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Abstract

The linewidth and line shift of an atom near a dielectric medium have been studied. The effect of the presence of
the material is either a line narrowing or a line broadening, as compared to the natural linewidth, and it appears that
the general tendency is a line narrowing. The corresponding shift is predominantly towards the blue. We illustrate
graphically that the theoretical limit of a perfect conducting metal is unrealistic for any existing material, in particular
when the atomic dipole is oriented perpendicular to the surface. We show that the limit of a semi-infinite medium
follows from a delicate average over fast oscillations, and that the result is different from what one would expect.
Explicit expressions for the linewidth were obtained for the case where the atom is close to the surface. © 2000

Elsevier Science B.V. All rights reserved.
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1. Introduction

Optical properties of an atom are determined
not only by its internal Hamiltonian, but also by
its environment, a prediction first made by Purcell
[1]. Already the finite lifetime of an excited
electronic state is a consequence of the coupling
between the atomic dipole moment and the electro-
magnetic field of the embedding vacuum [2]. For
a two-state atom with excited level |e) and ground
level g), separated by an energy of hw,, the
Einstein A coefficient for spontaneous decay is
given by [3]
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with p., = {elulg), the dipole moment matrix ele-
ment between the two levels. The lifetime of level
le) is then 1/4,, and during a transition from [e)
to |g> a fluorescent photon is emitted. When the
atom is in the vicinity of material, the structure of
the vacuum surrounding the atom changes, and
this alters the value of this Einstein A coefficient.
The first observation of the effect of media on the
lifetime of a molecular excited electronic state was
reported by Drexhage [4], who studied dye mole-
cules on a dielectric substrate, and similar experi-
ments were reported later [5-8]. For atoms in a
microwave cavity, both inhibition and enhance-
ment of spontaneous emission rates have been
observed [9-11], and also in the optical domain it
has been experimentally confirmed that the pres-
ence of media affects the emission rate [12—14]. In
the most simple theoretical model, the medium is
assumed to be a mirror (perfectly conducting
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metal ) or a set of parallel mirrors [15-17]. Other
approaches include the semiclassical energy
transfer method [18,19], Green’s function tech-
nique [20], and a linear response formalism [21-
23].

Rather than measuring the decay rate of the
excited atomic state (or equivalently, the emission
rate of photons), one can also obtain the Einstein
A coefficient by measuring the line shape for
absorption of weak radiation [24]. The normalized
absorption profile as a function of the angular
frequency w is given by

1 1

I(w)=—

Re 5 (2)
T (12)A—i(w—w,—A)

a Lorentzian with a full width at half maximum
equal to 4. Although this linewidth is a conse-
quence of the decay of the coherence between the
two levels, instead of the decay of the population
of the excited state, it reveals the same Einstein A4
coefficient, and thus the influence of the environ-
ment on the atom. The line is centered around
w=w,+A, indicating a shift A away from reso-
nance. For an atom in free space, 4 =4, and the
shift A=A, is the Lamb shift [25]. Due to the
vacuum and possible media, each atomic level will
shift by a certain amount, and with a contribution
from every other level. The total shift A is then
the difference between the shift of [e) and the shift
of |g>. In our model two-state atom, the shift of
le) is only paired to |g), and vice versa, but in
realistic calculations one has to sum over all pairs
of levels, including the continuum. The effect of
media on this shift has been studied theoretically
with the same variety of approaches as the Einstein
A coefficient [26-31]. Most theories for the lifetime
yield the same result, but the expressions for the
level shifts vary. In particular, semi-classical calcu-
lations seem to contradict quantum mechanical
results.

Many models deal with an atom near a perfect
conductor or in between parallel mirrors, or near
a semi-infinite dielectric medium. This can be
generalized to the situation of the case of an atom
near a dielectric slab, which then includes the
mirror as a special limit. In the present paper, we
study the transition from a finite thickness material
to the limit of a semi-infinite medium, using an
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approach based on Fresnel reflection and transmis-
sion coefficients. It appears that the limit of a
semi-infinite medium does not simply follow from
including some small absorption on the dielectric
material, as one does in classical optics. Rather,
the limit is reached by an effective average over
fast oscillations. We have also obtained closed-
form analytical solutions for the case where the
atom is close to the surface, as compared to an
optical wavelength. These explicit expressions are
given in Appendix A.

