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Statistics of fluorescent photons
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Temporal photon correlations and photon count statistics of fluorescence radiation, emitted by an atom in the
vicinity of a phase conjugator, are considered. The fluorescent intensity and the two-photon correlation function
are expressed in terms of photon emission operators. An explicit evaluation shows their dependence on the phase-
conjugate reflectivity of the surface. The variance of the photon count distribution for long counting times is
expressed in terms of the Q-factor, and Q has been evaluated as a function of the reflectivity. It appears that
for a reflectivity larger than unity the photon correlation displays antibunching and the statistics is sub-poissonian.

I. INTRODUCTION

Emission of photons by atoms during spontaneous de-
cay is very nearly a purely random process, and hence
the statistics of these random events is nearly Poisso-
nian. Correlations between photons and deviations from
Poisson statistics have been the subject of many studies.
Of particular importance is the two-time intensity corre-
lation I,(ty, t,), which equals the photon detection rate
at time ¢, after the detection of a photon at time ¢,, inde-
pendent of any photon detections at other times. For
uncorrelated photons, this quantity factorizes as Io(¢y, t2)
=I(t)I(t,), where I(¢) equals the uncorrelated photon
detection rate at time t. Since I(¢) is the detection rate,
the average number u(f) of detected photons in a coun-
ting time interval [0, ¢] is given by

t

ut)= fodtl It) 11
For Poisson statistics, the variiance ¢*() of the photon
count distribution in [0, ¢] equals the average u(f). The
deviation from Poissonian statistics is determined by the
two-time intensity correlation according tot"

t t

O~ ut= [ at [an e, -0 101 2

It can be shown' that for electromagnetic fields
which have a classical analogue, the variance is always
larger than the everage, This is called super-Poissonian
statistics. Conversely, sub-Poissonian statistics, for
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which o<y, can only occur in photon fields which are
essentially quantum mechanical in nature. It follows
from Eq. (1.2) that the photon statistics is sub-Poissnian
when Iy(t1, t,) is smaller, on the everage, than I(t)I(t,).
For fields with a classical analogue, the equal-time cor-
relation (¢, f) is necessarily larger than I(¢)%. This pho-
nomonon is termed photon bunching.*~% since it imp-
lies that the detection of a photon at time t enhances
the probability for a photon detection immediately after-
wards, as compared to the uncorrelated detection pro-
bability. Photon antibunching, for which L(t, H)<I(¢)? is
again a pure quantum feature of radiation. Both sub-poi-
ssonian statistics and antibunching have been observed

experimentally in single-atom resonance fluorescence.”
6]

II. ATOM NEAR A PHASE CONJUGATOR

We consider a two-state atom, with ground state |
g>and excited state | e>, separated by hw, which is
positiioned near the surface of a phase conjugator (PC).
It is assumed that the PC consists of a nonlinear me-
dium which is pumped by two strong counterpropaga-
ting laser beams with frequency w. When weak radiation
is incident on the surface of the medium, a four-wave
mixing process generates a phase-conjugate replica of
the incident field. This time- reversed image propagates
into the direction opposite to the incoming wave, rather
than into the specular direction (as for reflection at a
linear medium).'~*' Since the process is based on four-
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wave mixing, an incident wave with frequency @ will
be reflected as a wave with frequency 2w-®.
When the atom is in its excited state | e>then it will
decay spontaneously to its ground state | g>, under
emission of a fluorescent photon with frequency @,. This
process is illustrated schematically in diagram (a) of Fig.
1. An atom in empty space or near a linear medium
would then remain in its ground state indefinitely, be-
cause there is no excitation mechanism to bring the
atom back to state | e>. For an atom near a PC, howe-
ver, the situation is different. When the atom is in state
| g>, it can not emit any radiation due to energy conse-
rvation, but the atom is still surrounded by the electro-
magnetic field which is generated by the electromagne-
tic field which is generated by its dipole moment. This
non-radiative field with frequency —, serves as an inci-
dent field on the PC, which then generates a phasecon-
jugate image at frequency 2w, In the quantum version
of four-wave mixing, a complex conjugation (which is
phase conjugation) becomes a Hermitian conjugation.
Therefore, an annihilation field will be reflected as a
creation field, and vice versa, and a non-radiative inci-
dent field will be reflected as a radiative field, containing
photons. The energy for the production of these photons
is, of course, provided by the pump beams. It can be
shown'® from the retardation in the emission time that
these photons with frequency 2@-w, appear to emanate
from the site of the atom. Consequently, we can effecti-
vely regard the four--wave mixing to take place at the
location of the atom, rather than in the medium. The
corresponding energy-conserving process is shown in
diagram (b) of Fig. 1. The atom is originally in its ground
state. Then it absorbs a photon with frequency  in a
stimulated excitation. Subsequently, the fluorescent
photon with frequency 2&-@, and a second absorption
of an @ -photon leaves the atom in the excited state.
The cycle can then be completed with ordinary sponta-
neous decay. In this fashion, an atom near a PC can con-
tinuously generate fluorescent photons. The occurrence
of the three-photon process from diagram (b) should be
amenable to experimental verification because it gene-
rates photons with frequency 2w-w,, rather then the w,-
photons of ordinary fluorescence. Also the spontaneous
excitation of the atom during this process should be ob-
servable.

