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Abstract

Resonance fluorescence can exhibit squeezing in its quadrature components. Historically,
this squeezing is defined with respect to Heisenberg’s uncertainty relation, but when the lower
limit on the uncertainty product becomes state dependent, this concept becomes rather
artificial. Schrodinger’s uncertainty relation sets a higher lower bound on the uncertainty
product when the two observables are correlated. In the steady state both limits are nearly
equal, but for pulsed excitation they can differ considerably. It is shown that after excitation
with a 7/2 or 7 pulse, the fluorescence is never squeezed. The squeezing is optimum for a /3 or
27/3 pulse, and is a factor of two better than for the best case in the steady state. If the inversion
is zero after the pulse, then the fluctuations in the quadrature field are considerably below the
Schrodinger limit, but the field is never squeezed below the Heisenberg limit.
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1. Introduction

Squeezed states are minimal uncertainty states with respect to position and
momentum, but such that the variances of both operators are unequal. They are
unitary transformations of the coherent states, and their properties have been known
for a long time [1,2]. Squeezed coherent states were introduced in quantum optics by
Yuen and Shapiro [3] in a proposed scheme for noise reduction in optical commun-
ication systems. They also outlined how the reduction in noise in a quadrature
component of such a radiation field can be observed by homodyne detection [4].
These squeezed states can be generated, in principle, in nonlinear processes like
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four-wave mixing, and much theoretical effort has been devoted to devise practical
methods for squeezed-state generation [5—8]. In 1985, Slusher et al. [9] demonstrated
for the first time that a squeezed state could be produced by four-wave mixing in
a vapor of atomic sodium in an optical cavity, and the experiment has been repro-
duced and improved by others [10,11]. Squeezed states have also been studied
extensively theoretically, and most recently their phase properties were obtained
[12-14]. Also generalizations have been considered, as for instance the superposition
of a squeezed state and a thermal state [15, 16].

A two-state atom in a near-resonant single-mode cavity can absorb and emit
photons in stimulated transitions (Jaynes—Cummings model), and it has been shown
that at certain instants during the time evolution this can lead to squeezing of the
radiation in the cavity [17, 18]. Also the multiphoton single-atom Jaynes—Cummings
model allows for squeezing [19-21], and so does the single-mode cavity with many
atoms [24-27]. In a different situation, a laser-driven two-state atom in empty space is
considered, and the spontaneously-emitted resonance fluorescence is studied. It has
been shown that this radiation can exhibit squeezing below the Heisenberg uncer-
tainty limit, provided that the various optical parameters are chosen carefully
[28-31]. Spectrally-resolved resonance fluorescence can also be squeezed [32,33].

2. Quadrature field of resonance fluorescence

A two-state atom with excited state |e) and ground state |g), separated by energy
hwo, is considered. The atom is irradiated by an intense laser beam, and the electric
field at the position of the atom has the form

E,(t) = Eo(t) Regy e i@t +o@) 2.1)

The amplitude E,(f) may depend on time, thereby allowing for pulsed-laser excitation,
and the phase ¢(t) is a stochastic process which takes into account the laser linewidth
around the central frequency w;. We shall take ¢(t) as the diffusive independent-
increment process [34], which has the phase-diffusion model as its Gaussian limit.
The laser spectral profile is then a Lorentzian, and its half-width at half maximum will
be denoted by A The atom will emit resonance fluorescence, and the positive-
frequency part of the electric field is given by [35-37].

E(t)'" = y*di)’ (2.2)

with y an overall (complex) constant, and d(t)" is the atomic lowering operator in the
Heisenberg picture (e.g., d = |g){e|).

