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Atomic spontaneous decay is influenced by the environment of the atom. The presence of metallic or dielectric
media changes the optical vacuum which surrounds the atom, and therefore the dipole coupling to this vacuum,
inducing the spontaneous decay, is altered. The decay is accompanied by a time evolution of the atomic state,
and therefore also the dynamical behavior of such an atom is modified. Furthermore, during the decay a photon
will be emitted, and the properties of this radiation will reflect the time evolution of the atomic state. In this
fashion, surface-modified atomic dynamics is amenable to experimental observation. Also, spectral widths of absor-
ption lines are equal to the inverse relaxation times of the process, and this provides an alternative way for
observing atomic temporal evolution in an experiment.

We derive an expression for the spontaneous-decay operator for an atom near a dielectric, as it appears in
the equation of motion for the reduced atomic density operator. This Liouville operator has the relaxation constants
as its matrix elements. The case of a two-state atom is worked out in detail, but the formalism applies equally
well for any atom or molecule and also allows for degeneracies of levels.

I. INTRODUCTION

Atomic spontaneous decay is brought about by the in-
teraction between the atomic electric dipole moment and
the electric field of the vacuum surrounding the atom.
In the neighborhood of a metallic surface or a dielectric,
the electromagnetic vacuum is different from the va-
cuum of empty space, and therefore also the rate of spon-
taneous decay can be =xpected to be different. For a
model two-state atom with upper level [e>, ground
state |g>, transition frequency ay, and transition dipole
moment i, the Einstein A coefficient is given by

__ @ "
A= Wﬁbg * Mg 1D
This constant equals the inverse lifetime of the excited
state and also the width at half maximum of the absorp-
tion line for the atom in the ground state. In the vicinity
of dielectrics or metals, this expression can change con-
siderably. Also, the lifetime can depend on the magnetic
quantum numbers of the states because the vacuum
near media is not necessarily isotropic anymore. This
is due to the loss of spherical symmetry, which introdu-
ces a dependence of A on the geometry of the environ-
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ment.

Effects of the presence of media on the lifetime of
an excited state was first observed by Drexhage for mo-
lecular transitions near a dielectric flat layer.'"" Later,
atomic lifetimes were observed to change for atoms in
between mirrors or in a microwave cavity.”*> Both an
enhancement or an inhibition of spontaneous decay can
occur, depending on the distance between the atom and
the surface of the medium and on other parameters. In
this paper we present the derivation of the equation of
motion for the density operator of an atom near a dielec-
tric. Spontaneous decay gives rise to relaxation of the
density operator, and the relaxation constants are the
Einstein coefficients for the transitions between various
atomic states. In this paper, the case of a two-state atom
will be worked out in detail, and the modifications of
Eq. (1.1) due to the medium will be given explicitly in
terms of the dielectric constant.

II. EQUATION OF MOTION FOR THE
DENSITY OPERATOR

The quantum state of an atom or molecule near a
medium can be represented by a density operator p(¢).
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Spontaneous decay of an atom is brought about by the
interaction between the atom and the radiation field of
the vacuum, and therefore the density operator must
also include the state of this radiation field. The equation
of motion for p(f) is

o %tﬂ =[H, p], H=H,+H,+H,, @.1)

where H,, H,, and H,, are the Hamiltonians of the atom,
the radiation, and the interaction, respectively. Equation
(2.1) is subject to the constraints

pt=p, Trp=1. 2.2)

For the description of spontaneous decay, it is conve-
nient to introduce the concept of Liouville space. In this
linear vector space, sometimes called superspace, a vec-
tor is identified with an operator in Hilbert space. That
is, there is by definition a one-to-one correspondence
between the operators in Hilbert space and the vectors
in this Liouville space. For instance, the three Hamilto-
nians in Eq. (2.1) are vectors, and so is the density ope-
rator. Operators in Liouville space (Liouvillians) act on
these vectors, and the result of such an operation is
again a vector. Operators can be added, multiplied, ex-
ponentiated, etc. in the usual way, and these operations
follow the general rules of a linear vector space.

