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Photon correlations and statistics of phase-conjugated resonance fluorescence of a two-state atom are considered. The Q-factor,
as a function of the incident laser power, the detuning, the laser linewidth and the phase-conjugate reflectivity, have been calcu-
lated. It is shown that for small and large reflectivity the statistics is predominantly sub-poissonian. For unit reflectivity the
statistics appears to be exactly poissonian (Q=0) for all values of the optical parameters.

1. Introduction

Photon counts, as measured by a photomultiplier,
appear as random events on the time axis [1,2]. The
intensity /() is defined as the photon counting rate
at time ¢, and therefore I(¢) dr equals the average
number of detected photons in [¢, t+d¢]. Then, in
a time interval [0, 7] the average number of counts
is given by

t
y(r):jdl’l([’). (1)

0

For stationary radiation the intensity is time inde-
pendent, and we have u(t)=1It. The statistical fluc-
tuations in the number of counts in [0, /] are rep-
resented by the variance ¢2(¢) of the count distri-
bution. In the case of pure random events the sta-
tistics is poissonian, for which o2 (#) = u(t), and de-
viations of Poisson statistics are most conveniently
expressed in terms of Mandel’s Q-factor, defined as

(3]
Q(1)=[a*(1)—pu(1)1/u(1) . (2)

Obviously, Q(1) > —1, and for Poisson statistics we
have Q(¢)=0. As pointed out by Mandel [3], any
radiation field which has a classical analogue must
necessarily have a positive Q-factor for any counting
interval [0, ]. For such fields the variance is larger
than the average, and the statistics is said to be super-
poissonian. Conversely, any observation of a nega-
tive Q-factor would indicate the essential quantum
nature of the detected radiation. Such sub-poisson-
ian statistics was predicted [4] and demonstrated
experimentally [5] in single-atom resonance fluores-
cence.

The Q-factor can be expressed in terms of the two-
photon correlation function /,(t,, t,). By definition,
L,(t,, t;) dt, dt, is the probability for the detection
of a photon in [¢,, t,+d¢,] and a photon in [#5,
t,+dt,], irrespective of photon detections at other
times. For stationary fields, /,(¢,, t,) depends only
on ¢, and ¢, through t=1,—1,, and the Q-factor as-
sumes the form [6]

Q(I)=%Jdr[(1—-‘r)lz(0, 7)=1I?] . (3)
0
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In terms of the normalized correlation function
h(t)=[1,(0,7)—1%]/I*, (4)

the Q-factor can be written as

!

21
o =2 [ar -0 (. (5)

0

Of particular interest is the limit of long counting
times. For r— o0, eq. (5) reduces to

Q(m):Zlerh(T), (6)
0

provided that the limit exists. When we adopt a La-
place transform

h(s)= Jdrexp(—sr)h(r). (7)
0

the long-time Q-factor becomes

Q(o0)=214(0) . (8)

2. Phase-conjugated fluorescence

We consider a two-state atom, with excited state
|e>, ground state |g) and level separation #w,, which
1s positioned near the surface of a four-wave mixing
phase conjugator (PC). The medium is pumped by
two strong counterpropagating lasers with frequency
@. A laser beam with frequency w, is parallel to the
surface and irradiates the atom. Resonance fluores-
cence is emitted by the atom and detected in the far
field by a photomultiplier. It can be shown [7] that
the negative-frequency part of the detected radiation
is proportional to the Heisenberg operator

b(t)=d(t)—exp(2iwt) Pd* (1), 9)

where d=|e) (g| is the atomic raising operator. The
(complex ) number P is the Fresnel reflection coef-
ficient for a plane wave with frequency w,, which is
incident on the surface of the PC under the same an-
gle as the location of the detector. This coefficient P
depends in a complicated way on w,, the angle of in-
cidence and the polarization of the pump beams [8].
The term d(¢) in eq. (9) represents ordinary fluo-
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rescence, and the term proportional to P is the phase-
conjugated image which is reflected by the PC. We
shall assume that the medium of the four-wave mixer
is transparent, so that there is no ordinary specular
reflection of the incident fluorescence radiation. In
terms of h(t), the intensity of the detected radiation
is

I() =) b)), (10)
and the two-photon correlation is given by

L(1, ) =8{<b(1) b() b(t)Tb(1)TH ).
(11)

The parameter & contains the proportionality factor
between b(t) and the detected field, and ¢ is pro-
portional to the detector efficiency. An overall time
retardation between emission and detection has been
suppressed. The finite linewidth of the driving laser
will be considered to be brought about by a sto-
chastically fluctuating phase. The notation {...} in
egs. (10) and (11) indicates an average over the
random laser phase, whereas the notation <...» rep-
resents a quantum average.