In order to observe possible squeezing in the resonance fluorescence radiation, this
field is measured by homodyne detection [4]. The driving laser is used as the local
oscillator, and the mixing angle of the detector will be indicated by 0. Then the
observable under measurement is the Hermitian operator [32]

Eo(t) = E(t)' el @t +¢®0-0 4 He., (2.3)
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which is a slowly-varying function of time. The output of the homodyne detector is
thus proportional to the variance in this quadrature field, which will be indicated by
var(E,). In an experiment, the mixing angle 6 can be varied rapidly over a large range.
It should be noted that the quadrature field E4(t) is assumed not to vary in time with
the pulse amplitude Eq(t), but it only follows the time evolution of the phase of the
local oscillator. This implies that for pulsed excitation the laser pulse should be split
off from a CW field in order to preserve the proper phase of the quadrature field.
Alternatively, one pulse could be used for both the excitation of the atom and as local
oscillator. In such a scheme, the quadrature field vanishes immediately after the pulse,
and this limits the observation time to the duration of the pulse. As we shall see later,
the quadrature field (2.3) remains present after the pulse for a duration of the order of
the lifetime of the excited state of the atom.
The variance in E, is defined as

var(Eg) = {(Ep —<{Eo))*) = <E§) — <Eg)*. (24)

We introduce the normalized variance ry by

var(E,) (Eg)?
To= =1-——, (2.5)
PTED (E$)
and it follows immediately that this parameter lies in the range
<<, (2.6)

For r, = 0 we have var(E,) = 0, and there are no fluctuations at all in Ey. On the other
hand, for r, = 1 the fluctuations are maximum, and such that (E,) = 0. This corres-
ponds to a pure random phase of the quadrature field, a situation reminiscent of
a number state.

3. Uncertainty relations

The quadrature field E, is an observable for all 0, and Heisenberg’s uncertainty
relation for quadrature components with different values of 0 is

var(Eg) var(Ey) = 3 |<[Eg. E¢1)I* - (3.1
In terms of the normalized variances this can be written as

rere = Li; (3.2)
and here the normalized Heisenberg lower limit, Ly, is defined as

KIEo EoD)| -

Lg=——rtt
NG YD)
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Then the field E, is said to be squeezed if
rg < Ly (squeezing) , (3.4)

with 0 = 0 + n/2 in the definition (3.3) of Ly. Therefore, squeezing is defined with
respect to the Heisenberg lower limit, and with respect to the 90° out-of-phase
component of the quadrature field. The squeeze function s will be defined by

S="Ty— LH 5 (35)

and then the condition for squeezing becomes s < 0.
The correlation between the quadrature components E, and Ey is defined as

cor(Eg, Eg) = 3{EgE¢ + Eg Eq) — E¢){E¢>, (3.6)
and the correlation coefficient is
. ___cor(EnEy) .

It can be shown that ¢ lies in the range
—1<c<l. (3.8)
Schrodinger’s uncertainty relation is [38]

1
var(Eg) var(Ey) = =) I<[Ee Eo 117, (3.9)

which becomes in normalized form
roty = L. (3.10)

The lower limit in Schrodinger’s relation is related to the Heisenberg limit by

1
L= T Ly, (3.11)
and with Eq. (3.8) it then follows that
Ls> Ly. (3.12)

Therefore, Schrodinger’s uncertainty relation sets a higher lower bound on the
product of two variances of the quadrature field, which is due to the possible
correlation between the two quadrature components. For uncorrelated quadratures
(c = 0), both uncertainty limits are equal.

4. Density operator

The state of the atom is represented by a density operator p(t), which has a 2x 2
matrix representation with respect to the atomic states. This operator is a stochastic
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process due to the random phase ¢(t) of the driving laser. We shall indicate by < ... >
an average over the phase fluctuations. Then the populations n, and n, of the atomic
levels are related to p(t) by

ne(t) = <elp()ley>,  ny(t) = <glp(®)lg>> . (4.1)

The coherence between the levels oscillates with the optical frequency w; and varies
stochastically with ¢(t). The quantity of interest is the slowly-varying and averaged
coherence g,4(t), defined by

Ooq(t) = <0 (e p(t)|g) > . (4.2)

The notation < ... ), like in the definition (2.4) of the variance, implies both a quantum
average and an average over ¢(t).