2. Dipole interaction

An atom is located on the z-axis, a distance /
above a layer of material of thickness L. The
schematic setup is shown in Fig. 1. The medium is
characterized by its dielectric constant €. For e >1
we have a common dielectric, and for e <0 this
reasonably models a metal, at least in the visible
region of the spectrum. The atom interacts with
electromagnetic radiation through the dipole inter-
action. With E(r,) the electric field at the location
of the atom (r, =he.), the interaction Hamiltonian
is usually taken as

H, = —p Er,). (3)

For the calculation of lifetimes this approximation
yields the correct results, but for the level shift we

Z
k kr atom P kt
N ’D‘ /
z =10
< L
k ¢

Fig. 1. Schematic illustration of the setup of the dielectric layer
and the atom. Also shown are the wave vectors corresponding
to the plane wave modes that determine the structure of the
radiation field in the region z>0.
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need the exact interaction Hamiltonian in
Coulomb gauge [32]:

H,,=—M-A(r,). (4)

Here, A is the vector potential, and the atomic
operator M is defined as

M= Z pz, (5)

with ¢,, m, and p, the charge, mass and canonical
momentum, respectively, of particle o inside the
atom. The transition matrix elements of M are
related to the dipole moment matrix elements
according to [33]

elM|g) =i peg- (6)

3. Mode structure

Since no external fields are considered, the only
radiation comes from the vacuum field. In empty
space, the E field operator in the Heisenberg
picture is given by

hao —a,,e el(l\ l*wt)_i_HC (7)
2,V

o

E(r, I)—IZ

with k, o the transverse modes supported by the
quantization volume V, «,, the photon annihila-
tion operators, e, unit polarization vectors, and
w=ck. Similar expressions hold for the magnetic
field B and the vector potential. When incident on
the medium, these plane waves partially reflect at
the surface and partially travel into the material
(see Fig. 1). In the field given by Eq. (7), waves
propagate in all directions, and this implies that
there are vacuum waves that are incident from the
region z< —L. These waves travel through the
layer and contribute to the field in >0 where the
atom is located. Consequently, in addition to
the vacuum field from Eq. (7) there is now also a
reflected (r) field and a transmitted (7) field. This
t-waves field, with its origin in the vacuum field
below the medium, is sometimes called ‘quantum
noise’ [34,35].

The electromagnetic field operators (E, B and
A) in the Heisenberg picture satisfy the classical
Maxwell equations [36], including boundary con-
ditions. With the incident field given by Eq. (7),

this determines uniquely the solution in all space.
For the vector potential in z>0 we then have

h _
A(l', t):z" e A el(k'rfcut)
ko 260(1) V
" " R i(k,.- r—ot)
+Z akaekra ko €
ko 26 oV
h .

+Z alurekrﬂ Tko‘ e”k.r_”r) +HC

2e 0V

(8)

The double prime on the summation sign indicates
that the sum only runs over waves coming in from
=>0, whereas the single prime restricts the summa-
tion to waves incident from z < — L. The amplitude
factors R,, and Ty, are the Fresnel reflection and
transmission coefficients for this geometry, which
will be discussed in more detail in the next section.
If we indicate by k| the parallel component of the
incident wave vector k with respect to the surface
-=0, and if we write « for the cosine of the angle
of incidence, then we have for waves incident from
above

k=k,—kue., (9)
k,,:ku‘}‘klle:. (10)
For s-polarization we take the unit polarization
vectors as

1
e,‘.ms:k;kH xe., (11)

and as phase convention for p-polarization we
take

1
e"'(r)l’ = ;k(") X ekms- ( 12)

For waves incident from below we simply have
k,=k and for the polarization vectors we take
€10 =€y,

4. Fresnel coefficients

With Eq. (7) for the incident field, and a
corresponding expression for the magnetic field,
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the boundary conditions at the two interfaces z=
0 and z= — L determine eight Fresnel coefficients
for the various waves, given the k vector of the
incident field. Since we are not concerned with the
field inside the medium, we consider only R and
T, both for s- and p-polarization. For simplicity
of notation, we shall drop the subscript k£ on these
coefficients. Explicitly, we have [37,38]

1 _elih‘
R.=(1—¢) . . (13
(v+u)* —(v—u)? ¥ )
R, =[(uef —1?] g (14)
=[(ue)?® —v? =
P J(v + u€e)? —(v—ue)? ¥
= 4“"’ : ei((l'*u)! ( 15)
(v4+u)? —(v—u)* ¥
duve )
;8 ghe=, (16)

" (v+ue)? —(v—ue)? ¥V

Here we have introduced the dimensionless layer
thickness

wlL
{=kL=——, (17)

and the abbreviation

v=Ve—1+u’. (18)

The z-components of the wave vectors for the field
in the medium are +kv. For e —1+u?>0 this v is
positive, and it reflects that the waves in the
medium are travelling waves. On the other hand,
for e— 1 +u* <0 the waves in the layer are evanes-
cent, and v is positive imaginary. For e>1, this
happens when the angle of incidence is larger than
the critical angle. For € negative, e.g. for metals, v
is always imaginary (because 0 <u<1).