As a first example, we define the Liouvillian L by its
action on an arbitrary Liouville vector IT:

LH=%[H, Jsd ©.3)

where H is the total Hamiltonian of the system. Simila-
rly, the operators L,, L, and L, are the commutators
with the corresponding Hamiltonians. Then the equation
of motion Eq. (2.1) can be written as

. dp _

T Lp, (24)
or equivalently

i%f— =L+ L+ La)p. 25)
The solution of Eq. (2.1) is

pO=e "7 p0)er™, 26)
and the solution of Eq. (2.4) is

o) =e ™ px(0): Q2.7

Comparison of Egs. (2.6) and (2.7) then leads to the im-
portant operator identity

e~LT=¢ 7" 2", (2.8)

for IT arbitrary (as it will be from now on). Relation (2.8)
holds, of course, for any Liouvillian which is a commuta-
tor with a Hilbert space operator divided by 7.

III. RESERVOIR THEORY

We will be interested in the behavior of the atom re-
gardless of what happens to the electromagnetic field.
This is accounted for by the partial density operator of
the atom defined as

pa(t)="Tr,p(2). (3.1

Here the trace runs over a complete set of states of the
radiation field, and therefore p,(f) is an operator in the
Hilbert space of the atom. The purpose of relaxation
theory is to derive an equuation of motion for p(f),
which takes into consideration that there is a coupling
to the electromagnetic field, leading to spontaneous de-
cay, but such that the photons do not appear explicitly
anymore in this equation. In this section we formulate
the general theory of relaxation in the Liouville forma-
lism. The electromagnetic field is considered as a large
reservoir, or heat bath, and the atom as a small system
which interacts with the reservoir. An integral of Eq.
(2.5) is

Pty =t plt)—i| Lt e OL ), (32)

as can be verified by differentiation. Then we substitute
this back into (2.5), which yields

i =L+ LIpt) + o™ 44t
~iL, f ; dt e~iatl =L t"). (3.3)

Then we take the trace over the states of the radiation
field and use

Tr,L,I1=0, (3.4)

which follows from the fact the L, is a commutator. This
gives

i% 0.()=L.p,(t)+ Tr, L e~ Latiot ot

—iTr Ly f ; dt o=t =L Kt").  (3.5)

as an exact integral of the equation of motion.

Equation (3.5), however, is not a closed equation for
the atomic density operator because the last two terms
on the right-hand side still contain the full density ope-
rator of the system. The first term on the right-hand
side is the free evolution of the atom, without coupling
to the radiation field. The radiation field is a large reser-
voir, and we shall assume it to be in its thermal-equilib-
rium state p. This operator has the properties

o'=p, Tr,p=1, [H, p]=0. (3-6)

It can be shown that the density operator p(t,) in (3.5)
can be factorized according to

Pit) = palto) pry 3.7
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and similarly p(¢') in the last term can be factorized. This
involves a slight approximation (the Markov approxima-
tion), but for the present problem this is negligible. Then
we assume that the interaction is such that

Tr.Lalpa(t)p) =0, 38

which expresses that the average interaction energy is
equal to zero at ¢,. For spontaneous decay, this is exact
for all times ¢. From Egs. (3.6)-(3.8) it then follows that
the second term on the right-hand side of Eq. (3.5) vani-
shes. It can be shown that in the last term the major
contribution to the integral comes from the region t'=¢
in the integrand, and therefore we can safely replace
the lower limit by — <. Then we make the substitution
t—t'=rt which gives

- d_ - i * ~illg+Ly)r
i< pO=Lap)~iTr L j " dre

X La(pa(t—=1)p0). (3.9)

Next, under the integral sign we replace the atomic den-
sity operator by its free evolution valuc during the time
T, e.g.,

pa(t— D) =" py(t),” (3.10)
and this yields
i % p=Lp)—iTr, Ly [ dr ¢=ta 10"
X Lo (p,() ) (3.11)