Eq. (2.3) gives the Heisenberg operator for the quadrature field E,(t), and with Eq.
(2.2) this can be expressed in terms of the atomic raising and lowering operators.
Transforming to the Schrodinger picture and taking the average over the stochastic
fluctuations then yields

CEg(t)y = e ¥y*g,,(t) + cc. (4.3)
With the property

d@)? ={d®'}* =0, (4.4)
we obtain for the square of the operator Egy(t)

E(t) = y3{d(0"d(t) + d(nd(0)'} , (4.5)

where we have set y, = |y|. But the term in curly brackets is just the unit operator, so
that E,(t)* = 7§, and therefore

CEo(0)*) =75 - (4.6)
The normalized variance r, then becomes

ro=1—4|0,,|*cos?d, 4.7)
where we introduced the phase angle ¢:

0 =0+ arg(y) — arg(o,,) - (4.8)

This angle J is the homodyne mixing angle 0, shifted by a fixed amount. During an
experiment, the mixing angle is swept quickly over a range of at least 7, and therefore
the shifting of 0 is irrelevant. Then Eq. (4.7) shows that the fluctuations in the
quadrature field are determined entirely by the atomic coherence and 6. Notice that
., Will, in general, depend on time. Consequently, the variance r, depends on time,
and also the shift of angle 6. This time dependence, however, is merely parametric
because angle 0 is varied much more rapidly than the time evolution of the coherence.
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5. Uncertainty limits

The Heisenberg lower limit Ly from Eq. (3.3) is determined by the equal-time
commutator of the quadrature field at different mixing angles. With Egs. (2.2) and (2.3)
we find

[Eo(2), Eg (t)] = 2iy3{P,(t) — P.(t)} sin(0’' — 0), (5.1)

in terms of the projection operators P, =|g){g| and P, = |e){e| onto the atomic
levels, and in the Heisenberg picture. The difference between the phase angles will be
taken as m/2, which means that we compare the fluctuations in the quadrature field
E, with the fluctuations in its 90° out-of-phase component. Taking the expectation
value and absolute value of Eq. (5.1) then yields

[<[Eq(t), Eg (1)1D] = 275 1ny(1) — n(t)] (5.2)
and with Eq. (4.6) we then obtain
Ly = [n.(t) — ny(1)] . (5.3)

Hence the Heisenberg lower limit is simply equal to the absolute value of the atomic
inversion. Since the population of an atomic level can not exceed unity, the value of
Ly is limited to

O0<Lu<l. (5.4)
The squeeze function s becomes
s=1—4|g,,|*cos?d — |n(t) — ny(t)], (5.5)

which is determined entirely by the matrix elements of the atomic density operator
and by the mixing angle 0. Its value are in the range

—-1<s<1, (5.6)

and squeezing occurs for s < 0.
The correlation between two 90° out-of-phase quadrature components is found to
be

cor(Eg, Eg) = 273|0,| sin(20), (57)
which gives for the correlation coefficient

L
. 2|0, sin(20) (5.8)

J{1 = 4|6, Pcos? 5} {1 — 4|a,,|>sin?5}

The relation between Lg and Ly then becomes

4ot
L= Ly \/1 T m sm2(25) . (5.9)
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Fig. 1. Illustration of the ratio Ls/Ly and the correlation coefficient ¢ for ¢ = /4 or 37/4, as a function of
the absolute value of the coherence. For small values of |,,|. both uncertainty limits are nearly equal, and
¢ vanishes. For larger coherences, the ratio Ls/Ly approaches infinity and the correlation coeflicient tends
to unity.