The expressions for the Fresnel coefficients
above hold for arbitrary complex €. An imaginary
part of e (with Im e>0) accounts for absorption
in the material. Loss of energy in the medium
would be in conflict with quantum mechanics in
which the radiation field is represented by a
Hamiltonian (as below). It can be shown that an
imaginary part of € would lead to contradictions,
so we shall assume that € is real. From the expres-
sions above it can then be verified that the identity

IR, > +|T,I* =1, (19)

with o =s or p, holds. This relation will be impor-
tant later on, and it should be noted that it only
holds for real € (or, v real or pure imaginary).

5. Master equation

Eq. (8) gives the vector potential in the
Heisenberg picture. The Schrodinger representa-
tion follows from setting =0, and if we then take
r=he. we have the field at the position of the
atom. Then Egs. (4) and (5) determine the inter-
action Hamiltonian between the radiation field
and the atom. The Hamiltonian of the radiation
is the usual one,

H,=Y ha)<a}:,ak,, + l), (20)

ka 2
although we do not need this for what is to follow.
It simply determines the time evolution of the
vector potential, which has already been given by
Eq. (8). The internal Hamiltonian of the two-state
atom is

H, =|e>hw.<{e|+|g)hw,{gl, (21)

with w,—w,=,. The equation of motion for the
density operator p(¢) of the entire system is then

ih d—p =[H, +H,+ H,,., p]. (22)
dt

In order to obtain expressions for the lifetime and

level shift, we need an equation of motion, a

master equation, for the reduced atomic density

operator p,, defined by

pa(t)=Tr,p(2). (23)

Here the trace runs over the states of the radiation
field only. With either reservoir theory [39] or the
Zwanzig projection operator technique [40], we
obtain

dpa :
_— —i(w, +A)le) <el, pa

—3 Afle) {elpa +pale> <el—2lg) <elpale) <gl},
(24)
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containing the Einstein A coefficient and the line
shift A. the expressions for 4 and A will be given
in Section 7. Eq. (24) governs the temporal evolu-
tion of the atomic density operator, and with the
quantum regression theorem (or equivalent) this
also yields atomic time-correlation functions.
These, in turn, determine line shapes of the atomic
transition, like the absorption profile given by Eq.
(2). Furthermore, if we indicate by #, the popula-
tion of the excited state, which is {e|p,(7)le>, then
it follows immediately from Eq. (24) that

B (25)

= —An,,
dt
and for an atom initially in the excited state the
solution is n.(f)=exp(—At), e.g., exponential
decay with a lifetime of 1/4.

6. Correlation functions

From general relaxation theory, it follows that
the rate constants and level shifts in the master
equation (4 and A here) can be expressed in terms
of the Fourier—Laplace transforms of the field
correlation functions at the position of the atom,
defined by

o0

1 )
gmn(U)) = h_z J\ dr e‘wT<A(ro7 T)mA(ro’ 0)n>»

0
m,n=x,y, Or Z. (26)

From the spatial symmetry of the configuration it
can be shown that g, (w)=0 for m#n and that
Z.x(w)=g, (o) [41]. Therefore, there are only two
different nonzero correlation functions, which we
shall denote as g, (w)=g..(w) and g|(®) = g.(®).
The functions g,(w), with «=_ or ||, can be
evaluated with the explicit expression (8) for the
vector potential. The result has a different form
depending on whether  is positive or negative. We
shall need g, () for o =w, and w = —w,, and these
can be written in the form (at zero temperature)

(o) = ——2— b,(®,)
2\ Do) =~ D,y
& 6me hic

€, hc

o

i % w
———6 e 7o Pl dow
n-e hc o w—0,

b, (), (27)

gu(_wo): - bz((,l))

i * w
L f e
6me hcd Jo 0+,
(28)

The P in Eq. (27) stands for principal value. The
functions b,(w) are given by

3 (1 :
bL(w):ZJ du(1—u?){|1 +R, > +|T,|*},

0

(29)

3 .
by(w)= = J du{[1+ R, e™* +|T,?
0

+u*|l —R, e 2+ T ). (30)
Here, u is again the cosine of the angle of incidence,
and we have defined parameter f as

2wh
= S (31)

£}

c

which is a measure for the distance between the
atom and the surface of the medium. The func-
tions b,(w), defined for >0 only, are real and
positive, and determined by the Fresnel coefficients
(and p).

For € real, we can use relation (19) to eliminate
the transmission coefficients. It will be convenient
to write the b,(w)’s as

b(w)=1+c,(®), (32)

which then gives
1

3 .
c (w)= 5 Ref du(1—u?)R, e, (33)

0

1
¢j(w)= % Ref du(R;,—u*R,)e"". (34)
(0]

These parameter functions depend on  through
the parameter f and the w dependence of the
Fresnel coefficients. Furthermore, they depend on
€, the layer thickness and the atom-surface dis-
tance 4. Due to the integration over u we have

lim c,(w)=0, (35)
h— o

because the fast oscillations of exp(ifu) average
out to zero. This reflects the fact that when the
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atom is far away from the surface, the medium
has no influence any more on the properties of
the atom.