III. RELAXATION

Spontaneous decay gives rise to relaxation of the ato-
mic density operator p(¢). From the expression for the
vacuum electromagnetic field"'” near a PC the damping
operator I' can be derived. With P.= | e><e |, P,=

| g><g| the projectors on the atomic states and in

terms of the raising operator d= | e><g | and the lo-
wering operator d* = | g><g | the Liouvillian I"attains
the form
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TI'o=1/2A, {P.c+ oP.—2d* od}
+1/24, {Po+ oP,—2dad" ), 3.1)

which defines its action on an arbiitrary Hilbert-space
operator o. The relaxation constants for the excited state
and ground state are

A,=AQ+1/2 | P | ?, 3.2)
A=1/2A | P, 3.3)

respectively. Here, P is the Fresnel reflection coefficient
for a plane wave and A is the Einstein coefficient for
spontaneous decay in empty space. The Liouvillian of
free evolution L, is defined as

Lio=alP,, ol (34)

for arbitrary o. Then the equation of motion for the den-
sity operator becomes

i—‘f{f =L.—iDp, 35)

subject to the constraints p*=p and Trp=1.

Any initial state p(0) will evolve to the steady state
p=p((t=o) on a time scale of 1/A, as can be checked
by inspection from Eq. (3.5). The steady state is found
to be

p=npP,+nP,, (3.6)
in terms of the populations of the atomic levels
2 2
72 P _1+1/2|P| (3.7)

M1 P2 T T [P 2

Due to the occurrence of the three-photon processes,
the population 7, of the excited state is finite.

IV. FLUORESCENCE

During spontaneous decay and excitation, the atomic
dipole y emits fluorescence radiation. When detected
under an angle @ with the normal to the surface and
filtered with a polarizer for its e, component, the positive
frequency part of the radiation assumes the form(®J

aﬁe —i(wph/c)os6

GH)\P= = <el| pey| g>{d*®O—Pe %d®)}

4.1

Here, # is the normal distance between the atom and
the surface, and the time dependence of d*(¢) and d(¢)
signifies the Heisenberg picture. The transition dipole
moment <e | | g/> is assumed to be real. In Eq. (4.1),
the term proportional to d*(¢) is ordinary fluorescence
which is emitted during an | e>— | g> transition, and
the rerm with d((t) represents radiation ernitted during
a three-photon process. The factor exp(—2ia¥) reflects
the absorption of two photons with frequency w.

In terms of G()" and its Hermitian conjugate G(),
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the fluorescent intensity can be expressed as
I)=¢<Gt) TGH) >, 4.2)

where {is a detector parameter, which accounts for the
efficiency, the aperture, atc. Similarly, the two-photon
correlation becomes

L, t)= <Gt Gt) T GE) VGt >, 4.3

for t,2t. In the steady state, I(f) will be independent
of time, and I, can only depend on # and £, through y=t¢,
_tl.