This shows that the ratio Lg/Ly, is determined by the coherence and the angle J. The
dependence on & is periodic with m/2, and the parameter ry is periodic with .
Therefore, we shall restrict the values of § to 0 < J < m. Notice that the Heisenberg
limit is independent of 6. For & = 0, n/2 and © we find Lg = Ly, and from (5.7) we see
that this is due to the fact that the two quadrature components are uncorrelated for
these values of 8. The correlation is maximum for 6 = n/4 and 3n/4, and for these
angles the Schrodinger limit deviates the most from the Heisenberg limit. For these
angles the relation becomes

1 — 2|0,
J1—4o,?

Another interesting point to notice is that for a two-level system the absolute value of
the coherence is limited to the range 0 < |a,,| < 3. From Eq. (5.9) we then see that for
lo.,| = 0 we have Lg = Ly, where for |g,,] — 1 the ratio Lg/Ly approaches infinity.
The behavior of Lg/Ly as a function of the coherence is illustrated in Fig. 1. It should
be noted that Lg/Ly; — oo does not necessarily imply that Lg goes to infinity, as we
shall see later.

Ls=Ly (5.10)

6. Equation of motion

The time evolution of the quadrature field, its fluctuations, and its uncertainty
limits are determined by the time evolution of the atomic density operator, as shown
above. It is convenient to represent the (transformed and averaged) atomic density
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operator matrix elements by the three components of the Bloch vector, defined
by [39]

u=2Rea,,;

v= —2Imo,, (6.1)

W =n, — H,.

The equations of motion for these components are [40,41]

d—tz —nu + Av,

d

d—i: —nv — Au + Qw, (6.2)
((ji—vtv= —Aw + 1) — Qu,

with A the Einstein coefficient for spontaneous decay, n = 1 + A/2 the laser linewidth
parameter, 4 = w, — w, the detuning, and Q the Rabi frequency, defined by

1
Q(Y)ZEEo(t)<e|P°8L|9>’ (6.3)

and we shall assume Q(t) > 0. The vector u is the atomic dipole operator.
The damping in the time evolution is brought about by spontaneous decay and the
laser linewidth. From Egs. (6.2) we immediately find

d
a(u2 + 02+ w?) = —2n(? + v?) — 24w(w + 1), (6.4)
showing that without damping the quantity u® + v> + w? is conserved. For a pure
state at t =0 we have [39] u® + v> + w?> =1 at t = 0, and without damping this
remains unity for all times.

The Heisenberg lower limit Ly and the variance ry are in terms of u, v, and w,

Ly=|w, (6.5)
re=1—u? + v?)cos?éd, (6.6)

and then s = ry — Ly.

7. Steady state

For CW excitation of the atom, E,(t) and Q(t) are constant, and u,v, and w will
reach a steady state in a time of the order of 1/A. In the long-time limit the time
derivatives on the left-hand sides of Egs. (6.2) vanish, and the set is easily solved. We
obtain:

QAA

— — 7-1
Qi+ A(A* +n?)° (7.1)
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QAn
= — , 2
e QZ)1+A(A2+I’]2) (7 )
A AZ 2
i —— il ET) (7.3)

Q2+ A(4* +1nH)’

The squeeze function s becomes in the steady state

_g? Q2% + A(4% + n*)(n — Acos?é)

a (Q%n + A(4* + nP))? 74

As a function of J, this is minimum for § = 0 and 6 = =, and s is negative for these
angles under the condition

QI (A(A* +n*) (A — 1) (squeezing), (7.5)

as has been found before [29]. Squeezing can only occur for A — n > 0, which is
A< A/2

Given the laser linewidth A (smaller than A4/2) and detuning 4, the laser power
(proportional to 22) can be chosen such as to minimize the value of s (for § = 0 and n).
This optimum laser power is

2_A(A_’7) ) 2
_—n(A+n)(A +n9), (7.6)

and for this value of Q2 the squeeze function becomes

2
s = —(A4A:) <0. (1.7)

Consequently, for the optimum laser power the quadrature field of resonance fluores-
cence is always squeezed (for § = 0 and n). The ultimate minimum is s = — 1/8, which
is attained for A =0 (n = A/2).