7. Linewidth and line shift

For simplicity of notation we shall assume that
the transition dipole moment matrix element g,
is either perpendicular or parallel to the surface
z=0. Then the Einstein A4 coefficient is determined
by the field correlation according to

A :2(')§ﬂeg ',u;gRe gz((’)o)’ (36)

where o« now refers to the orientation of the atomic
dipole. If we indicate by A, and A, the shifts of
the excited state and ground state, respectively,
then these level shifts are

Ae = Whteg - Heglm g,(5), (37)
Agzwiﬂeg '.u:glmgaz(_(’)o)s (38)

and the line shift is A=A.—A,. In terms of the
dimensionless parameter functions, we can write
A as

A=A,b,(w,), (39)

with A4, the free-space value from Eq. (1). This
shows that b,(w,) is the correction factor for the
Einstein A coefficient, representing the presence of
the medium. Similarly, the line shift becomes

A=Ay Ay (40)

where A, is the free-space shift, formally given by

A(,:Aolpf dy —— (41)
[ 0 1 —x~

The integration variable is x =w/w,. This integral
diverges logarithmically in the upper limit. The
correct value of this Lamb shift requires relativistic
effects to be taken into account at the high
frequency side. The effect of the medium is an

additional (finite) shift 4.J,, with

1 * X
Jy==—P dx c,(xw,), (42)

T 0 1— .\'2

the shift in units of the free-space Einstein A4
coeflicient.

8. Linewidth near a metal

The dielectric constant € of a metal is negative
for visible light. This makes v from Eq. (18)
positive imaginary for all . In addition, we take
the layer thickness much larger than a wavelength
(/>1). With Egs. (15) and (16) we then have
T,—0, c=s, p, and as most easily seen from Eq.
(19) this gives |R,|=1. Therefore, R, is a phase
factor, and we write

R, =e~ %%, (43)

From Egs. (13) and (14), we then find the phase
angles to be

\/1 a2
b, =arctan<——€i>, (44)
u
\/1_ g
¢, =n+arctan<——e—u>. (45)
ue

With Eq. (43), expressions (33) and (34) for the
c(w)’s can be simplified somewhat.

An interesting limit is the theoretical perfect
conductor (mirror) for which e——oo. We then
have ¢,—n/2, ¢,—n, R—>—1and R,~1. The sign
difference here is a consequence of the phase
convention for the polarization vectors. With this
simplification, the integrals in Eqgs. (33) and (34)
can be performed analytically, which yields

cos i sinf
' (w)= —3{ — = } (46)
¢ (o e 5
3 (sinffi cosf sinf
(@)=—— { A ——— } (47)
¢ (w . e e

results that have been obtained many times and in
many ways. The linewidths (in units of 4,) then
are b,=1+c, and with w=w,. For the corre-
sponding 8 we write f3,. In case of an atom close
to the surface (f—0), we have

1 1
b, =24+ —B*+... . by=——p*+..., (48)
L 10/5 I Sﬂ



H.F. Arnoldus | Surface Science 444 (2000) 221-235 227

1 mirror

silver

0 I i
0 5 B 10
(0)

Fig. 2. Linewidth for a perpendicular dipole as a function of
the (normalized) distance between the atom and the surface.
From Eq. (31) it follows that f8, equals 4m times the atom-
surface distance, measured in units of a wavelength.

e.g., for a perpendicular dipole the linewidth is
twice the natural width and for a parallel dipole
the linewidth goes to zero. These features can be
made plausible if one regards the system as a
dipole and its mirror image.

One might wonder how realistic the limit of a
perfect conductor is for the problem under con-
sideration. According to Eq. (43), the reflectivity
for any metal is unity, and the various vacuum
waves only undergo a phase shift upon reflection.
The best conductor, silver, has a dielectric constant
of —15 (yellow light). Figs.2 and 3 show the
linewidths for silver, and the corresponding perfect
conductor approximations from Egs. (46) and
(47), as a function of the distance between the

15

05

0 : —

0 5 BO 10

Fig. 3. Linewidth for a parallel dipole as a function of S, for
silver and a perfect conductor.

atom and the surface. It is clear from Fig. 2 that
the mirror limit is not a good approximation at
all for a perpendicular dipole. In particular, for
short distances the mirror results predicts a dou-
bling of the linewidth [Eq. (48)], whereas for silver
the linewidth is nearly equal to the natural width
(b, ~1). For a parallel dipole, on the other hand,
Fig. 3 shows that the correspondence is reasonable.
The fact that the mirror approximation is not
necessarily adequate for this problem is because
the superposition of plane waves in Eq. (8) for the
vector potential is very phase sensitive. A finite €
gives finite phase shifts 2¢, and 2¢,, and this can
lead to either constructive or destructive interfer-
ence of vacuum waves.

