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Abstract. Resonance fluorescence by an atom near the surface of a phase conjugator is 
studied. The atom is irradiated by a finite-linewidth laser beam, and the bandwidth is 
modelled by a randomly fluctuating phase. Expressions for the steady-state atomic density 
operator and the resonance fluorescence spectrum are obtained. For a small laser linewidth 
the spectrum contains two delta peaks: the usual peak at the laser frequency and its 
phase-conjugate image. In the limit of separated lines the spectrum consists of the Mollow 
triplet and its phase-conjugate replica. In the image triplet the positions ofthe fluorescence 
line and the three-photon line are reversed, as compared with the original triplet. Also, 
the intensity of the image spectrum is distributed differently over the three lines. 

1. Introduction 

Monochrcrmatic !aser irradia!ion of a !wQ-E!ate ;Itom yi.!ds ;I symmetric res!X2nce 
fluorescence spectrum around the laser frequency (Carmichael and Walls 1976, Kimhle 
and Mandel 1976), as was observed experimentally (Wu et a! 1975). In the limit of 
either strong irradiance or large detuning the spectrum splits into three separate lines, 
which gives the famous Mollow triplet (Mollow 1969). When the finite laser linewidth 
is taken into account the spectrum becomes asymmetric, such that the intensity tends 
to centre around the atomic resonance, rather than around the laser frequency (Avan 
and Cohen-Tannoudji 1977, Kimble and Mandel 1977, Zoller and Ehlotsky 1977, 
Knight e l  a1 1978, Zoller 1978, George 1980, George and Dixit 1981). When the atom 
is surrounded by a neutral gas, then collisions have a similar effect (Burnett et a/  1982, 
Nienhuis 1982). Another influence on the spectral distribution of resonance fluores- 
cence is the presence of a reflecting surface (Lin et al 1983, Huang et a1 1984, Huang 
and George 1984, Li and Gong 1987). Near a metal or dielectric the spontaneous decay 
rate changes, which affects the fluorescence spectrum parametrically through a change 
in the Einstein coefficient for spontaneous emission. 

We consider an atom which is located near the surface of a four-wave mixing phase 
conjugator (PC). The presence of this FC alters atomic lifetimes (Agarwall982, Bochove 
1987, Hendriks and Nienhuis 1989a), and affects the photon statistics of atomic 
resonance fluorescence (Hendriks and Nienhuis 1989b). With oL the laser frequency, 
wo the atomic resonance, 8 the pump frequency of the non-linear crystal and w the 
frequency of a fluorescent photon, the fluorescence spectrum can be expected to depend 
on the frequency mismatches 

A = w , - o ,  S = w , - O  A =  0 -0,. (1.1) 
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For any linear surface (metal, dielectric, etc) the detuning 6 does not appear as  a 
parameter. It can therefore be anticipated that the structure of the spectrum for an 
atom near a PC is essentially different than for an atom near an ordinary dielectric, at 
least for 6 # 0. 
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2. Equation of motion 

Assume that a laser beam with frequency wL and (complex-valued) amplitude Eo 
propagates along the surface of the non-linear crystal. At the position of the atom, the 
electric field is then 

E ( t ) , =  Re E,, e-'(w~'+4(')1 (2.1) 

where + i t )  is a stochasticaiiy iiuctuating phase which gives rise to a finite iaser 
linewidth. We shall take 4(f )  to be the independent-increment process (van Kampen 
1981). for which the laser profile is a Lorentzian. This model generalizes the more 
familar phase-diffusion process (Arnoldus and Nienbuis 1983). In the dipole and 
rotating-wave approximation the interaction between the atom and the field is 

where d = le)(gl is the atomic raising operator from the ground state lg) to the excited 
state le). The (complex-valued) parameter 0 is the Rabi frequency, defined by 

in terms of the atomic dipole operator p. With fio, and hog the energies of the excited 
state and ground state, respectively, the atomic Hamiltonian Ha can be written as 

(2.4) 

in terms of the projectors P. = le)(el and P, = Ig)(gl. Spontaneous decay is taken into 
account with a Liouville relaxation operator r. For an atom near a PC this operator 
attains the form 