We introduce the new parameters

QZ

- A~ N
S = 7.8
=g 1Tu (7.8)
in terms of which ry, Ly, and s become
r —l—écoszé (7.9)
’ (&n+1)° ’ '
Lo (7.10)
e+ '
F(Eh + 1) — cos? o
S:CJ?(CPH ) — cos (7.11)

(&4 + 1)
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Fig. 2. Plots of ry, Ly, and s as a function of the parameter ¢ for § = 3 and 6 = 0 or . The minimum of
s = —% occurs at ¢ =3, and the variance has its minimum of r, =4 at £ = 2.
In terms of these parameters, the minimum values of s = — 1/8 occurs for 6 = 0 or 7,
5 =1 and ¢ = 2. Fig. 2 shows ry, Ly, and s as a function of &, for § = 0 or mand /j = 3.

It should be noted that the squeeze function is minimum for ¢ =3, but that the
variance has its minimum of r, = 3 for & = 2.

8. Schrodinger limit

In the steady state, the Schrodinger limit Lg from Eq. (5.9) is related to the
Heisenberg limit Ly as

_ &2 \*  sin*(20)
LS_L"\/1+<éﬁ+1> G+1P-¢ (8.1)

with L given by Eq. (7.10). Since for 6 = 0, 7/2 and = both uncertainty limits are
equal, we consider here the dependence on the mixing angle d.
Given the detuning and the laser linewidth, the laser power that minimizes the

squeeze function s is

P (8.2)
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according to Eq. (7.6). For this value of &, the variance of the fluctuations becomes
1 A2 2
rg=1——(1 —1#?)cos?é, (8.3)
4

and the uncertainty limits are

Ly=3(1+17), (8.4)
I (1—72)sin’ (20)

Ly 14— _ 8.

Ls=Lu 1+ 1w Ta5 1 ®.5)

As a function of #, the squeezing is optimum for # = 3. For this limit of zero laser
linewidth, we have ¢ =3, Ly = 3, and

ro=1—3cos?é, (8.6)

Lg=2./1 4 1&5sin?(26). (8.7)

Fig. 3 shows ry, Ly and L as a function of 4. The maximum difference between Ly and
Ly is 0.02, which occurs for 6 = n/4 and 3n/4. For é = n/2 we have ry = 1, and this
corresponds to a pure random phase in the quadrature field. For 6 = 0 or = we have
the minimum value of r, = 5/8, corresponding to the minimum value s = — 1/8 of the
squeeze function.

Ty

0.6 ! I8
0 n/2 T

Fig. 3. Graphs of ry, Ly and Lg for steady-state resonance fluorescence, as a function of 6, for /j = 4 and the
value of ¢ that minimizes s. The Heisenberg limit is 4, and the Schrédinger limit is slightly higher for 6 # 0,
/2 or m.
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9. Pulsed excitation

Although squeezing of the resonance fluorescence can be achieved in the steady
state, it requires a delicate combination of optical parameters, and the squeezing is not
very pronounced. As an alternative, we consider atomic excitation with a short laser
pulse, and the possibility for squeezing in the fluorescence which is emitted after the
pulse. If the pulse is short compared to the lifetime of the excited state and compared
to the inverse laser linewidth due to phase fluctuations, then we can set A = =0
(and thereby # = 0) in Egs. (6.2), and for simplicity we shall assume perfect resonance.
Then the equations of motion during the pulse become

du 0 do Ow dw

priall = w, E——QU. (9.1)

We take t = 0 as the instant just before the pulse, and we shall assume that the atom is
then in the ground state. This gives as initial conditions u(0) = v(0)=0 and
w(0) = — 1. With Eq. (6.4) we then obtain the relation

w+vt+wi=1, 9.2)

which holds for all ¢ during the pulse.
From Egs. (6.1) and (9.2) we have

|Geg|2 = %(uz + vZ) = %(1 - WZ) P (9.3)

and this allows us to express the variance r,, as given by Eq. (4.7), in terms of the
inversion

ro=1—(1—w?cos?J. (9.4)
The Heisenberg limit from Eq. (5.3) becomes
Ly= v, (9.5)

and with Eq. (5.9) we can also express L in terms of the inversion. This yields

Lg =3./4w? + (1 — w?)?sin?(29). (9.6)