Then we define a Liouville operator I"in atomic Liouville
space by its action on an arbitrary atomic operator or
Liouville vector IT,:

ITL=Tr.L, f " drem et e Ly e I1, D). (3.12)

This time-independent operator I" accounts for the rela-
xation of the atomic density operator, and the equation
of motion for p,(f) becomes

d

ijﬁ =L,—iD)pa (3.13)
t
The solution has to obey

pl=ps Trp=1, (3.14)

as follows from Egs. (2.2) and (3.1).

IV. RELAXATION OPERATOR

In order to evaluate the relaxation operator I” explici-
tly, we have to specify the three parts of the Hamiltonian
and the density operator of the thermal reservoir. We
shall assume that the atom is located in empty space,
somewhere near a medium. Then p, is the density ope-
rator of the electromagnetic field. This operator is, the-
refore, the density operator of black-body radiation, and
for the visible region of the optical spectrum, this is sim-
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ply the vacuum state. Therefore, we can take p. as
5=10><0], 4.1)

with [0> the multimode zero-photon Fock state. For vi-
sible radiation, the wavelength is much larger than the
size of an atom, and therefore the interaction between
the atom and the electromagnetic field is governed by
the electric dipole coupling. Let the atom have a dipole
operator u and be located at position r=h in space. The
electric field operator is E(r) in the Schrodinger picture,
and the interaction Hamiltonian is

Ho=—p- E)=— ) uE(h)

1=x552

4.2)

In the product wE(h);, the first factor is purely atomic
whereas the Cartesian component of the electric field
acts only in the Hilbert space of the radiation. Therefore,
these two operators commute, and this can be used to
simplify the expression for I" considerably. Working out
the commutators that define the Liouvillians and apply-
ing identity (2.8) a few times then yields

Im,= 2 Lu, QIL—ILQ!1. 43)
The Hilbert space operators @; are defined by

0=} dee =S m (44)
in terms of the functions

fi@=—5 <Ol EmIE®YI0>. (4.5)

We have also used the fact that 4 and E(h); are Hermi-
tian operators. In expression (4.3) for I, all operators
act in atomic space only, and the same holds for @; in
Eq. (4.4). The radiation field only appears through the
functions f;(z), which can be considered as the vacuum
correlation functions for the electric field. Hence, all
properties of the surrounding medium, its geometry and
the way it modifies the vacuum, are incorporated in
these nine (complex-valued) functions. On the other
hand, the functions f;(z) are determined completely by
the medium and are independent of the presence of the
atom. In this way, the problem of spontaneous decay of
any atom (or molecule) in the vicinity of media is redu-
ced to the calculation of these vacuum correlation func-
tions.

A great simplification arises when the geometry has
a cylindrical symmetry about, say, the z-axis and when
the atom is located on this axis. Then it can be shown
that!®]

fi(©=0, i#j, 4.6)
and that
S (D=fy (D). 4.7

Consequently, there are only three nonzero correlation
functions, and only two different ones. We shall write
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/, for fo and £, for f.. This situation arises, for instance,
for any flat substrate. Then the notation Il indicates that
these functions couple to the parallel component of the
dipole moment with respect to the surface, which is the
direction perpendicular to the symmetry axis, and vice
versa.

V. TWO-STATE ATOM

In most experimental situations, only two states of an
atom will be coupled, for instance, when an upper level
is resonantly coupled to a ground state with a driving
laser beam.[”? Then the atom can decay from this excited
state |e> to the ground state |g> under emission of
a photon, and the atomic density operator will evolve
according to Eq. (3.13). With P,=|e><e| and P,=| g>
<gl, the projectors onto the excited state and ground
state, respectively, the atomic Hamiltonian can be repre-
sented as

H,=hwP,+hwP,. (5.1)

Then %@, and %, are the respective energies of the
levels. Since only two levels take part in the dynamics,
the projectors obey the closure relation:

P,+P,=1. (5.2)

With the use of Eq. (5.2), the Liouvillian for the free ato-
mic evolution becomes

L.JI=w,[P, IT], (5.3)

where @,= @, — @, is the level separation. From now on
we drop the subscript @ on the atomic density operator
and on the arbitrary operator 17, as in Eq. (5.3).

