ooo )x,jx(C)jx(q)x,x(C)x(u    . (11) 

The ascending continued fraction solution is also obtained as a special case of the 
combinatorics function technique, when replacing Eq. (9b) by: 
 

  
)1x(p
)1x(q

)1x(p
)1x(u)x(u

+
+

+
+
+

=    ;   x > xo   . (12) 

Set A has only one element corresponding to the unit displacement in the 
direction of the negative x-axis, and the function associated with this 
displacement is f –1(x) = 1/p(x + 1).  The inhomogeneous term is I(x) = q(x + 
1)/p(x + 1).  A minimal boundary region associated with region R must contain 
one point whose coordinate y satisfying the inequality y > x > xo with the 
constraint that x – y = n is a positive integer.  The combinatorics function is 
denoted in this case as C*(y, x) to distinguish it from the one above, and it is 
given by: 
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+
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m
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*
)jx(p

1)x,y(C    ;   1)y,y(C* =    . (13) 
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The general solution of Eq. (12) with the boundary point being at an arbitrary 
location (y > x > xo) then follows: 
 

  ∑
=
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)1kx(q)x,y(C)y(u)x(u    . (14) 

The ascending continued fraction solution given by Milne-Thomson [3,5] is a 
special case of Eq. (14) where the boundary point is at infinity and u(∞) = 0. Then 
Eq. (14) is equivalent to: 

  
)1x(p

)2x(p
)3x(p

)4x(p

...)4x(q)3x(q
)2x(q

)1x(q
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+

+
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++

++
++

=    . (15) 

 

B.  Bernouilli and Euler polynomials 
Let Bn(x) and En(x) be the Bernouilli and Euler polynomials, respectively.  They 
are defined through the following generating functions [6]: 
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They also satisfy the two-term recurrence relations: 
 
  n

1n1n x)1n()x(B)1x(B ++=+ ++    ; (18) 

  n
nn x2)x(E)x(E +−=    . (19) 

We choose the boundary point arbitrarily at xo such that 
 

  xo = x – [x]   , (20) 
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where [x] indicates the integer part of x, which in turn shows that xo is in the 
range 0 ≤ xo < 1.  The initial values for recurrence relations (18) and (19) are 
Bn+1(xo) and En(xo), respectively.  In the Bernouilli case, we have p(x + 1) = 1 
and q(x + 1) = (n + 1) xn, and Eq. (11) implies [4]: 
 

  
1n

)x(B)x(B)xk( o1n1n
]x[

1k

n
o +

−
=+ ++

=
∑    . (21) 

In the Euler case, p(x + 1) = – 1 , q(x + 1) = 2 xn and Eq. (11) implies [4]: 
 

  
2

)x(E)1()x(E)xk()1( on
]x[

n
]x[

1k

n
o

k]x[ −+
=+−∑

=

−    . (22) 

These results hold for [x] ≥ 1 with n a positive integer. If x is an integer, say m, 
then xo = 0, x = [x] = m, and Eqs. (21) and (22) reproduce the known results [6] 
for the sum and alternate sum of m consecutive integers which are raised to the nth 
power. 
 
3.  Three-term one-dimensional recurrence relations 
A.  Legendre polynomials 
The Legendre polynomials Pm(z) satisfy the three-term recurrence relation [6]: 
 

  )z(P
m

1m)z(Pz
m

1m2)z(P 2m1mm −−
−

−
−

=    ,   m ≥ 1   , (23a) 

with the initial values: 
 

  P0(z) = 1   ,   P–1(z) = 0   . (23b) 

A slight generalization of this problem is obtained by adding an inhomogeneous 
term I(m; z) to the right-hand side of Eq. (23a) keeping the same initial values [5]: 
 

  )z;m(I)z(B
m

1m)z(Bz
m

1m2)z(B 2m1mm +
−

−
−

= −−    ,   m ≥ 1   . (24) 

Set A contains two displacement vectors in the direction of the positive m-axis 
and of magnitude 1 and 2, respectively.  The functions associated with these 
displacements are: 
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In terms of the combinatorics functions associated with this problem, the solution 
is given as: 

  ∑
=
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m

1j
m )m,j(C)z;j(I)m,0(C)z(B    . (26) 

The combinatorics function C(0,m) is the Legendre polynomial Pm(z).  To 
complete the construction of the general solution, one has to compute C(j,m) for 
m > j  ≥ 1.  The result is [5]: 
 

  ∑
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p2jmp z)1()m,j(C    , (27a) 

where [q] refers again to the integer part of q, and β depends on j, m and p 
according to: 
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2
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−+Γ+Γ

−+Γ+−+Γ
×    . (27b) 

One may check that, for j = 0, there is only one non-zero term in the k-
summation, the one for which k = 0.  This, in turn, allows one to extend the 
validity of Eq. (27) to j = 0, and recover the expression of the Legendre 
polynomial as C(j,m), evaluated at j = 0. 
 