9. Limit of a semi-infinite medium

The dependence on the layer thickness / comes
in through the Fresnel coefficients. For u*<l—e
the parameter v is positive imaginary, and the
factors exp(iZv) go to zero quickly for /> 1. This
gives R,—exp(—2i¢,) and T,—0, as in the previ-
ous section. In general, this occurs for € <0, and
for a part of the integration range over u for
0<e<1 in the expressions (33) and (34) for the
parameter functions. In this case the Fresnel
coefficients R, and R, can alternatively be written
as

Uu—uv

R, = , (49)
u+v
ue—v

p= ; (50)
UE+V
and 7,=0.

On the other hand, when u?*>1—¢, we have
lexp(i#v)| =1 for all /, and these exponential factors
keep on oscillating as a function of /. This happens
when e€>1, and for a part of the integration range
in the case 0 <e<1. In classical optics one then
assumes that € has a small positive imaginary part,
giving v a small positive imaginary part, and then
the Fresnel coefficients go again to the limits (49)
and (50), with 7,=0. The approach to this limit
will be very slow, but for / sufficiently large, this
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0 L )
0 5 Y/ 10

Fig. 4. Linewidth for a perpendicular and a parallel dipole as a
function of the layer thickness (/ equals 27 times the thickness,
measured in units of a wavelength), and for e=4, ,=1.

limit would be reached eventually. For the present
problem, however, this procedure leads to incon-
sistencies. When v is real, or real with a small
imaginary part, we have |R,|#1, and in combina-
tion with 7, =0 this violates condition (19). It is
then easy to see from Egs. (29) and (30) that for
such a situation the functions b,(w) do not go to
unity for f—oc, corresponding to an atom far
away from the medium. This would be unphysical,
and in violation of causality.

The oscillatory behavior of the linewidth as a
function of 7 is illustrated in Fig. 4. In Fig. 5 the
same graph is extended to much higher 7 values,
and it appears that it levels off to a limit. The

0 . .

0 200 ¢ 400

Fig. 5. Same as Fig. 4, but now extended to large values of /.
The seemingly chaotic behavior is due to numerical inaccura-
cies. In order to avoid extremely large computation times, we
made each curve with only 400 points. The fast oscillations seen
in Fig. 4 cannot be resolved in this way or on this scale.

linewidth does not only oscillate rapidly as a
function of /, but for / large, it also fluctuates fast
as a function of e. This feature is illustrated in
Fig. 6. The reason is that / enters through the
factors exp[2i/(e —1+u*)"?]; for large /, a small
variation in € leads to a large change in the
exponent, and thereby to oscillatory behavior of
the linewidth.

The question is then whether these oscillations
are persistent for larger and larger 7, or that a
true limit will be reached. The Fresnel coefficients
keep on oscillating, and do not reach such a limit.
The linewidth and the level shift, however, do have
a limit for /— oo, as we will now show. In expres-
sions (33) and (34) for the ¢,’s, the Fresnel coeffi-
cients are integrated over, with u as integration
variable. The factors exp[2i/(e—1+u?)"?] also
vary rapidly as a function of u, and it can be
expected that for / very large these oscillations are
smoothened out by the integration. The integrals
appear in the form

1
J du R, e, (51)
0
or with an additional factor of #* in the integrand.
Let us consider s-polarization, and introduce the
variable z=2/v. Then R, from Eq. (13) is

1 . ei:

R,=(1— , 52
s ( €) (U+u)2 —(U—M)Z oiz (52)

where both v and z depend on the integration

0.5
1 2 3 ¢ “

Fig. 6. The thin lines are the linewidths as a function of € for
=0 and /=50. The oscillations are due to the large value of
/. The smooth thick lines are the values for /— 0.
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variable u. For a small integration step over u
from u, to u,+Au, the only possible variation of
the integrand comes from the factors exp(iz) in
R.. Therefore, for Au small, we can write

ug, +Au Uy +Au

du R, eP* ~efto du Ry(u,, 2). (53)

Here we have written R,= R(u, z), and we see this
Fresnel coefficient as a function of two variables,
as indicated by Eq. (52), and with v=v(«). Then
we make a change of integration variable from u
to z=2/(e—1+u?)"?, which gives

uo+Au zotAz

) Au
f du R, e’ ~¢'Pvo

dz R, (u,, 2).