Assuming cylindrical symmetry, the operator Q; redu-
ces to

Q=7 dr fuldetaru,

The exponential in Eq. (5.4) can be expanded in projec-
tors as

e —iLatH: Ze—i(wa— wpT Pa Iﬂ)ﬁ,
af

(5.4)

(5.5)

where the summation runs over the four combinations
of e and g. For an atom, the dipole operator u has only
transition matrix elements between the excited state
and the ground state so that

eluley =<{glulg)=0. (5.6)

A molecule can have a permanent dipole moment in both
states, but it can be shown that this would not contribute
to the relaxation operator. We then find

e~ Lat =~ P, 1, P, + ¢i* P,y P,. 5.7

Substituting Eq. (5.7) into Eq. (5.4) and carrying out the
integration then yields

Qi=Fii(— @)P.pt Py+fi (w,)P el P, (5.8)
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where f(s) is the Fourier-Laplace transform of the va-
cuum correlation function:

fo=[7 drero

As we shall see later on, the function f(s) vanishes for
s<0. This gives for Q;

Qi=~ii (a)o)Pg,uan

and we notice that only the Fourier-Laplace transform
of the correlation function, evaluated at the atomic tran-
sition frequency, appears in the expression for the rela-
xation operator.

From Egs. (4.3) and (5.10), we then obtain for I"

M= D {Fi(w)if P.IT+]i (0,)* [P

i=xyz

(5.9

(5.10)

— 2uPI1P, 1i; Ref:; (w,)}. (5.11)

Here we have dropped the so-called nonsecular terms
since they contribute negligibly to the relaxation in the
visible domain of the spectrum.’®! It will appear that the
function fi(w,) is real, and therefore we can simplify Eq.
(5.11) slightly to

I'm= D fw)if PII+ IIPy¢ —2uP 1P}, (5.12)

I=xy2z

The dipole operator can be written as

U= pegd + pledt (5.13)
in terms of the atomic raising and lowering operators
d=le><g|, dT=|g><e| . (5.14)

In Eq. (5.13), uy= <elulg> is the transition dipole mat-
rix element. We shall assume that the two states are
chosen such that this matrix element is either parallel
or perpendicular in the same sense as for the function
f(z). With these notations, Eq. (5.12) can be simplified
to

[TT=LA(PIT+ [P, 24" ITd), (5.15)
with A as the Einstein coefficient for spontaneous emis-
sion (or decay), defined as

A =200, g . (5.16)

There are two possible values for A, depending on the
two possibilities for the function f{w,), and we shall indi-
cate them by A, and A, in obvious notation. In the more
general case that the dipole matrix element has both
a parallel and perpendicular component, 4 in Eq. (5.15)
has to be written as A4, and a line identical to the right-
hand side has to be added, but with A, replaced by
A,. For an atom in empty space, the Einstein coefficient
is given by Eq. (1.1), and this should be the limiting va-
lue for the case where the atom is far away from any
medium.
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VI. TEMPORAL ATOMIC EVOLUTION

For a two-state atom in the vicinity of any medium,
but without an external field or collisions with other pa-
rticles, the equation of motion is Eq. (3.13),

42 —,~inp, 6.1
with L, given by Eq. (5.3) and the operartor I' given by
Eq. (5.15). Let us indicate the populations of the two le-
vels by 7, and n,. They are equal to the matrix eleme-
nts