Ha = ho,P, + ho,P, 

IT = f A , { P J I + n P ,  -2d'IId}+$A,{PJI+nP,  -2dlldt} (2 .5 )  

which defines its action on an arbitrary Hilbert space operator ll. The relaxation 
constants A ,  and A, are the rate constants for transitions from the excited and ground 
stzte, :espec!ive!y. With A !he Einstein cneF.cien! Fer spon!anenns deczy in empty 
space and P the phase-conjugate amplitude reflectivity for a plane wave, A, and A ,  are 

A, = A ( I  +;lpi2) A,  =;AIPl2. (2.6) 

Then the equation of motion for the atomic density operator p ( f )  becomes 

dp  i h  - = [ H .  + Hsr( t ) ,  p] - ih rp .  
d t  

The time dependence of the Hamiltonian can be simplified considerably with a 
stochastic transformation of the density operator. With the Liouvillian L, defined as 

L 3 n = [ p , , n l  (2.8) 
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for arbitrary IT, the transformed density operator U(  f )  is given by 

o ( f )  =exp[-i(o,r+~(t))L,Ip(r). (2.9) 

From (2.7) we then readily derive the equation of motion for u(t):  

d o  
i - = ( L, + $( t ) ~ ,  - ir)o.  

LJ = A L,n -;[ad + a*d ’, II] 

(2.10) 
dt  

Here, Ld is the dressed-atom Liouvillian which is given by 

(2.11) 

for arbitrary IT and in terms of the detuning A=w,- -w,+o,  = oL-oo. 

3. Stochastic average and steady state 

The density operator u ( f )  is a stochastic process, due to the appearance of $ ( f )  in 
(2.10). A stochastic average over many realizations of 4 ( t )  will be indicated by [ . . .), 
in order to distinguish from the notation ( . . . ) which is reserved for quantum averages. 
As shown in appendix 1, the average density operator (o( t ) )  obeys the equation of 
motion 

(3.1) 
d 

i - ( U }  = (Ld -i Wo-ir)[u). 

The Liouville operator WO is found to be 

d t  

W, = A ,  L: (3.2) 

where A ,  is a parameter of the independent-increment process, which equals the laser 
linewidth. 

Of particular interest is the steady-state solution C=(o ( f  +m)) of (3.1). For f +m 
the left-hand side of (3.1) goes to zero, and the equation can be solved immediately 
for e. The population of the excited state is found to be 

(3.3) 

where we introduced the abbreviations 

A =  ;(A, +A,) v = A , + A .  (3.4) 

The population of the ground state is, of course, rip = 1 - fie. Forthe coherence we obtain 

It is interesting to notice that the population of le) and the coherence are related by 

(a,-;). n 
A+iv  

=- 

If the intensity reflectivity IPI2 is much larger than unity and if AIPI2>> A , ,  then ri,+;, 
egg + 0, irrespective of the values of A2 and A. 
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4. Field correlation function 

The atom emits fluorescence radiation, which can he detected by a photon counter in 
the far field. The positive-frequency part of this field is given by (Arnoldus and George 
1991) 
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E( t ) '+ '=  dt ( t )  -exp(-ZiGf)P*d( t )  (4.1) 

where an overall factor and retardation have been suppressed. The time dependence 

due to the fact that the reflected waves at  the surface are generated in a four-wave 
mixing process. The spectral distribution of the fluorescent photons is determined by 
the two-time field correlation function 

C ( h ,  G) = KE(f , ) ( - 'E(f*) (+' ) l  (4.2) 

depend on I, and i2 through r = t ,  - i l ,  then the correlation function would be stationary 
and the fluorescence spectrum would he time independent. Due to the factor exp(-2iGf) 
in (4.1), this is not necessarily the case, even in the steady state. We now evalute 
C (  1, , 1,) for f ,  + m, f ,  + 00, but with r = 1, - rI kept constant and positive. 

of hi;) an: :tii) jignifies the Keisenberx piciute, and the factor exp<-iiGi) 

... L:̂ L :....-,..-. L^.L - -..-........ ..-A - ".--LA-.:- ~ - -  I n k . -  c,. . \ ... .̂.,I . _ I . .  
W l l l L L l  l l l Y U l V C J  UUUl II ~ Y a L 1 L " " '  a l l U  a J L U \ . I , I I J L L C  avr1ngr. "",,=a, I r l Z , ,  LI, WUY," " M y  

Substitution of (4.1) into (4.2) yields 

C ( h ,  f 2 )  = ~ ( ~ ~ ~ , ~ ~ T ~ ~ ~ ~ ~ ~ f ~ ~ l 5 e ~ p ~ - ~ ~ ~ ~ ~ ~ -  fAlKdt(b)d(f2))} 

- P* exp(-2iGf2)((d( f,)d( f,))}- P exp(2iGt,)((dr( t,)d'( i2))). (4.3) 

Then we transform the expectation values to the Schrodinger picture, and with (2.9) 
we go to the U representation. This leads to 

C(f i ,  !i)=cxp[-i&!L(!,-!i!j Trd+{Q!!;, !,)? 