The difference between Lg and Ly is maximum for 6 = n/4 and 3n/4, for which the
Schrodinger limit equals Lg = 5 (1 + w?), and this limit has its maximum of L = 1 at
lw| = 1 (atom in |e) or in |g)). From Eq. (5.9), or as shown in Fig. 1, the ratio Lg/Ly
approaches infinity when the coherence approaches L. This corresponds, however, to
w — 0, and in this limit the Schrodinger uncertainty becomes Lg = 1|sin (26)|, which is
finite. In this limit, L — 0, and therefore we have Lg/Ly; — c. The squeeze function is

s=1—(1—w?cos?*d — [w|. 9.7)

As a function of & this has a minimum of s = w? — |w| for § = 0 or =, and then the
minimum of s becomes s = — %, for |w| = 1. In terms of the atomic populations this
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means n, = ,n, =3 (w = —3)orn, = 3,n, = z (w = 3). This minimum of s is a factor
of two lower than the best possible value of s = —4 for CW excitation.
The solution of the set (9.1), with the atom initially in the ground state, is
u(t)y=0, v(t) = —sin @(t), w(t) = —cos (1), (9.8)

where
t

P(t) = Jdr’Q(t'). (9.9)
0

If we let t be the time at the end of the pulse, then @ is the pulse area.

In order to obtain maximum squeezing just after the pulse, we must take the pulse
area to be ® = n/3 (for w = — 1) or @ = 2n/3 (for w = 3). After excitation with such
a pulse, the fluctuations are

rg=1—3cos*d, (9.10)

the Heisenberg limit is Ly; = 4, and the squeeze function becomes

s =2%(1 —3cos(20)), 9.11)
1.0 &
Tp
0.8 -
L
0.6 - S
Ly
0.4
0-2 — S
0 1 1§
/2 T
_0.2 —

Fig. 4. Plots of ry, Ly, s and Lg for pulsed-laser excitation with |w| =} after the pulse. The curves are
parameter free.
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representing the best possible squeezing with respect to the Heisenberg limit. Further-
more, we have for the Schrodinger limit in this case

Ls=1%./1 + ¥5sin?(29). (9.12)

The maximum deviation from the Heisenberg limit is Lg = 3 Ly, which occurs for
0 =mn/4 and 3m/4. The fluctuations are squeezed for 0 <o < 353° and
144.7° < & < 180° (in the range from 0° to 180°). The various quantities for |w| = 3 are
shown in Fig. 4.

Another interesting situation is excitation with a @ = 7/2 pulse, for which |w| =0
after the pulse, corresponding to equal populations of both levels. This yields |o,,| = 3,
which is the maximum possible value of coherence in a two-state system. From Eq.
(9.5) we then find Ly; = 0, and consequently squeezing below the Heisenberg limit can
never occur. The variance in the fluctuations is r, = sin? §, which gives r, = 0 for § = 0
and =, corresponding to no fluctuations at all. The Schrodinger limit becomes
L = 3|sin(26). For 0 < 6 < n/4 and 3n/4 < § < n the fluctuations drop below the
Schrodinger limit, and ry — Lg has a minimum of 3(1 — \/5_) = —0.207at 6 = n/8 and
7n/8. This behavior is shown in Fig. 5.