(6.2)

of the atomic density operator, and they are subject to
the constraint

n.=<elple>, ng=<glplg>

(6.3)

as follows from Tr p=1. When we take the matrix ele-
ment <e|---le> of Eq. (6.1), we find

netmn,=1,

dn,
dt

which is an equation for the population of the excited
state only. The solution is

n(t)=n.0)e*, (6.5)

which is simple exponential decay from the excited state
to the ground state. The time constant for the decay is
1/A, which equals the lifetime of the excited state. The
population of the ground state then follws from Eq. (6.3).
Taking the matrix element <e|---le> of Eq. (6.1) gi-
ves

=—An,, (6.4)

_dBZL = ( - ia-)a - %A)pegy

dt (6.6)

which is an equation for the coherence p,=<elplg>
between the two levels. The solution is

1

po()= pg(O)e vt 2", 6.7)
showing that the coherence decays at a rate A/2, which
is twice as slow as the decay of the population 7. The
coherence also oscillates with the atomic transition fre-
quency.

Observable fluorescence during the decay has a pho-
ton emission rate proportional to the population of [e>,
and the absorption profile for weak external radiation
is determined by the regression of the atomic coherence.
Consequently, all measurable influence by a medium on
the dynamics and the spectroscopic properties of an
atom must be contained in the Einstein coefficient A,
and therefore in the Fourier-Laplace transform of the
vacuum correlation function, f(a,).

VII. VACUUM NEAR A DIELECTRIC LAYER

In order to illustrate the dramatic effect that the pre-
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Fig. 1. An atom is located on the z-axis, a distance h above
a dielectric layer. Plane electromagnetic vacuum waves
are incident upon the layer, and they partially reflect
at the two surfaces. Part of such a wave travels through
the medium, leaving the layer at the other side. Both
the transmitted and reflected waves contribute to the
modification of the vacuum, and thereby to the altera-
tion of atomic spontaneous decay.

sence of a medium can have on the Einstein A coeffi-
cient, we work out the situation where the medium is
a slab of dielectric material with a dielectric constant
equal to & The boundaries of the medium will be the
planes z=0 and z=— A, and the atom will be located
on the positive z-axis at r=he, h>0. This geometry is
illustrated in Fig. 1. We need an expression for the elec-
tric field operator in the region z>0 and the Hamiltonian
of the radiation field in order to evaluate f;(¢) from Eq.
4.5).

In empty space, the electric field in a quantization box
with volume V is given by

E@, Dempy= Erotrc® ™+ Hc, (7.1)
ko

where the t-dependence signifies the Heisenberg pic-
ture, the operator Ej, is defined as

Ewe=/ ﬁa)Vaka

28

(7.2)

with a. as the annihilation operator for a photon in a
mode with wave vector k and polarization o, and w=ck.
We shall take the two possible transverse polarization
directions as surface (s) polarized and plane (p) polari-
zed.

The vacuum field for empty space is a superposition
of plane-wave modes, and these waves are incident
upon the dielectric layer. Since Maxwell’s equations also
hold in quantum mechanics (in the Heisenberg picture),
these plane waves reflect at the dielectric in the same
way as in classical optics. The atomic dipole is located
in z>0, and therefore we only consider the field in that
region of space. As illustrated in Fig. 1, an incident va-
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cuum wave from the region z>0 reflects partially as a
specular wave and is partially refracted into the me-
dium. Waves that enter the medium from the region
2<A are partially transmitted through the layer, and
they contribute to the field in z>0. From the boundary
condition at z=0, it follows that the specular wave must
have a wave vector with the same parallel component
with respect to the surface as the incident wave. There-
fore, if we write for the wave vector of the incident
wave

k=k,tk, (7.3)
then the specular wave has the wave vector
k=kt+k,. (7.4)

The wave vector of the transmitted wave, which origina-
ted from z<A, is the same as that of the incident wave
from z<A. If an incident wave is ofs or p) polarized,
then the specular wave or the transmitted wave is also
o-polarized. Given the parallel component of the wave
vector of an incident wave, for the s-polarized unit pola-
rization vectors, we take
_1 :
ek_g—_kuxez. (7.5)
Ry