+lP12 exp[i(oL-2G)(t,- r , ) ]  Tr d(D2(f, ,  f 2 ) )  

-P* exp(iw,f,) exp[i(wL-2G)f,] Tr d(D3(f l ,  f 2 ) )  

- P  exp(-io&) exp[i(2G -wL)f , ]  Tr d'(D,(f,, r 2 ) )  

Dl( f l ,  h) =exp[-i(&(f,)-&(f,))l Y ( h ,  h)[u(h)d l  

D2(f: ,  f 2 )  = exp[i(+(h) - +(t l ) ) l  Y ( b ,  t l ) [ d h ) d t l  

Ddf,, f 2 )  = exp[i(+(t2) + +(h))I Y ( b ,  h)[u(h)dl  

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

where we have introduced the stochastic operators 

~ D&(t: 1:) = exp[-i(+(f,)+ &(ti))]  Y(f2;  t:)[~(f:)d']. 

Here, Y ( f ,  1 ' )  is the evolution operator for U :  

u(r)= Y ( f ,  f ' )U ( f ' ) .  (4.9) 

With (4.9) and the equation of motion (2.10) for U, we find from (4.5)-(4.8) 

(4.iOj d - .  - 

d f 2  

d 

df2 

i- D,,+(f,, f 2 )  = (Ld+$(i2)(L,+ l)- i l 'JL4,b(f, ,  f 2 )  

(4.1 1)  i - D2,3( f 1  , f 2 )  = (L, + d ( - 1 ) - i W M i l  , 1,). 
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Even though D, and D4 obey the same differential equation, the solutions are different 
because D1 and D, have different initial values ( t 2 =  1,  in (4.5)-(4.8)). Similarly, D2 
and 17, are different. Equations (4.10) and (4.11) are stochastic differential equations 
of the type discussed in appendix 1 .  The solutions for the averages are 

( D l ( t l ,  t 2 ) )  = exp[-i(L,-i w+, - i r )~ ] (u ( t , )d}  (4.12) 

{ D 2 ( t 1 ,  t 2 ) }  = exp[-i(L-i W-, - i r ) ~ ] { u (  t,)d'} (4.13) 

(D3( t1 ,  t 2 ) )  = exp[-i(L,-i W-, -iT)~](exp(2i0(r,))u(t,)d) (4.14) 

(D4(t1, t 2 ) )  = exp[-i( Ld-i W,, -ir)r](exp(-Zi+( t , ) ) u ( t , ) d ' )  (4.15) 

The steady-state correlation function follows from (4.12)-(4.15) by taking t 1  +OD 

lim (exp(*2i0(tl))u(t ,)~=0. (4.16) 

Therefore, {D3( t1 ,  t z ) )  and {D4(t1, t 2 ) }  vanish in the steady state, whereas in (4.12) and 
(4.13) we can simply replace {u(t l ) )  by 6. We find for the correlation function 

C ( t l ,  t 2 )  =TI d' exp[-i(w,fL,-iW+, -iI')(t2- t,)](6d) 

for 7 = f 2 - - f l  positive. The Liouville operators W,, and W-, are given by (A1.5). 

while keeping T fixed. It is shown in appendix 2 that 

,,-m 

+IPI2Tr d exp[-i(2G -w,+Ld-i W-,-ir)(t2- f l)](6dt).  (4.17) 

It appears that C ( t , ,  t 2 )  only depends on t I  and f, through t 2 -  1,. and the correlation 
function is therefore stationary. 