Uy Zo

(54)

Since R,(u,, z) is periodic in z, with period 27, we
take Az=2n. This makes the integral independent
of z,. The Fresnel coefficients averaged over a
cycle, are defined by

_ 1 2n

R,(u)=— j dz R,(u, 2), (55)
2n 0

by means of which we then have

ug, +A4u
du R, e ~ e Au Ry(u,). (56)

In the limit /- oo we have Au—0, and this approxi-
mation becomes an identity. Summing over all Au
then yields

1 1
J du R, e’ =j du R, (u)e™, (57)
0 0
and similarly for the integrals with R, and u’R,,.
In conclusion, the limit /—oo for the ¢,’s from
Egs. (33) and (34) follows from the substitution
R,—R,, with the two R,’s defined by Eq. (55).
In order to calculate R, we first write R, from
Eq. (52) in the form

2(v* +u?) (1 —cos z) —4ivu sin z

2(e—1)*(1 —cos z) + (4vu)*

R=(1-¢)

(58)

With integrated from 0 to 2=, the term with sin(z)
in the numerator gives no contribution, since this
function is odd around z=r. The remaining integ-
ral has the form

}, (59)

1 r" o 1—cosz 1{1 {a—b
2n Jo “a—bcosz b a+b

with a>b>0. Combining everything then yields
the simple result

- Uu—uv

§ = L]
u+v

(60)

and a similar calculation gives for p-polarization

ue—v

R,= ; (61)
ue+v

We then notice that Egs. (60) and (61) are identical
in form to Egs. (49) and (50), pertaining to the
case of v imaginary. Therefore we conclude that
for the limit /— oo we can replace R, and R, by
R, and R, respectively, for all e. Another interes-
ting observation is the following. If we had allowed
€ to have an imaginary part, then this damping
would have a given exactly the same expressions
for /— oo as Egs. (60) and (61). However, such a
damping would also give 7,—0, and this would
violate relation (19). So, in the limit /—oc the
effective result for the reflection coefficients is the
same as one would obtain by including damping,
but without damping the 7-waves do not disappear
in general. They only do not show up explicitly
anymore, because we have eliminated the 7,
coefficients with the help of Eq. (19).

Fig. 6 shows an example of the linewidths as a
function of e, for both 7 finite and / infinite. We
have verified numerically that for increasing / the
oscillations get smaller indeed, and that the graph
converges to the limit derived above. Similar con-
clusions hold for the linewidths as a function of
B. Finally, the approach to the semi-infinite
medium limit appears slow, and it might take up
to /~10°—10* before this limit is reached within
drawing accuracy for a graph. However, 7 is the
layer thickness measured in optical wavelengths
and therefore a value of # of the order of 10° still
only corresponds to a layer thinner than a millime-
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ter. From a macroscopic point of view, therefore,
a thin layer can already be considered ‘semi-
infinite’ in the sense of the limit discussed above.

10. Atom close to the surface

It does not appear possible to evaluate the
integrals in Egs. (33) and (34) explicitly, not even
in the limit /—oco. The exception is the interesting
case of f—0, corresponding to the situation where
the atom is very close to the surface (compared to
a wavelength radiation). When we substitute the
R,’s from Egs. (60) and (61) into Egs. (33) and
(34) and use expression (18) for v, then the result-
ing integrals can be evaluated analytically. The
only remaining parameter is the dielectric constant
€. The explicit formulas are given in Appendix A,
and Fig. 7 shows the result. For a perfect conduc-
tor, e— — oo, we have b, -2 and b;—0 [Eq. (48)],
and we see from Fig. 7 that the approach to this
limit is very slow, in particular for the parallel
case. At the other side, e—» oo, we also have
b,—2 and b;—0, and also that is not obvious
from the graph or the formulas in Appendix A. It
follows more directly from the fact that in this
limit we have R,——1 and R,—1, which is the
same as for a perfect conductor. The figure also
verifies that for e=1 we have b,=1, as it must be
for a pure transparent medium. For e=0 we find
b,=0 and b;=1, and for e=—1 we have
b, =1/5 and b;=3/5. For all € shown in the graph,

Fig. 7. Linewidths as a function of € for the case of an atom
close to the surface.

the linewidth is below the natural linewidth (unity),
and this corresponds to an enhancement of the
lifetime of the excited level. Only for large values
of |e| does b, become larger than unity.
Numerically this was found to occur for || >11.5.

11. Line shift

The shift or the absorption line, A4,J,, is also
determined by the parameter functions c,, and is
given by Eq. (42). The integral runs over all
frequencies, where x = w/w,. The frequency depen-
dence of the c,’s is through the Fresnel coefficients
and the factor exp(ifu). First, the layer thickness
parameter / depends on the frequency o [Eq.
(17)]. We shall consider again the limit of a semi-
infinite medium, so that this w-dependence disap-
pears. The second w-dependence is through the
intrinsic frequency dependence of the dielectric
constant. We shall assume that € varies not too
much over the range of interest, although this is
not necessarily a good approximation. The only
frequency dependence left in the integrand of J, is
then via the dimensionless atom-surface distance
parameter B [(Eq. (31)]. We shall write f=x8,,
with B, =2w,h/c, as before. For J, we then obtain

3 g g X
J,=—ReP| dx| du

2n [ (IR e
0 0 =

(62)

Next we change the order of integration, and set
y=up,. This yields

Ju

Bo _
Ref dy(B2—y*)R, Q(»), (63)

