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The structure of spontaneous decay of atoms in the vicinity of a surface is shown to be
determined by spatial symmetries. The spontaneous-decay operator for a degenerate two-level
atom is derived, and with symmetry considerations the number of free parameters is reduced to
two. Only the dimensionless and normalized inverse lifetimes b, and b, for a parallel and
perpendicular dipole moment with respect to the surface, respectively, enter the expression for the
relaxation operator for any atom near any surface. These two parameters incorporate the
atom-—surface distance dependence of all Einstein coefficients for spontaneous decay, and all
optical properties of the substrate material. It is shown that the specific features of spontaneous
decay are mainly geometrical, and a consequence of symmetries of the vacuum radiation field,
irrespective of the presence of the atom. With an example it is shown how the parameters b and
b, can be calculated in a particular case.

1. Introduction

An excited atom will decay to lower states, until it reaches its ground state.
This process of spontaneous decay is accompanied by the emission of fluo-
rescent photons and the loss of internal energy of the atom equals the energy
gain of the radiation field. Therefore, the processes of spontaneous decay and
spontaneous emission of radiation are related through energy conservation.
We shall consider a dipole-allowed transition between a degenerate excited
level e and a ground level g (also possibly degenerate), and indicate the atomic
wave functions of the multiplets by | jm.) and | j,m,), respectively. The
upper state has 2 j, + 1 magnetic substates, which are coupled by the atomic
dipole moment operator p to the 2 j, + 1 ground states. If we denote by %,
the energy separation between the levels, then the expression for the Einstein

0039-6028 /88 /$03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)



618 H.F. Arnoldus, T.F. George / Spontaneous decay of atoms near any surface

coefficient for spontaneous decay from e to g reads

3 ’ - 2
PR 3I<je||.ul|1g>l ’ (1.1)
3me he 2jet+1

in terms of the reduced matrix element of the dipole operator. An atom in
state | j.m.) shall decay exponentially, with a lifetime 1/A4;, to the various
ground states at a rate A, times the population of | j.m.), and after comple-
tion of the decay the emitted radiation energy equals Aw,. An important
feature of this process is that the relaxation constant for the decay of | j.m.)
is independent of the magnetic quantum number m,. That this must be so is a
consequence of symmetry, as can be understood as follows. If we rotate an
atomic wave function | j.m_.) over the Euler angles «, 8, v, then the trans-
formed wave function can be expressed as [1,2]

Pr(a. B.7) | jomey = X | im) DY, (o, B, 7)), (12)

where Pi(a, B, v) indicates the rotation operator, and D' is the rotation
matrix. Spontaneous decay of | j.m,), or spontaneous emission of photons, is
brought about by a coupling of the atomic dipole moment to the electromag-
netic field. But since the electromagnetic vacuum (empty space) is isotropic, a
rotated state Py(a, B, v)| j.m.y must decay in the same way as the original
state | j.m.), for all rotation angles a, B, y. From (1.2) it follows that
Pgr(a, B, ¥)| j.m.) is a superposition of all states | j.m_), and therefore this
can only hold if the relaxation constant for | j.m.) is independent of m..
From a different point of view, we can say that the quantum number m, refers
to a particular choice of the quantization z-axis. Rotating an atomic state
| jom.) is then equivalent to a change of quantization axis. In isotropic space
the choice of the z-axis has no significance, and consequently the decay rate of
| Jom.) must be independent of this choice, and therefore independent of m..

Let us now consider an atom which is positioned near a surface. We choose
the z-axis (arbitrarily) as the normal to the surface. The region z <0 is filled
with an optically-reflecting material, like a metal, dielectric, nonlinear crystal
etc., and the atom is situated in the vacuum z > 0, with a normal distance 4 to
the surface z = 0. Then the presence of the substrate destroys the isotropy of
the environment of the atom. For instance, an emitted fluorescent photon in
the —z direction can reflect at the surface and travel back into the region
z>0, but an emitted photon in the +:z direction will never hit the surface.
Furthermore, reflection coefficients for media depend in general on the angle
of incidence of the radiation, or from the perspective of the atom, these
coefficients depend on the emission angle. The reflected radiation will be
experienced by the atom as an external field, and a stimulated transition can
cause the previously emitted photon to be absorbed again. This mechanism
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effectively enhances the lifetime of the excited state, and thereby it changes the
Einstein coefficient for spontaneous decay. Due to the loss of spherical
symmetry, however, the lifetime of a particular state | j.m,.) of the multiplet is
not necessarily independent of m_ anymore.