For p-polarization, we take the unit vectors of the inci-
dent and transmitted waves as

€xp— %k X €xs (76)

in terms of the corresponding s-polarization unit vectors,
and for the specular wave, we take

Crkp= %erekg . (7.7

The amplitude of a specular wave or a transmitted wave
is simply a Fresnel coefficient Ry, or T}, respectively,
times the amplitude of the corresponding incident wave.
Combining everything then gives for the electric field
operator in z>0

E(r, =) Exles™ =+ Riger £% 70}
ko
+ D ExoTrtr* 9+ H. ¢ (7.8
ko

Here, the first summation runs over wave vectors with
k.<0, and the second summation has only wave vectors
with 2,>0.

VIII. CORRELATION FUNCTIONS

Equation (7.8) gives the electric field operator of the
vacuum near the dielectric in the Heisenberg picture.
For t=0 and r=h=he,, this becomes the Schrodinger-
picture electric field operator at the position of the atom,
as it appears in the interaction Hamiltonian in Eq. (4.2)
and the vacuum correlation function in Eq. (4.5). The
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quantity {exp(iL,9)}E(k); in Eq. (4.5) is effectively the i-
th component of the Heisenberg-picture electric field
operator at the position of the atom and evaluated at
t=t. When we insert the two expressions for the field
in Eq. (4.5) and take the quantum expectation value in
the vacuum using

{0larezes|0) =<0ladart10) = Olatai-10y=0, (8.1)
0lareil | 0) = 8B, (8.2)

we obtain for the correlation function with j=7
oy _ 0 kh R ikyh) |2, —iwr
= a%;o 2oy et + R 1%

@
+
,u,‘kZz)O 267V

In the limit V—co, the first summation over the wave
vectors can be replaced by an integration according to

% ¥ (...):8_}13 fdsk(...), (84)

kok,<0 k2<0

HTuoence™ )il %o, 8.3

and in spherical coordinates the integral can be evalua-
ted as
(oY= | “d1e |” o 20 G- 5
sz;Od k(-)=["dk [ a0 [ do Ksinei-). 8.5)
The second summation in Eq. (8.3) can be transformed
in a similar way. In spherical coordinates, we have k
=ke,, and with Eq. (74) and the fact that & has only
a perpendicular component, we conclude thhat k,-h=
—k-h. With our phase conventions, Egs. (7.5)-(7.7), the
polarization vectors become

Cks = s = €y (8.6)
ey =ep e p,= —eg— 2e, sinb. 8.7)

The Fresnel reflection and transmission coefficients de-
pend on the polar angle 6, but not on the angle ¢. For
k:>0 the polar angle is equal to the angle of incidence
0, but for k,<0 the two angles are related as 8= 7— 6.
Furthermore, the Fresnel coefficients depend on & th-
rough cosé, and we shall write

Pio=PSw, cosb), Tio=TLw, cosh). (8.8)

For the integrations over 6 and %, we make the substitu-
tions #=cosé and w=ck, respectively. We then obtain
for the two correlation functions

— 1 ® —iwr ! =
fO=mra [T do e [ dua—w)
X {11+ Ry(@, u)e? |2+ |Ty(w, u)l?}, (8.9)

— 1 = —fwt L
O fo da e fodu
X{[1+R(@, u)e? |2+ | T\(w, u)|?}

._1— N —iwr : 2
+16n2a,ﬁc3 fodwde foduu

X{11=Ry(, u)e? =2+ | T\, w)l?).  (8.10)
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The perpendicular correlation function is determined by
the Fresnel coefficients for p-waves only, but the parallel
function depends on both s-waves and p-waves. Also no-
tice that the geometrical factor in the u-integrands is
different in all three integrals. Furthermore, if we would
have taken 7#j in Eq. (8.3), then the integral over ¢
would give zero, and thus this correlation function
equals zero.