V. INTENSITY
After transformation to the Schrodinger picture, the
steady-state intensity can be written as
I={Tr(R.+R)p, (5.1)

where we have absorbed an overall factor in { The
Liouville operators R, and R, are defined as

Ro=P,<e| ol e>, (5.2)
Rio=|P|%P<g|oclg>, (5.3)

for arbitrary o. The intensity acquires two contributions,

I=1,+1, (54)
with

I,={TrR.p, a=e, g (5.5)
and with Egs. (56.2) and (5.3) we readily obtain

L= (5.6)

L=C| P |, (5.7

in terms of the level populations.
The total intensity as a function of the reflectivity
| P|?2is then

=126 315 (58)

where we have set | P | 2=x, Figure 2 illustrated the
behavior of I with | P | 2 Notice that for x—>o, I does
not saturate but increases indefinitely.

Operators R, and R, have a clear physical interprcta-
tion. As follows from Eq. (5.2), the action of R, on a den-
sity operator projects the atomic state onto | g>, and
produces a factor equal to the population of | e>, Hence
the effect of R, on a density operator is to induce an

| e>— | g> transition, and the process has a probabi-

lity equal to the population of the excited state. This
process corresponds to diagram (a) in Fig. 1. Alternati-
vely, we could interpret R, as the operator which accou-
nts for the emission of a photon with frequency w, du-
ring an | e>—> | g> transition, We shall call these pho-
tons “e-photons”.

Similarly, operator R, represents the emission of a “g-
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Fig. 1. Diagram (a) represents ordinary spontaneous decay
from | e>to | g>, which is accompanied by the emis-
sion of a photon with frequency @,, In diagram (b), the
atom is initially in the ground state. Then is absorbs
a photona line misscing with frequency 2&-w,. To com-
plete the energy-conserving diagram a second @-pho-
ton is absorbed, which brings the atom to the excited
state.

photon”, with frequency 2w-w, during a | g> to | e>
excitation. This mechanism is depicted in diagram (b)
of Fig. 1.

VI. TWO-PHOTON CORRELATION

The two-time intensity correlation from Eq. (4.3) can
be evaluated in a similar way. Transforming into the
Schrodinger picture and taking the stationary limit yie-
lds

L0, p=8TrR.+Rye "~ ""R,+R,)p 6.1)

The exponential for the time regression is identical to
the time evolution operator for the atomic density ope-
rator. Equation (6.1) can be written as

LO, = fa(Pl, 6.2)

where the summation runs over a=e, g and f=¢, g. The
four functions fp(y) are defined as

JselP) =1, ' TrRpe™ %" "1R (6.3)

for y20 the significance of fz(y) follows from reading
this expression from right to left. Operator R, acts on
D, and it has the effect that an a-photon is emitted. It
also leaves the atom in either | e>or | g>, according
to Egs. (6.2) and (5.3). Then the exponential lets this
state evolve for a time ¥, after which the action of Rg
results in an emission of a f-photon. Division by I, than
renormalises the probability for the emission of an a-
photon at time y=0 to unity. The parameter ¢ relates
the emission probabiilities for the two photons to the
detection rate of S-photons at a time y after the detec-
tion of an a-photon.

When we set y=0 and a=p in Eq. (6.3), we obtain

fﬂﬂ(o) =0, ﬂ: ¢ & 6.4)
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bacause
R%=0, p=e¢, g, (6.5)

as follows from definitions (5.2) and (5.3). Equation (6.4)
expresses that the probability for the emission of a B-
photon, immediately following the emission of a -pho-
ton, is zero, photons of the same kind (both e or g) exhi-
bit antibunching. This can be understood as follows. Af-
ter the emission of an e-photon, the atom is in the
ground state. Since the probability for the emission of
a subsequent e-photon is proportional to the population
of the excited state there must necessarily be a finite
time delay y during which the atom performs a | g>
— | ¢> transition. Antibunching of g-photons has a si-
milar explanation.

For long time delays between the two photons we ob-
tain

Spa(e0)=1p, (6.6)

e.g., the conditional detection rate for B-photons equals
the uncorrelated intensity /5, This implies that for y—>co
the memory to the detection of an a-photon at y=0 is
lost, as could be expected.