B.  Fibonacci-like recurrence relation 
Consider the Fibonacci-like recurrence relation [7], 
 

  Bm = a Bm – 1 + b Bm – p   ,   p ≥ 2   , (28a) 

subject to the initial values: 
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  ll λ=−pB    ,   l = 1, 2, ..., p - 1   ,   00B λ=    . (28b) 

The Fibonacci numbers are the solutions of Eqs. (28) when a = b = 1, p = 2, λ1 = 
0 and λ2 = 1.  The standard method of solving Eqs. (28) would be to search for 
particular solutions of the form: 
 

  Bm = Rm   , (29) 

which in turn requires R to be a root of the characteristic equation 
 

  Rp – a Rp–1 – b = 0   . (30) 

Let Rk be one of the p roots with index k varying from 1 to p.  Then the solution 
of Eq. (28a) is a linear combination of these p special solutions, 
 

  ∑
=

=
p

1k

m
kkm RLB    , (31) 

with the Lk’s satisfying the initial value conditions (28b).  The combinatorics 
function technique provides a simpler way of obtaining the analytical solution for 
any p ≥ 2.  Here set A is made of two displacement vectors along the positive m-
axis of magnitudes 1 and p, with the associated functions f1(m) = a and fp(m) = b.  
Consider all paths reaching the evaluation point of coordinate m ≥ 1, and leaving 
any of the boundary points of coordinate – j (j = 0, 1, ... , p – 1) while avoiding all 
other boundary points.  Thus, the first displacement δ1 for all of these paths is 
restricted to be equal to p for as long as j ≠ 0, and the combinatorics function C(– 
j, m) follows as [7]: 
 

  
[ ]
∑

−

=

δ−+−−
⎟⎟
⎠

⎞
⎜⎜
⎝
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p
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)1p(kjm
ba)m,j(C    , (32) 

where the quantity in brackets represents a binomial coefficient.  The solution to 
Eq. (28a) satisfying the initial value conditions (28b) is: 
 

  ∑
=

−λ=
p

0j
jm )m,j(CB    . (33) 
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In this manner, we avoided calculating the roots of the characteristic equation and 
the p coefficients Lk in terms of the p initial values λj.  On the other hand, the 
equivalence between the two methods yields a sum rule valid for m ≥ 0, p ≥ 2 and 
for any values of a and b, namely [7], 
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   . (34) 

 

4.  The Schrödinger equation with a power-type potential 

Consider a particle of mass m in a central potential 

  V(r) = K rN   , (35) 

where N is a positive integer.  The radial part R(r) of the wave function describing 
the stationary state of the particle with energy E is written as 
 
  R(r) = U(r)/r   , (36) 

with U(r) the well-behaved solution of the radial Schrödinger equation: 
 

  0Ut)1(
d

Ud N
22

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−ρ+

ρ

+
−

ρ
l

l ll    . (37) 

Here,   l  is the orbital quantum number, and t and ρ are dimensionless energy and 
radial variable parameters: 
 

  rmK2;EK
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2
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⎟
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h    . (38) 

The behavior of lU  for large values of ρ is the same for all values of   l .  This 
behavior is that of the solution of Eq. (37) with  l =0, namely, 
 

  0U)t(
d

Ud
o

N
2
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2
=−ρ−

ρ
   . (39) 
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For the linear potential (N = 1), the well-behaved solution of Eq. (39) is the Airy 
function [6], Ai(ρ – t).  Since R(r) must be a well-behaved function in the limit as 
r approaches zero, one should also require that Ai(ρ – t) = 0 as ρ approaches zero; 
thus: 

  Ai(– t) = 0   . (40) 

The roots of this equation provide the s-state (  l = 0) energy eigenvalues for the 
linear potential problem (N = 1).  Here we intend to develop an energy eigenvalue 
equation valid for positive integer values of N which reduces to Eq. (40) when 
setting N = 1 and   l  = 0. 
 By factoring out the non-singular behavior of lU  near the origin, we search 
for a series solution of the form: 
 

  ∑
∞

=

+ ρρ=
0m

m
m

1 bU l
l    . (41) 

Substituting this series into Eq. (37) yields the three-term recurrence relation: 
 

  m(m + 2  l  + 1) bm = – t bm – 2 + bm – N – 2,   m > 0   , (42a) 

subject to the initial value conditions: 
 

  b– m = 0   for   m > 0   ,   b0 ≠ 0   . (42b) 

We intend to express bm in terms of higher order terms with the boundary at 
points on the m-axis with coordinates {m + M + j ; j = 0, 1, ..., N + 1}, with M 
being at this point an unspecified positive integer.  This is why we use an 
equivalent form of Eq. (42a), 
 
  Nm2Nmm btb)32Nm()2Nm(b +++ ++++++= l    . (43) 