As shown in Section V, we need the Fourier-Laplace
transform of the correlation functions, evaluated at s=
@, The t dependence in Egs. (8.9) and (8.10) is only
through the exponentials in the integrands, and there-
fore the Fourier-Laplace transformation leads to the fol-
lowing integral:

i
’

. ’(w,,-w)r:- —
fo dr é & w, w)+Pa)0—a)

(8.11)
where P stands for the principal value. This principal
value part gives an imaginary contribution to the relaxa-
tion constants, which leads to an effective level shift (the
Lamb shift). In the present nonrelativistic theory, this
imaginary part diverges in the upper integration limit
over w. For these high frequencies, the dipole approxi-
mation (which is the long-wavelength limit) breaks
down, and also relativistic effects have to be taken into
account. The final result is a very small value for this
imaginary part, and we shall therefore omit it. With Eq.
(8.11), the Fourier-Laplace transforms of Egs. (8.9) and
(8.10) become

ZL(%)ZET_:?}I—L‘? [} aqua-w»
X {11+ Ry(@s, w)e? 0|2+ | Ty(ws, u)|?}, (8.12)
T@=1g2 ], du
X {1 1+ R(a@n, w2+ | T(ws, u)I%}
+E§:’ﬁ—c3 j ; du %’

X {11—Ry(@s, u)e?™ |2+ |Ty(as, w)I?}. (8.13)

The Fresnel coefficients now only appear with their va-
lues at the atomic resonance frequency a», and the inte-
gration is over the cosine of the angle of incidence.

The Fresnel coefficients appearing in Egs. (8.12) and
(8.13) can be calculated from Maxwell’s equations in the
usual way. They are found to be

e e I

D D, ’
— éﬂ i(v—u)é — ﬂ‘Lg_ i(v—u)é
T; D. é , T D, é , (8.15)
with
u=cosb, v=v/e—1+u? (8.16)
and
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D=+ u)?— @ —u)?"®, 8.17)

D,=(+uel—(v—ueje*®, (8.18)
and the dimensionless layer thickness

s=ka=24, 8.19)

The u-dependence appears to be too complicated to per-
form the integrations in Egs. (8.12) and (8.13) explicitly.
For the dielectric constant & we have to take its value
at frequency @,. It can be verified easily from Egs. (8.14)
and (8.15) that for £>1 the reflection and transmission
coefficients are related as

IR, |12+ 1T, |2=1, o=s, P, (8.20)

where both Fresnel coefficients are evaluated at the
same angle of incidence.

IX. EINSTEIN COEFFICIENTS FOR
SPONTANEOUS DECAY

The perpendicular and parallel Einstein coefficients
for spontaneous decay can now be found from Eq. (5.16).
We shall write

A,':Ab,', =41 , (91)

where A is the value from Eq. (1.1) for decay in empty
space. The correction factors due to the presence of the
surface are then

b= du—w)lIL+Re™ 2+ T, ©2)

1 :
b=3[ dull1+Re™P+ T+

X [I1—Re™ >+ |T,|2}, (9.3)

with

p=-20h. 9.4)
In the absense of the medium, we have effectively R;
=R,=0 and T,=T,=1 as follows from Egs. (8.14) and
(8.15) with e=1 or 6=0. Then Egs. (9.2) and (9.3) give
b,=by=1, as it should.

For a dielectric, we have £>1, and we can use Eq.
(8.20) to simplify the expressions for §, and by. Elimina-
ting the transmission coefficients gives

b= % | ' du (1—u)Re(1+Ryt™), 9.5)

by= % [} du Re1+Re™+ul1-Re™D), 9.6)
which can be simplified to
b= 1+—3— J- : du (1—u®ReRe™, 9.7

- 1+% [} du ReR—uRp)e™ ©9.8)
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The dependence on the atom-surface normal distance
h is incorporated in the parameter S. When the atom
is far away from the surface (f—>), then the exponen-
tials oscillate very fast as a function of %, and they integ-
rate out to zero. This gives b, =b,=1, as expected.