When we set y=0 and a=fin Eq. (6.3) then it is easy
to show that

foa0)>1p, aP. (6.7)

This inequality expresses that the probability for the de-
tection of a B-photon, immediately following an a-pho-
ton, is larger than the uncorrelated detection rate of f-
photons. In other words, unlike photons tend to bunch.
This property can readily be understood from Egs. (5.2)
and (5.3). After the emission of an e-photon at y=0, the
atom is in the ground state. The probability for the emi-
ssion of a subsequent g-photon is proportional to the
population of | g>, and this is larger when the atom
is in the ground state, as compared to an atom in the
steady state p. Therefore, the emission of an e-photon
enhances the probability for the subsequent emission
of a g-photon. Bunching of e-photons after g-photons fol-
lows similarly.
Functions f..(y) and f,(y) are explicitly

falp =11~ ¥e 40n), (6.8)

SN =L+ (ng/n)e™ e 4m), (6.9)

and f,(y) and f.(y) follow after interchanging ¢ and g
in these expressions. Combining everything then gives
for the intensity correlation

A+3x+4 ¢~ e AT
x(x+3)? !

where x= | P | % This function is shown in Fig. 3 for

three values of | P | 2 Notice that for unit reflectivity
(| P | 2=1), this function factories as I5(0, y)=1I? for all

Y.

L0, D=P{1+(1—x) (6.10)
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Fig. 3. Plot of QA/{as a function of | P | 2 At | P | =1 have

@=0, and this corresponds to the correlation function
(b) in Fig. 3.
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Fig. 2. Total intensity, divided by ¢ as a function of the reflec-
tivity | P | % For | P | >0 the fluorescence vanishes,
and for | P | *>oo the intensity increases unlimited.

VII. STATISTICS

With expression (6.10) for the two-photon correlation
function, the steady-state variance can readily be obtai-
ned from Eq. (1.2). Of particular importance is the value
of o) for long counting times (much larger than 1/
(A,+A). It is easy to verify that for t—>co the variance
becomes proportional to £. With Eq. (1.1) we find the
average number of detected photons in [0, ¢] to be u(t)
=1It, with I the counting rate in the steady state. There-
fore, a normalized measure for the variance can be defi-
ned as

_ lim &) —u@)
Q_t—>oo ut) (1)

which is Mandel’s Q-factor'® for t—o0. From this defini-
tion it follows that @ is bounded by @>-1. A negative
value of @ reflects sub-poissonian statics, and @>0 cor-
responds to super Poisson statistics of the photon cou-
nts.

The Q-factor of the fluorescence turns out to be
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(7.2)

o=% 1=z P+3r+4
A Q+xP  x+3

where x= | P | 2 Here, {/A is merely an efficiency fac-
tor which relates the number of detected photons to the
number of emitted photons. Therefore, the value of @
depends essentially only the intensity reflection coeffi-
cient | P | % The value of QA/{ as a function of | P | 2
is shown in Fig. 4. It follows from Eq. (7.2) that the stati-
stics of the fluorescent photons is sub-poissonian whe-
never the reflectivity exceeds unit (x>1). For | P |2
—oo the value of QA/{ reaches its ultimate lower limit
of -1. Since for | P | 2> the intensity increases un-
bounded, as illustrated in Fig. 2, this non-classical beha-
vior should be amenable to experimental verification.

VIII. CONCLUSIONS

We have studied the statistical properties of photons
in fluorescence radiation, which is emitted by an atom
near the surface of a PC. The intensity of emission and
the temporal correlations could be expressed in terms
of the emission operators R, and R, for e-photons and
g-photons, respectively. The time regression of the cor-
relation function is brought about by the time-evolution
operator for the atomic density operator. Emission of
an e-photon is accompanied by ordinary spontaneous
decay, whereas an emission of a g-photon requires the
occurrence of a three-photon event. During such a pro-
cess, two w-photons are absorbed, a fluorescent photon
with frequency 2w-w, is emitted, and the atom makes
a transition from the ground state to the excited state.

It was shown that like photons exhibit antibunching
and unlike photons tend to bunch. Without resolution
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with respect to the photon kind (by means of their fre-
quency), the temporal behavior can either be bunching
or antibunching, depending on the phase-conjugate ref-
lectivity | P | 2. For | P | 2<1 bunching prevails, and
the statistics is super-Poissonian, whereas for a reflecti-
vity larger than unity the photons antibunch, leading to
sub-Poissonian statistics. Equation (1.2) implies that an-
tibunching (on the average) must necessarily yield a
sub-Poisson photon count distribution.
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