0

- 2np3

where we have introduced the universal function
0(y), defined as

o

0()=P f dx

0 l1—x

S e, y>0. (64)
Similarly, J; is

3 Bo _ _
n= ke WBR-PRYOD.  (69)

o 0
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The advantage of integrating over x first is that
the function Q(y) can be evaluated in terms of
elementary functions. After factoring the denomi-
nator and splitting the integrand into its real and
imaginary part, we obtain

in
O(y)=cosyCiy+siny Siy— 5 COos ¥, (66)

in terms of the cosine and sine integrals Ci(y) and
Si(y), respectively. With the known properties of
these functions [42], we can transform the defini-
tion (64) into the alternative form

Y cost—cosy
f skt

0 =y

(67)

in
oWy)= <‘/— B +In y)cos y—

with 7=0.577216, Euler’s constant. From either
form we can derive the values of Q(y) for y small
and large,

in
Q(y):‘})—}—lny—z'f’..,, ylo, (68)

in
Q(y)z—;e”, y—w0, (69)

showing that the real part has a logarithmic singu-
larity at y=0. The graph of this parameter-free
function is presented in Fig. 8. Functions Ciy and
Siy are obtained from a standard routine [43].

-2
0 3 6

Fig. 8. Graph of the real and imaginary part of the function
o(»).

The integrals in Egs. (63) and (64) have to be
evaluated numerically, but part of the integration
can still be done analytically. In particular, the
logarithmic singularity of Q(y) for y|0 poses no
problems. We introduce two auxiliary functions:

fy)= fdy oy, (70)

gy = jdy y*O(y), (71)

which can be computed with some effort. The
result is

in
f(y)=sinyCiy—cosy Siy— 3 sin y, (72)

2(»)=)»>f(»)+2y(cos y Ciy+sin y Siy—1)

+2cos y Si y—2sin y Ci y+in(sin y—y cos y),
(73)

for y>0. For y|0, this gives f(0)=g(0)=0. The
function Q(y) oscillates approximately with a
period of 27. The integrations run from y=0 to
y=p, and for f, large this runs over many
oscillations. On the other hand, the Fresnel coeffi-
cients vary only slowly over the integration
interval. We therefore divide the integration
interval in N steps, such that the Fresnel coeffi-
cients do not vary significantly over each step. In
the examples below, we took N=100. Then it does
not matter how the function Q(y) varies, because
with Egs. (72) and (73) this integration is done
exact. In particular, the first step from y =0, which
involves the logarithmic singularity of Q(y), is
integrated correctly. In this fashion, we get for
instance

Bo N
J dy *R,w)Q(») = Y. R,(u)g(yi)—g(yi-1)l
i=1

0

(74)

with u;=y;/P..
The limit of a perfect conductor now follows
easily. Then we have R;= —1 and R, =1, indepen-
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dent of u. We then immediately obtain

3

J.L: Zﬂﬁg Re{ptzzf(ﬁo)_g(ﬂo)}’ (75)
-3

Jj = Re{f3f(Bo)+2(Bo)} (76)

and with Egs. (72) and (73) these can be expressed
in terms of cosine and sine integrals. For f, large
these lines shifts are

J = {1 " sin B +@<1>} (77)
=—<1——sinf, — Jid.
Sl 2 B
PO B {l-l—(f(l >} (78)
| =——cos f, [ —)¢.
' ap, B
Similarly, for small f, we obtain
1 4
I~ —{y——-}-ln ,Bo}, (79)
T 3
1 5
J|z—{“/——+lnﬁo}, (80)
T 6

showing that J, is negative, whereas J| is positive.

Figs. 9 and 10 compare the line shifts for a
mirror with the results for silver. As in Figs. 2 and
3, we find again that for a parallel dipole the
agreement is very good, but in the perpendicular
case the perfect conductor approximation is not
great. Fig. 11 illustrates the behavior of the line
shifts a as a function f, for a dielectric material.
In this case, both J, and J; go to 4+ for f,

0 5 10
Bo

Fig. 10. Same as Fig. 9, but now for a parallel dipole.

0.3

01 [

0 5 BO 10

Fig. 11. Line shifts as a function of f3, for e=4.

A . —
0 5 BO 10

Fig. 9. Line shift as a function of the atom-surface distance for
silver and for a mirror, for the situation of a perpendicular
dipole moment. Both curves go to —oo for f,—0, although
that is not clear on this scale for silver.

small. For fio—0, the line shifts always diverge. In
Fig. 12 we graph the line shifts for f, small for a
range of the dielectric constant. We notice that the
shifts are predominantly positive, except for a
perpendicular dipole in the extreme cases of a
perfect conductor or € very large. It can be shown
in general that the behavior for f§, small is given
by

1
J,~ — ¢, In f, +constant, (81)
T

as a generalization of Egs. (79) and (80). Here,
¢, is evaluated at B,=0. Therefore, the sign of J,
is the opposite of the sign of c,.
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0
-10 0 10

Fig. 12. Line shifts for 8,=0.01 as a function of €. Around e=
0, the J; dips slightly below zero, but apart from that, the shifts
appear to be positive. Extension of the graph to higher and
lower values of € shows that J, eventually becomes negative
for || large, as was the case for a perfect conductor in the limit
of small f,.