X. MIRROR

A special case of practical importance is when the la-
yer is a metal. This is characterized by £<0, and this
makes the parameter » from Eq. (8.16) positive imagi-
nary. In addition we shall assume that the layer thick-
ness is much larger than an optical wavelength (6>>1).
Then the Fresnel coefficients simplify to

u—v _ UE—Y

T,=T,=0, R,= RV
£ u+tv P ueto

(10.1)

and since v is imaginary and u is real, this gives
IR;| =1, o=s, p. (10.2)

Therefore, the reflectivity at a metal surface (mirror)
equals unity, and there can only be a phase shift upon
reflection. If we define the angles

¢s=arctan( @), (10.3)
¢, =arctan( ﬂ%—uz)’ (104)

then the Fresnel coefficients can be represented as
R,=¢7%%, (10.5)

For a metal, relation (8.20) also holds, and therefore the
Einstein coefficients relative to empty space become,
with Egs. (9.7) and (9.8), become

bi=1+5 | du (1—u)Re b2 (106)
3 . o

b=1+% [, du Ree5—we2eein (10.7)

Metals like silver are nearly perfect conductors, and

they can be modelled effectively by £—>—o. Then the
phase angles from Egs. (10.3) and (10.4) become

&=n/2, ¢=0, (10.8)
and the Fresnel reflection coefficients are
Ri=—1, R,=1. (10.9)

With these values, the integrals in Egs. (10.6) and (10.7)
can be performed analytically, and the result is

B=1— 3[_%?2@ _ _S%g/i] (10.10)
bi=1-3 si;ﬂ + c?ﬁ - Si/;ﬁ ] (10.11)

For p—, we find again that 5,=b,=1, as it should.
When the atom is very close to the surface (within a

2
1
b
1=
Il
0 | |

Fig. 2. The two curves show the Einstein coefficients, norma-
lized by their free-space values, for a perpendicular
and parallel dipole moment, as a function of the nor-
malized atom-surface separation 4. For large 4, compa-
red to a wavelength of the emitted radiation during
the decay, both curves approach the free-space value
of b=1.

fraction of a wavelength), we find
b_L: 2, bn=0. (1012)

In this limit, an atom with its transition dipole moment
perpendicular to the surface has twice the Einstein coef-
ficient for decay compared to an atom in empty space,
and therefore the excited state has half the lifetime. On
the other hand, when the dipole is parallel to the sur-
face, the Einstein coefficient approaches zero, and this
indicates that the atom in its excited state will not decay
spontaneously at all. In Fig. 2, the behavior of the Eins-
tein coefficients as a function of the distance between
the atom and the surface is shown. The oscillatory beha-
vior of these functions is due to interference between
radiation which is emitted directly during the decay and
radiation which is reflected by the metal. In Egs. (10.6)
and (10.7), the factor exp(iBu) accounts for the retarda-
tion in this process.

XI. CONCLUSIONS

The equation of motion for the reduced density ope-
rator of a two-state atom near a dielectric layer has been
derived using the Liouville formulation of reservoir
theory. The presence of the medium was accounted for
by a modification of the matrix elements of the effective
damping operator I. These matrix elements, which are
the relaxation constants, depend on the properties of the
medium, like the dielectric constant, the layer thickness,
etc. Due to the loss of spherical symmetry, as compared
to spontaneous decay in empty space, the relaxation ti-
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mes depend on the orientation, with respect to the sur-
face, of the transition dipole matrix element. When the
atomic levels are degenerate, then the operator I' can
be derived in the same way without any complications,™’
and the same holds for multilevel systems. However,
when the medium has a different geometry, the present
approach might become too cumbersome because the
mode structure of the electric field operator becomes
more complicated, and this might prohibit the evaluation
of the field correlation functions. In this case, one has
to resort to different methods for calculating atomic life’
times.l®14]
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