5. Intensity 

The spectrally unresolved fluorescence intensity is given by 

I =( (E( t ) ' - 'E( t ) '+ ' ) )  

I = ri,+IP12fig. 

which becomes with (4.17) 

With (3.3) we then find 

For a very strong laser field we reach the saturation limit 

I = f ( l  +I Pl2) 1n12+m 

(5.3) 

(5.4) 

which is a factor of 1 + IPI2 larger than for an atom in empty space. For a strongly 
reflecting surface we have 

I-t t lP12 IP12+m (5 .5)  

and there is no saturation limit. The intensity increases indefinitely with IPI2, 
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6. Fluorescence spectrum 

Since the two-time correlation function C ( t , ,  f2) is stationary, the spectral distribution 
of the fluorescence is given by the Wiener-Khintchin relation 
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I(w)=-Re 71 d7e io 'C(0 ,~ ) .  (6.1) ' lo- 
This spectrum is normalized as 

d o  I ( w )  = I. J 
Combination of (4.17) and (6.1) gives 

1 
IL, + W,, + r - i( 0 - w L) 

( @ d )  1 t 
7r 

I ( o ) = - R e T r d  . 

1 
(@dt) 

1 
$7 I&+ W-,+I ' -~ (O-O,+~S)  

+- lP12 Re Tr d ,  

(6.2) 

where we have set S = w L  - 6. Working out this formal result yields explicitly 

1M2 (A,+A-iA)(A+A,+iA-iA) 
271 (A,  -iA)(v+iA)D+,(-iA) 

I ( o )  =- (4- iie) Re 

1w2 
27r 

( A ,  - A- 2iS -iA)(A+ A2-iA -2iS -iA) 
( A ,  - 2iS -in)( 7 - iA)D_,(-ZiS - iA) 

+-lP12(iie-f) Re 

1 
71 D_.(-2i8 -iA) 

flCl'+ (2A+A, -2iS -iA)(A+ A2-iA-2iS -iA) +- IPIz(l - E,)  Re ., 
(6.4) 

in terms of A = w - w L  and the population of the excited state A, from (3.3). We have 
introduced the abbreviations 

D+,(s) = JClI2(A+iA2+ s) + (2A+A, +s)(A-iA+s)(A+A,+iA+s) (6.5) 

D-,(s) = 1nI2(A+fA2+ s)  +(2A+A, + s)(A+iA+ s)(A+ A2-iA+s) (6.6) 

and used (3.6), A, = 1 - E , ,  and A, -A, = A. 

7. Small laser lioewidth 

In order to elucidate the structure of the fluorescence spectrum we consider the limit 
where the laser bandwidth tends to zero. The halfwidth at half maximum of the 
Lorentzian laser lineshape equals A , .  The limit A ,  + 0 then also implies A 2 +  0, according 
to (A1.7). In the first term on the right-hand side of (6.4) we get a factor (-iA)-', 
which should be interpreted as 

-iA 
(7.1) 
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where P stands for principal value. Similarly, the third term gives a S function at 
28 + A  = 0. When we work out this limit we obtain 

I ( w )  = I&ez12{S(w -wL)  + IP12S(w + wL-2G)}+smooth background. (7.2) 

Apparently, the resonance fluorescence spectrum contains two delta function peaks, 
located at w = wL and w = 2 8  - wL.  The line separation is 216 - wLl, and the intensity 
of the line at 2 8  - w L  is IPI2 times the intensity of the line at wL.  

8. Dressed states 

The Liouvillian L,, as defined in (2.11), can alternatively be written as 

_"__ r..n = K1[Hd, nj (8.1) 

in terms of the dressed-atom Hamiltonian 

Hd= -ifi[A(P,-P,)+nd +n*d'}. (8.2) 

Eigenvalues of Hd are found to be 

Hdl*) = F f f i  0'l-t) (8.3) 

with 

Q'= sgn(A)(A2+ 1Q12)1'2. (8.4) 

When we introduce the phase I) and angle 0 by 

Q = ei' I) real 0 = tan-'(lQl/A) (8.5) 

then the dressed states I+) and I-) can be parametrized as 

The operator Ld has four eigenvectors in Liouville space and the eigenvalue equations 
read 

Ldl*)(*l = O  L,I*)(FI = Tn'l*)(Fl. (8.7) 

9. Spectrum of separated lines 

When the value of In1 is much larger than any of the relaxation constants A., A,, A ,  
and A2, then the coupling between eigenvectors of Ld with different eigenvalues can 
be neglected in time evolution and time regression. This occurs for either high irradiance 
( 1 ~ ~ 1  large, or rargc ucruiiirr~ Y. 1 UL au a~uui ILL C U ~ L J  ~ ~ L C C ,  L L ~  LCO~UI LV Y S ~ C U Y L L ~  

of three separate lines, which is the Mollow triplet (Mollow 1969). The fluorescence 
(F) line appears at w = wL-n' ,  and for a weak driving field this is approximately the 
atomic resonance wo.  The Rayleigh (R) line is positioned at o = w L ,  and the three- 
photon (T) line appears at w = w,+n' .  