12. Conclusions

We have studied the linewidth and line shift of
a model two-level atomic transition near a layer
of dielectric material, as these result from the
coupling of the atomic dipole moment to the
radiative part in the electromagnetic vacuum near
such a medium. In particular, we consider how
the limit of a semi-infinite medium is reached. It
turned out that the usual approach of including a
small imaginary part in the dielectric constant, to
provide damping, does not apply in general in
quantum mechanics. For € <0, both ways yield the
same result, but for e >0 there is a difference. The
existence of a limit is the result of an effective
averaging over fast oscillations due to the integ-
ration over the angle of incidence of the vacuum
field waves. For € >0, the r-waves, which originate
below the medium, do not vanish on average,
whereas in the approach with Im € >0, these waves
would also damp out.

It turned out that for an atom close to the
material, the integrals representing the linewidths
could be obtained analytically (the results are
given in Appendix A and shown graphically in
Fig. 7). We have developed an, at least numeri-
cally, attractive method to calculate the line shift

integrals. These are principal value integrals over
a singularity at x=1, and running up to x=0.
With our method, this problem is dealt with analyt-
ically by means of the Q() function. This Q(y)
can be expressed as an integral over a finite interval
and without a singularity [Eq. (67)], or in terms
of elementary functions [Eq. (66)]. With the help
of the functions f( y) and g(»), Egs. (72) and (73),
we can then evaluate the line shifts easily. The
behavior of the linewidths and line shifts as a
function of the various parameters was illustrated,
and in particular it was found that a metal is not
approximated very well by a perfect conductor in
the case of a perpendicular dipole.

Appendix A

The parameter functions ¢, and ¢, from Egs.
(33) and (34), respectively, can be evaluated ana-
lytically for f=0 and /—oco. For the Fresnel
coefficients we have to use Egs. (60) and (61),
with v given by Eq. (18). This v can be positive
(e>1) or positive imaginary (¢ <0). It has a branch
point at u=(1—¢)"?, and for 0<e<1 this is in
the integration interval [0, 1]. We have verified
graphically that the expressions below give the
same results as numerical integration.

Fore<—1:

1 { , 3e?
L= €2+l———
21 e+1

—€

X [1 - —6—1 arctan(\/ —6—1>:|}, (Al)

1 € 3e
gj=—= 2ef- 14—
2 €21 e+1

X [1 - —i arctan<m>:|} (A2)

For —1<e<0:

{2 3e?
e*+1l——
e+1

c, =

e“—1

€
vV A3
x[l—}— vmarctanh( e+1>j|}, (A3)
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1 € 3e
C”:—E 2€+1+?
E [5)

X [1 — \/:? arctanh<\/mﬂ}. (A4)

For 0<e<1:

- 1(6—1)2[ 1 (1+\£)2}
16 e+l T Ve

3
+—— {2|:€3—62+6+1:|
4(e*—1)(e+1)

1
+e3%(e? 4e-l)+ (€ —l)(l-l-g 1—e>

e VIme

CREY)
— ——— arctanh| — ) ¢,
€+1 e+1 (AS)
1 (e—l)z[ — _(1+\/E)2]
32 e+l —Ve

==

(263 +1-3e)+ ————
4(e—1) 8(e?2—=1)(e+1)

{ 3224 3)—4e? -I- (e —1)<1+ Vl:)

. 8e? . nh<1-\ﬁ3>}
—— arcta A
Ve+1 Ve+1

(A6)

For e>1:

1 (e=1)?
Cy = ) |:\/€—1+
16 e+1

1
= (e+1)[\/e—l—

(l+\/E)Z}

1-Ve
(1-Vey?
1+ Ve ]

3
4+ {2[63—624—6—1—1]
4(e*—1)(e+1)

+elVe—Ve—T){e2 —4e—l)+ (e*—1)

\/86_6% [arctanh(%)
‘% ln<€'\/€2__l>]}’ (A7)

e ]

-]

+ b {2(63/2—(6—1)3/2)+1—36}
4e—1)

3
8(e2—1)(e+1)

x{e(\/E—\/e—l)(eZ+3)—4el

1 (e—1)2

C1="%>
32 e+l

1
= T3 ]
32(e+ )[

Lene X [ t h(l_%>
—le”—l)+——=| aretann| ———
2 Ve+1 Ve+l

%m@-@ﬂ}. (A8)
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