Transforming eq. (10) to the Schrédinger picture
yields

1(1)=&{Tr A(1) p(1) } , (12)

where we introduced the Liouville operator 4 (t),
which is defined by its action on an arbitrary Liou-
ville vector /7 according to

A(1) I=[d'—exp(—_2iot) P*d] IT
X [d—exp(2i@r) Pd'] . (13)

In expression (12), p(t) is the atomic density op-
erator. Its time evolution operator will be indicated
by the liouvillian X(¢, ¢t"), which is defined as

p()=X(1,1") p(t'), 1=1". (14)

With this notation, the two-photon correlation from
eq. (11) becomes in the Schrodinger picture

L(t, 6)=E8{Tr (1) X(t,,1,) B(1,) p(t))} ,
b3l (15)

The terms inside the brackets {...} in both eq. (12)
and eq. (15) are randomly fluctuating functions.
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Only their average over the stochastic laser phase will
reach a steady state.

3. Equation of motion

The hamiltonian of the two-state atom is given by
H,=hw P, +hw,P,, (16)

in terms of the projectors P.=|e) (e| and P,=
|g> {g| on the excited state and ground state, re-
spectively. The interaction between the atom and the
laser field, in the rotating-wave approximation, is
represented by the hamiltonian

H, (t)=—-3ihQdexp{—i[w t+o(t)]} +h.c.,
(17)

where Q is the (complex) Rabi frequency of the di-
pole coupling and ¢(¢) is the stochastic laser phase.
Then the equation of motion for the atomic density
operator p(t) becomes

ihdp/di=[H, + Ha (1), p] —iflp . (18)

Spontaneous decay and excitation is accounted for
by the liouvillian I, given by

I'M=4A(PJI+1IP. —2d"I1d)
+ 34, (P IT+ 1P, —2dI1d") , (19)

which defines its action on an arbitrary liouville vec-
tor /1. The rate constants A, and A, are [9]

Ac=A(1+3|P1?), A,=14|P|?, (20)

with 4 the Einstein coefficient for spontaneous de-
cay of an atom in empty space.

Oscillations with the laser frequency w, in the
hamiltonian can be eliminated with a transforma-
tion. With the liouvillian L, defined as

L =[P, I, (21)

for I7T arbitrary, the transformed density operator a(¢)
is given by [10]

o(t)=exp{—i[w t+¢(1) 1Ly} p(1) . (22)

From eq. (18) we then obtain the equation of mo-
tion for a(1),

ido/dt=[Ls+6(t) Ly—ilo. (23)
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Here, the dressed-atom liouvillian Ly equals
LoI=AL 14 [Qd+Q*d', IT] , (24)

with 4=w_—w, the detuning from resonance.

Eq. (23) is a stochastic differential equation for
o(t). We shall take ¢(¢) to be the independent-in-
crement process [ 11], which has the phase-diffusion
model as its gaussian limit. Then eq. (23) can be
solved for the average, with the formal result [10]

{o(t)p=exp[—i(Lq—iW—il") (t—15)]{o(t0) } -
(25)

The operator W accounts for the phase fluctuations
and is given by

W=AL2, (26)

with A the half-width at half-maximum of the lor-
entzian laser profile. The steady-state value
{0(co0)} will be indicated by &, and is the solution
of

(Lg—iW—-iI)e=0. (27)

This equation is easily solved for the matrix ele-
ments of . For the population of the excited state
we obtain

Qn+A|P|*(4*+1n?)
QAIn+2A4(4*+n*)

A.=<e|dle) =3 (28)
where we have set A=1(A.+4,), n=A+4 and
Q,=12|. The population of the ground state is
A,=1—n,, and also the coherence {e|&|g) can read-
ily be found (but is not needed here).

4. Intensity

With eq. (22), expression (12) for the intensity
can be transformed to the g-representation, and with
eq. (13) this gives four separate terms. Then we take
the stochastic average and the limit /—oo. In the o-
representation, the terms proportional to P and P*
acquire phase factors of the form exp[ £ 2ig(¢)].
With the identity [12]

lim {exp[£2ip(s)] o(t)}=0, (29)
these cross terms vanish identically in the steady
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state. When we introduce the Liouville operators .4,
and 4, as

.%szTHdng@lHle} 5 (30)
#I1=|P|*dlld"=|P|*P.(g| |8 . (31)

then the steady-state intensity can be written as
I=ETr( A+ 4)6 . (32)
For the two contributions we write

1,=¢Tr A6, a=e g, (33)

and with eqgs. (30) and (31) this is I.=¢&n, and
I,=¢&| P|*f,, respectively. The total intensity is

I= 3% I, (34)

and with eq. (28) this becomes

Qin(1+|P1*)+A|P|>(42+n*) 3+ |P|?)