,In1 I .._. , . . I  .___ .I -...- :-,. A E^- -- ,..,.... :.. ~ _...., "-"-~ ,Lip lnn,4. ,_" ."Prt ..._ 
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In the limit of separated lines, the steady-state density operator 6 is most con- 
veniently expressed with respect to dressed states. The solution of (3.1), with the 
left-hand side replaced by zero, is found to be 

(9.1) d = I+)iT+( +I + I -)K( - 1  
where the populations of the dressed states are given by 

in terms of 

u=A,g?+Agg:+2h,g; U = A,g: + A,g?+ 2A,gt. (9.3) 
The three optical parameters are defined as 

It then follows that 

U -  u = A A / l I ' > O  (9.5) 
which shows that the population of I-) is always larger than the population of I+). 

for the limit of separated lines. First we introduce the parameters 
The resonance fluorescence spectrum l ( w ) ,  as given by (6.31, can now be evaluated 

w = ( 4 A 1  -A2)gg (9.6) 

y,= A( 1 +2g:)+2A,g;+A2g? (9.8) 

~ 7 - y ~  = A2A/Cl '2  0. (9.9) 

yF= 4 1  +2gi)+2AIg;+A,g: (9.7) 

where yF and yT are related by 

Then the spectrum is found to be 

1 - 1  1 1 
+I,Re- + lRi Re - l(w)=lRcRe---- 

1 1  
?i Al-iA P A,+u+u-2w-iA P yF-i(A+il') 

1 1 1 1 
P yT-i(A-Q') ?i Al-i(A+2S) 

+ lR,c Re - +ITRe-  

1 1 
P A1+u+u-2w-i(A+2S) 

+ I,,; Re - 

(9.10) 
1 1 1 1 
P yF-i(A+26-n')  P yT-i(A+28+Cl') 

+ & R e -  +I,.Re- 

which is a sum of eight Lorentzians. The factors I,, defined below, are the strengths 
of the lines. 

The first line is the coherent part of the ordinary Rayleigh line. This line is located 
at o = oL, has a width (half-width at  half-maximum) equal to the laser linewidth, and 
a strength 

(U-V)z 
(U + U)( U + U - 2w). 

(9.11) 
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The second line is the incoherent part of the Rayleigh line, which is also positioned 
at w = w L ,  has a width h , + u + u - 2 w  a n d a  strength 

u ( u -  w)+ u ( u  - w )  
(U + U)( U +  U -2w) ' IRi 2gO 

The total strength of the R line is 

(9.12) 

(9.13) 

which is independent of any of the relaxation mechanisms and independent of the 
presence of the PC. The third and the fourth lines are the F and T lines, respectively. 
Their widths are y, and y,, and their strengths are given by 

IF=g2?i+ I,= g:i t_ .  (9.14) 

It follows from (9.9) that the width of the T line is always larger than the width of the 
F line. With (9.14) it can he shown that 

IF3 I, (9.15) 

so that the F line is stronger than the T line. The equal sign holds when IPI2 = 0, A, = 0. 
Then we also have y ,=y , ,  and the R, F, and T lines form a Mollow triplet which is 
symmetric around wL. The triplet is always symmetric for A = 0. Although the strengths 
and the widths of the lines in the Mollow triplet are affected by the PC, through the 
dependence on JPI2, the structure of the triplet is essentially the same as for an atom 
in empty space. 