1.0
0.8 F Ty
0.6 F

0.4

/2 T

fp—Ls

-0.2 =

Fig. 5. Graphs of ry, Lsand ry — Lg as a function of 6, for pushed excitation with [w| = 0 after the pulse. The
Heisenberg limit here is zero. For certain values of d, the variance of the fluctuations is well below the
Schrodinger limit.
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Another interesting observation is that after excitation with a 7 pulse, which gives
w =1 and leaves the atom in the excited state without any coherence, we have
ro = Ly = Ls = 1, and squeezing never occurs.

Finally, for 6=0 or = after excitation with any pulse we have
Ly = Lg = |w|,ry = w? and s = w? — |w|. This shows that s is negative after any pulse,
except for pulses which give [w| = 0 or 1. Hence squeezing can be obtained easily with

pulsed excitation, and the optimum pulse gives [w| = 1 withs= -4

10. After the pulse

After excitation with a pulse, the atom decays to its ground state. The time
evolution of the quadrature field during the decay is governed by the equations of
motion (6.2), which reduce to

du_ i

& _iau dv dw

a_t_ —3 Av, E: —Aw+ 1), (10.1)

for A =/ = 0. If the atom starts out in its ground state before the pulse, then
immediately after the pulse the values of wv, and w are u,=0,

v, = —sin®, w, = — cos @, according to Egs. (9.8), and where @ is the pulse area. The
solution of Egs. (10.1) is

u(t) =0, o(t) = v,e 42, w(t)=(1+w)e 4 —1, (10.2)

where we have redefined t = 0 as the time just after the pulse.
After the pulse we have u? + vy + w2 = 1, but during the relaxation the quantity
u® + v2 + w? is not conserved and not equal to unity. For the coherence we obtain

loegl? =3(1 —wi)e™™, (10.3)

which gives ry with Eq. (4.7), and the Heisenberg limit is Ly = |[w|. For 6 = 0 or 7 the
squeeze function then becomes

) <0,
(14 wy)e 4 f Wy <Y,
Wal Wa)e o {wn>0. At > In(1 + w,), (10.4)

8=

2—(14+w)R2—w)e 4 for w,>0 At <In(l +w,)

For a negative inversion after the pulse, s remains negative for all times. For a positive
inversion after the pulse, s is negative up to At = In(l 4+ w,)(1 — w,/2), and then
positive for larger times. For At = In(1 + w,), the squeeze function has its maximum
of s = w, > 0. This behavior is illustrated in Fig. 6 for w, = +1
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Fig. 6. Time evolution of the squeeze function s (shown as a function of At) after pulsed excitation with

inversion |w,| = % just after the pulse. Curve a corresponds to w, = %, and curve b represents w, = — S If

the inversion is negative after the pulse, the quadrature field remains squeezed for all later times.

11. Conclusions

Fluctuations in the quadrature field of resonance fluorescence from a two-state
atom can be squeezed below the Heisenberg uncertainty limit. In the steady state, the
squeeze function s = ry — Ly has a minimum of —1for zero laser linewidth and, given
the detuning, a Rabi frequency equal to

Q=34*+14%), (LD

as follows from Eq. (7.6) with n = A/2. For pulsed excitation of the atom, the
minimum value of s immediately after the pulse is s = — 4. This can be accomplished
with either a n/3 or a 2m/3 pulse, incident upon the atom in the ground state. After
such a pulse, the inversion is w = —% and w = 3, respectively. When the inversion
equals w = 0 or w = =+ | after a pulsed excitation, the fluorescence is never squeezed.
The Heisenberg uncertainty limit is commonly used as the reference level for the
definition of squeezing in observables. However, the Schrodinger uncertainty limit
sets a higher bound on quantum fluctuations, and this limit could alternatively be
used to define squeezing. Especially in the present problem, where both uncertainty
limits are state dependent, the choice of reference level becomes rather artificial. It has
been shown that for resonance fluorescence both limits are nearly equal in the steady
state. For pulsed excitation, on the other hand, both limits can differ significantly. For
instance, after excitation with a 7/2 pulse from the ground state, the quadrature field can
be squeezed well below the Schrédinger limit, but never below the Heisenberg limit.
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