= QIn+24(42+n?)

¢

Nl—

(35)

The significance of the two contributions follows
from eqgs. (30) and (31). The part /. is brought about
by the action of 4. on the density operator &, which
gives A.6="n.|g)> (g|. Therefore, the probability for
the emission of an “‘e-photon” is proportional to the
population of the excited state, and after the emis-
sion the atom is left in the ground state. Similarly,
the action of .4, produces a “g-photon”. According
to eq. (31), the probability for this process is pro-
portional to the population of the ground state, and
after the emission the atom is in the excited state. It
can be shown [7] that this stimulated transition ac-
tually involves a three-photon process: two photons
with frequency @ are absorbed and a photon (the g-
photon) with frequency 2w —w, is emitted as fluo-
rescence. An atomic transition from |g) to |e) then
guarantees conservation of energy. The e-photons are
ordinary fluorescence in an |e) — |g) transition, and
they have frequency w, (in the weak-field limit).

5. Two-photon correlation
The two-photon correlation function from eq. (15)
can be worked out in the same way as the intensity.

In the steady state (f,—oo, T=1t,—1, fixed) the cross
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terms vanish identically, and we obtain
L0, 1)=& Tr( A+ 4,)

Xexp[ —i(Ly—iW—il)1] (A + A)G. (36)
This can be written as

Il(OaT)= Zﬂf,‘b’a(r) Ia (37)

in terms of the four functions

Spa(T)

=(&/1,) Tr Agexp[ —i(Ly—iW—il")1] 40,
a,f=eorg. (38)

From the interpretation of the # operators it then

follows that f,;(7) equals the intensity of S-photons

at a time 7 after the detection of an a-photon.
From the identity

lim exp[ —i(Lq—iW—=iN1] [I=6Tr 11, (39)

T—00
for arbitrary /7, we then obtain

lim fy, (1) =CTr Aya=1,. (40)
This illustrates that for a long delay time 7 the de-
tection rate of S-photons equals the uncorrelated in-
tensity /, With eq. (37) this gives

lim ,(0,1t)= Y Igl,=(I.+1)*=1?, (41)
T—00 afp

i.e., the correlation function factorizes. For 7—oco we
find

Jee(0) =/ (0) =0, (42)
Jee(0) =8> 1., (43)
Jee(0)=¢|P*> 1, . (44)

Eq. (42) expresses that the probability for the de-
tection of an e-photon immediately after the detec-
tion of an e-photon is zero (antibunching). This can
be understood from the fact that after the emission
of an e-photon the atom is in the ground state. It takes
a finite time 7 for the atom to make a |g) — |e) tran-
sition, which is necessary for the emission of a sub-
sequent e-photon. In a similar way it follows that

Jee(0) must be zero. Eq. (43) shows that the prob-

ability for the detection of an e-photon immediately
following a g-photon is larger than the uncorrelated
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probability for the detection of an e-photon (bunch-
ing). This follows from the fact that after the emis-
sion of an e-photon the atom is in the ground state,
rather than . This enhances the probability for the
emission of a g-photon, which is proportional to the
population of the ground state. The inequality in eq.
(44) can be explained in a similar way. From eqgs.
(42)-(44) and with 7. +7,=1 we find

L,(0,0)=¢&P|*. (45)

It appears that /,(0, 0) does not depend on any of
the parameters Q,, 4, A or A.

The Laplace transform of eq. (38) is
f (s)—é—zTrﬁ;—ﬁa- (46)
2 pe I, “Ps+iLg+WwWH+Ir 7
in terms of an operator inversion. Working out this
expression then yields for the four combinations

Tuls)= sy 138 +)

+A,[(s+n)*+4°]}, (47)
Flle)= le)I(Jl) {1Q3(s+n)

+(s+A) [(s+n)+421} (48)
Tuls) = spess (42305 )

+(s+4) [(s+m)+47]) , (49)
Tuts)= S5 1235+

FAL(s+m) 47T (50)
where

D(s)=Q3(s+n)+(s+24)[(s+n)*+4%]. (51)

With eq. (37) we can then construct L(0, s). The
result, however, is not very transparent.

6. Photon statistics

- From I,(0, s) and with eq. (4) we can calculate
h(s). Then the Q-factor follows from eq. (8), with
the result
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Q(00) =&{Q3(1+|P1*) [(A—1) (n°+4%) —4n*A]
+A|PI2(3+|P1) [Q5(n*—4%) = (n*+4%) %]}
X [Bn+24(n*+4%)] 2

41P1*(n*+4°)
Qin(1+|P1?)+A|P*(n*+4%) (3+|P1?)
(52)

+<

For |P|>-0 this reduces to the Q-factor of a free
atom [6].