Part of the emitted radiation in the Mollow triplet propagates towards the surface 
of the PC, where it is reflected as phase-conjugated radiation. A photon with frequency 
w is reflected as a photon with frequency w ' = 2 G - w  due to the four-wave mixing 
which is responsible for the reflection. The R, F and T lines are positioned at wL, 
w,-n'and o,+Cl', respectively. the phase-conjugateimageofthis triplet can therefore 
be expected to he again a triplet, hut with lines R', F' and T' at 2 6  - w L ,  2 6  - w,+n' 
and 20-oL-CV, respectively. This appears to he indeed the case, and this reflected 
triplet is given by the last four Lorentzians in (9.10). Due to the phase conjugation, 
the reflected sidebands F and T'lie on different sides of the central R'line, as compared 
with the positions of F and T with respect to R. For w L  = 6 ( 8  = O), the R', F' and T 
lines are at the same positions as the R, T and F lines, respectively. Furthermore, for 
the coherent and incoherent parts of the R line we find 

I,,,= IpI2kc = IP12IRi (9.16) 

as is anticipated. For the F' and T lines, however, we have 

I,.= lPI2g2A- I T  = IP12g:ii+ (9.17) 

which is not simply IP12 times 1, and I,, respectively. In analogy to (9.15) we obtain 

IF2 IT. (9.18) 

showing that also the F' line is stronger than the T' line. For A = 0 we have I,, = I,.. 
It is interesting to compare the total strength of the Mollow triplet with the total 

strength of the reflected triplet, in the case of unit reflectivity (IPI2= 1 ) .  We find for 
the difference 

(9.19) A 2 
( I F . +  I,,+ 17,) - (IF+ I ,+ IT) = - (g+  - 9-)  

u + u  
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which is non-negative and equal to the population difference tig - fie. Therefore, the 
reflected triplet is stronger than the incident triplet, even though [PI'= 1. The strengths 
are equal only if A = 0. 

Another speciai case of interest is 8 = A  = 0, which implies wL= oo = 6. Then the 
spectrum becomes 

H F Arnoldus and T F George 

+ ) (9.20) 
2 

A ,  + 2(u - w) - iA y , -  i (A+ 0') y , -  i(A- a') 
1 
87r 

I ( w )  = - (1 + [PIz) Re 

which is symmetric around wL. The sum of the intensities of the two sidebands is 
equal to the intensity of the central line at A = 0. 

10. Conclusions 

We have studied the resonance fluorescence spectrum of a two-state atom near the 
surface of a PC. Stochastic fluctuations in the laser phase have accounted for the finite 
laser linewidth. This phase has been taken to be the independent-increment process, 
which has the phase-diffusion process as its Gaussian limit. Equations (3.3) and (3.5) 
give the stochastically averaged population of the excited state and the atomic coher- 
ence, respectiveiy. Tine fieid correiation Function Cjt,, f2j has in generai four terms, 
but in the steady state two contributions vanish identically. This is due to the finite 
laser bandwidth, as shown in (4.16). In addition, C ( f , ,  f 2 ) ,  and thereby the fluorescence 
spectrum, turn out to be stationary in the long-time limit. Without taking into account 
laser fluctuations this would not be the case. 

The fluorescent intensity and its spectral distribution have then been evaluated. It 
appcarb inat 111 LIK ~ 1 1 ~  vi a miail label I I I I C W I U L ~  LIK spv~-nuiri contuns uaiia iunciiuns 
at wL and 26  - wL, superimposed on a continuous background. This could be expected, 
since a wave at frequency o is reflected as a wave at frequency 2 6  -0 by a four-wave 
mixing PC (Hellwarth 1977). In  the limit of separated lines the spectrum consists of 
six distinct lines. Three of these form the usual Mollow triplet, and the additional 
three lines are the reflections of this triplet at the surface of the PC. Phase conjugation 

the three-photon line, with respect to the central Rayleigh line. In addition, phase 
conjugation has the effect of redistributing the intensities in the sidebands, such that 
the strength of the fluorescence line is enhanced at the expense of the three-photon 
line, provided that the atom is excited off-resonance. 

---- ---.L..:-.L-,:.-:.-n. .-.,I1 -.-- 3: _>.L .L. ....A.:... >.I. .  r ..-.. :.-. 

ic  0-a- +- +ha n-n-l -f :-+a+,-ho-L-m a h o  --e:+:--o -f the &7 ..-_ -----,-a l i r a  "-A 
.I I . ,U.L ," ,A',"* L . l l  111*.,. "1 ..LL'L'L'ULL6.'L6 ,ALL. y""LL."L." Y L  LLLC .I"".I.,ICI.*I I.l,b O L l "  
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Appendix 1 