Set A for this recurrence relation consists of displacements in the direction of the 
negative m-axis with magnitudes N + 2 and N, and their associated functions are: 
 

  F – (N + 2)(m) = (m + N + 2)(m + N + 2  l  + 3)   ,   f – N(m) = t   . (44) 
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With C(m + M + j, m) designating the combinatorics function, the solution of Eq. 
(43) in terms of the coefficients bm + M + j (j = 0, 1, ..., N) is: 
 

  ∑
+

=
++ ++=

1N

0j
jMmm )m,jMm(Cbb    . (45) 

This expression holds for any value of m ≥ 0.  Furthermore, Eq. (42a) with the 
boundary value conditions (42b) implies 
 
  0bbtb)1(2 1N11 =+−=+ −−−l    . (46) 

Combining Eqs. (45) and (46) yields 
 

  ∑
+

=
++ ++=

1N

0j
jM11 )1,jM1(Cbb    . (47) 

 Next, we consider a double series expansion of Uo(ρ) of the form [9] 
 

  ∑∑ ∑
∞

=

∞

=

∞
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=ρ≡
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⎬
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⎪
⎨
⎧

−ρ=ρ
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0n 0i
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o )t,0(b)i,n(A)t()(U l    , (48) 

which exists for N ≠ 2, and its expansion coefficients A(n, i) satisfy the 
recurrence relation: 
 
  n(n – 1) A(n, i + 1) – A(n – 2, i) – A(n – N – 2, i + 1) = 0   , (49a) 

with the initial value conditions: 
 
  A(– n, i) = 0   for  n > 0   ,   A(0, 0) ≠ 0   . (49b) 

Since the asymptotic behavior of )(U ρl  is the same as that of Uo(ρ) for all values 
of   l , in the limit as n becomes infinite, coefficient bn(  l , t) should be proportional 
to bn(  l  = 0, t):  
 

  ∑
∞

=

−==∝
0i

i
nn )i,n(A)t()t,0(b)t,(b ll    . (50) 

Using Eq. (50) in taking the limit of Eq. (47) as M approaches infinity yields: 
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This infinite order polynomial in t is the generalization of the one obtained in Ref. 
10 for the linear potential (N = 1) and holds for all positive values of N except N 
= 2.  Excluding the harmonic potential (N = 2), the roots of )t(H Nl  are the 
energy eigenvalues of the positive power potential problem.  With an appropriate 
choice of A(0, 0), )t(H Nl  reduces to Ai(– t) for N = 1 and  l  = 0.  Unfortunately, 
we have been unable to find a closed form expression for the expansion 
coefficients for arbitrary N and  l .  In the linear potential case (N = 1), we were 
able to compute in closed form the first few lower order terms for  l  = 1. 
 
5.  Summary 
Multidimensional linear recurrence relations can be formally solved in terms of 
the combinatorics functions.  A combinatorics function depends on a boundary 
point and an evaluation point.  Boundary points are determined by the initial 
value conditions and the evaluation points are those at which one would like to 
determine the value of the unknown in terms of the initial values.  The 
construction of a given combinatorics function is based on all possible paths 
connecting a boundary point to an evaluation point.  These paths are made of 
discrete displacements.  The magnitudes and directions of these displacements are 
readily identified from the recurrence relation.  The number of such 
displacements is one less than the number of terms in the recurrence relation, and 
a one-to-one correspondence is established between these displacements and the 
coefficients appearing in the recurrence relation.  A path connecting a boundary 
point to an evaluation point is then made of a given sequence of displacements.  
With such a path one associates the product of the corresponding coefficients 
evaluated at the successive intermediate points encountered along the path.  The 
construction of the combinatorics function for a given set of boundary and 
evaluation points follows as the sum of such products, corresponding to all 
possible paths leaving the boundary point and reaching the evaluation point, while 
avoiding all other boundary points.  For a few cases we have shown how known 
results using other methods are recovered using the combinatorics function 
technique, while providing some natural generalizations.  Not presented in this 
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article is the use of the combinatorics function technique to include the solution of 
linearly coupled recurrence relations [11].  Such relations involve a set of 
multidimensional functions )M(Bi

r
.  The value of a given function Bj at the 

evaluation point M is linearly related not only to its values at other evaluation 
points but also to the values of the remaining functions evaluated at shifted 
arguments.  A general method for decoupling these equations has been presented 
in Ref. 11.  In the case of linearly coupled relations with constant coefficients 
[12], the decoupling is much simpler to achieve than in the general case.  
Applications of this decoupling has been extremely useful in the study of Ising 
models [13, 14].  This technique was also instrumental in developing a 
computational method for the exact study of low temperature adsorption patterns 
on crystal surfaces of finite width and infinite length [15].  We found that the 
crystallization patterns on semi-infinite surfaces without periodic boundaries have 
characteristics which fit exact analytic expressions as a function of the width of 
the surface. 
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