Close to resonance (4—0) and for a small laser
linewidth (1—0) the Q-factor can be written as

Q(o0)=(&/4)q(x,y), (53)
which depends basically only on the two parameters
x=|P[*, y=83/4°. (54)

The function ¢g(x, y) is

_x(3+x) [y—{(1+x)’]=3y(1+x)°
B [y+3(1+x)*]?

q(x,y)

2x

+y+%x(3+x) ’ (33}

The sign of g(x, y) then determines the regions of
sub- and super-poissonian statistics, and this is shown
in fig. 1. It can be checked by inspection that g(x, y)
has a factor 1 —x, and therefore we have g(x, y)=0
for x=1, all y. This is the vertical line in fig. 1. The
curve in fig. 1 gives the second solution of g(x, y) =0.
On the y-axis (PC absent) the statistics is always sub-
poissonian, and ¢(0, y) has a minimum of —3 at
y=1. In absence of the laser (x-axis), g(x, 0) de-
creases monotonically from § at x=0to —1 at x—co.
The function ¢g(x, y) is discontinuous at (x, y)= (0,
0) and has a saddle point at (x, y)=(1, 2).

7. Unit reflectivity

The reflection coefficient | P|? is proportional to
the square of the intensity of the pump lasers of the
four-wave mixer, and can therefore have any value.
In particular, reflectivities larger than unity have been
obtained experimentally [13-15]. An interesting
special case is unit reflectivity, for which |P|*=1.
With eqgs. (47)-(51) we then obtain
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Fig. 2. The two curves represent fe.(7) /¢ and f,(7) /& as a func-
tion of At for A=4=0, | P|>*=1 and ©} =247 These parameters
+ correspond to the saddle point in fig. 1. The dashed line indicates
0 1 1 the value for At— o0, which is § for both curves. The overshoot
0 0.5 1 15 in the curve of fez(7) /& below the asymptotic limit is a remnant

X

Fig. 1. Regions of sub-poissonian ( — ) and super-poissonian (+ )
statistics for A=A=0 as a function of the phase-conjugate reflec-
tivity x and the relative laser power y. The indicated signs are the
signs of the function g(x, ). At (x, y)=(1, 2), g has a saddle
point. The curved line approaches the asymptotic value of x=3
for y— oo, and g(x, p) is negative for all x> 3.

Jee (1) +fee (1) =€, (56)
Jee (1) e (1) =¢. (57)

These two combinations of correlation functions turn
out to be independent of 7. The intensity, eq. (35),
reduces to

1=¢, (58)
and the two-photon correlation factors as
L(0,7)=12, (59)
for all 7. With eq. (4) this yields A(t)=0, and
therefore

Q(1)=0, (60)

for all 7 and any combination of parameters. In gen-
eral, it is not necessary that 4(7) is identically zero
in order for the statistics to be poissonian; for 1— co,
only the average of 4(7), in the sense of eq. (6), has
to vanish. Furthermore, the functions f4,(7) sepa-
rately have a non-trivial t-dependence, as illustrated
in figs. 2 and 3.
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of Rabi oscillations. The Rabi frequency for these values of the
parameters is ;ﬁA.

1
f/e 9e
05 -
9g
0 | | 1 fi
0 05 1 15 2

AT

Fig. 3. Functions fg(7) /¢ and fg(7) /& for the same parameters
as in fig. 2. The asymptotic limit here is §, as shown by the dashed
line.

8. Conclusions

We have studied the photon correlations and sta-
tistics of resonance fluorescence radiation, emitted
by an atom near the surface of a PC. The two-time
intensity correlation appeared to have four distinct
terms, each of which is proportional to a function
J34(7). These f3o(7)’s were shown to have the sig-
nificance of the detection rates of f-photons at time
7, after the detection of an a-photon at time zero.
From these correlation functions we constructed the
long-time Q-factor, as given by eq. (52). For4=4=0,
Q(o0) could be expressed in a two-parameter func-
tion ¢g(x, y), and the conditions for sub-poissonian
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statistics (¢<0) were represented pictorially in fig.
1. For small reflectivities | P|* the statistics is always
sub-poissonian; for | P|?=1 the photons have Pois-
son statistics for any value of the optical parameters;
and for large values of |P|? the statistics becomes
again sub-poissonian. It follows from eq. (52) that
for | P|?>—oco the Q-factor reaches its ultimate lower
limit of Q(c0)=—C¢/A.

Photon correlations and statistics of phase-con-
jugated resonance fluorescence should be amenable
to experimental observation. When an atomic beam
and a laser beam are projected along the surface of
the PC, above which they intersect, then the fluo-
rescence can be detected in a direction perpendicular
to the surface. A complication, however, might be
the background radiation which is emitted sponta-
neously in all directions by the nonlinear medium.
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