Consider a stochastic operator of the form 

5.(1) =exp(-in + ( t ) ) d t )  (Al . l )  
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where U(() is related to the atomic density operator according to (2.9). Taking the 
time derivative of (A l . l )  yields 

d 
(A1.2) 

where we have used (2.10). Now we take C$( 1) to be the independent increment process, 
for which the solution of (A.12) for the average is (Amoldus and Nienhuis 1983) 

(A1.3) 

Due to the fact that the process 6 is delta correlated, the time regression for t >  to 
factors from the initial condition at 1 = 1,. The Liouville operator W. is found to be 

W"=~-~d4w(C$){ l - exp[ - iO(L,+n) l }  (A1.4) 

in terms of the jump-rate probability distribution w(C$). The result of (A1.3) and (A1.4) 
is independent of the form of L,. When we take L, as defined in (2.8), we obtain 
explicitly 

(A1.5) 

i;cn(d = ( . L d + ~ ( t ) ( L ~ + n ) - i r ) J . ( t )  

(CAtlI = exp[-i(.Ld - i  w n - i W i  - tn)I(Cn(to)l .  

m 

W.lI = A.{P,IIP, + P,nP,}+A._,P,nP,+A.+,P,nP, 

for arbitrary Il. The positive parameters A. are defined as 
m 

A, = I m d ~ ~ ( 4 ) ( 1 - c o s ( n ~ ) )  (A1.6) 

where we have assumed w ( - 4 )  = w( 4). Obviously, A-, = A .  and A. = 0. The parameters 
which determine the fluorescence spectrum are A,  and A 2 ,  which are restricted by 

0 s A i s  4Ai (A!.?) 

as follows from (A I  ,6), In the Gaussian limit (phase-diffusion model) we have A 2  = 4Al. 

(A2.2) 

where the initial value ( [ . ( t o ) )  is arbitrary. The operator s+iL,+ W n + r  can be 
represented by a 4 x 4 matrix, and its inverse is easily calculated. Then we find the 
longtime solution from the identity 

lim (l.(t))=Iim s { i ( s ) )  (A2.3) 
I-m ,-o 
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Here, 6 is the steady-state density operator from section 3. It is remarkable that the 
long-time solution is only non-zero for n = 0. 

H F Amoldus and T F George 

References 

Aganval G S 1982 Opt  Commun. 42 205 
Amoidus H F and George i F i 9 9 i  P h p .  Rev. A 43 3 6 f 5  
Amoldvs H F and Nienhuis G 1983 J. Phys. 8: AI. Mol, Phys. 16 2325 
Avan P and Cohen-Tannoudji C J 1977 J. Phys. B: AI. Mol. Phys. 10 155 
Bochove E J 1987 Phys. Rev. Lerr. 59 2547 
Burnett K, Cooper J, Kleiber P D and Ben-Reuven A 1982 Phys. Rev. A 25 1345 
Carmichael H I  and Walls D F 1976 J. Phys. B: At. Mol. Phys. 9 1199 
George A T  1980 Phys. Rev. A 21 2034 
George A T  and Dixit S N 1981 Phys. Rev. A 23 2580 
Hellwarlh R W 1977 J. Opr. Soc. Am. 67 I 
Hendriks B H W a n d  Nienhuis G 1989a Phys. Rev. A 40 1892 
- 1989b J. Mod. Opt. 36 1285 
Huang X Y and George T F 1984 1. Phyx Chem. 88 4801 
Huang X Y, Lin J and George 'I' F 1984 1. Chem. Phys. 80 893 
Kimble H 1 and Mandel L 1976 Phys. Rev. A 13 2123 
- 1977 Phys. Reo. A 15 689 
Knight P L, Molander W A and Stroud C R Jr 1978 Phys. Rev. A 17 1547 
Li X and Gong C 1987 Phyr. Reu A 35 1595 
Lin J, Huang X Y and George T F 1983 Solid Slare Commun. 47 63 
Mollow B R 1969 Phys. Rev. 188 1969 
Nienhuis G 1982 1. Phys B: AI. Mol. Phys. 15 535 
van Kampen N G 1981 Stochastic Processer in Physics and Chemisrry (Amsterdam: Nanh-Holland) 
Wu F Y, Grove R E  and Ezekiel S 1975 Phys. Reo. Lett. 35 1426 
Zoller P I978 .I. PhyT. B: AI. Mol. Phys. 11 805 
Zoller P and Ehlotzky F 1977 1. Phys. B: AI. Mol. Phys. IO 3023 