In this paper we present a general theory for atomic spontaneous decay
near a surface, without regard to any of the properties of the medium. We
shall only use the remaining symmetries of the system. In this fashion we can
disentangle the pure geometrical features of spontaneous decay from the
effects which result from particular optical properties of the substrate. We
shall only assume that the medium is isotropic, which pertains to most
practical situations. The first symmetry which remains is the invariance of the
system for rotations around the z-axis. For a rotation over an angle a, eq. (1.2)
reduces to

Pg(a,0,0)|j.m.) =exp(—imea)|jom.), (1.3)

e.g., the state | jm.) transforms into itself (apart from a phase factor).
Therefore, this symmetry does not give any information about the m -depen-
dence of a lifetime. A second symmetry is the invariance for reflections in a
plane through the z-axis. If we take this plane (arbitrarily) as the xz-plane,
then a reflection in this plane is equivalent to the product operation of a
rotation over 7 around the y-axis, followed by a parity operation (point
reflection in the origin). Then we have

Rx:ljeme>=PXPR(0’ T, 0) Ijeme>’ (14)
with R the reflection operator and P the parity operator. With
D (0, m,0) = (=1)* "8, i, (1.5)

we find from eq. (1.2)
sz|jeme>= ilje—me>’ (16)

where the sign depends on the parity of | j, — m.). Consequently, the states
| jom,) and | j, —m.) experience the same electromagnetic environment, and
hence their lifetimes are identical. If we denote the Einstein coefficient of the
state | jm,.) by 4,, then we must have

A=Ay (1.7)

as a result of the reflection symmetry.

Apart from these symmetries, we have a causality requirement which
imposes restrictions on the values of A4,, . If the atom is far away from the
surface, every Einstein coefficient 4,, must reduce to its free-space value A;.
Therefore we have the condition

A, —A;, for h—oco. (1.8)
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To see this, we recall that spontaneous decay is intimately related to the
emission of photons. If the distance between the atom and the surface is larger
than the lifetime 1,/4,, of the state | j.m.), times the speed of light, then there
can be no interference between the emission of photons by the atom and
reflected photons by the surface (which were emitted earlier), because the
travel time of a photon between atom and surface exceeds the emission time.
Therefore, for distances & larger than roughly ¢/4,,, the atom behaves as an
atom in empty space. With A =2mc/w, the wavelength of the radiation, we
find that for

h> Aw/A;, (1.9)

the surface effects should disappear. For low-lying atomic transitions the ratio
wo/A; is of the order of 10°, and (1.9) overestimates the value of 4 by many
orders of magnitude, for most cases. For dielectrics and metals we know [3-5]
that 4,, = A if A 2 A, due to strong interferences of the various incident and
reflected waves. Only for very special cases, like four-wave mixing crystals, or
phase conjugators [6,7] the causality requirement (1.9) imposes an actual upper
limit for A, at which surface effects should disappear.

2. Relaxation

Spontaneous decay is a relaxation phenomenon, which is brought about by
the coupling of the atomic dipole p to the electromagnetic field. The analysis
of spontaneous decay starts with the full equation of motion for the density
operator p(z) of atom plus radiation

i<0(1) = (Ly+ Lo+ Ly )p (1), (2.1)

where the Liouvillians L,, L, and L, represent the atom, the radiation and
the interaction, respectively. They are related to the corresponding Hamiltoni-
ans according to

Lo=h"'[H, o], i=a,r,ar, (2.2)

which defines their action on an arbitrary Hilbert space operator o. The
Liouvillian L, includes the modifications of the radiation field due to the
presence of the medium. In other words, H, is the Hamiltonian for the empty
half-space z > 0 (the electromagnetic vacuum) and the material in z <0. The
quantity of interest for spontaneous decay is the state of the atom, irrespective
of the state of the radiation field. This reduced atomic density operator p,(7) is
defined by

pa(2) =Tr, p(2), (2.3)
where the trace runs over all states of the radiation field.
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It is a standard procedure in reservoir theory to derive an equation of
motion for p,(¢). In the compact Liouville notation it reads [8,9]

i<0,(1) = (L, iD)p, (1), (24)

with L, the free evolution of the atom (no coupling to the radiation), and r
the spontaneous-decay operator. Explicitly,

T'o,=Tr, Lar/ drexp[—i(L, + L) 7] L, exp(iL,7)[0,p;], (2.5)
0

for an arbitrary atomic operator o,. Here, p, is the thermal-equilibrium
density operator of the radiation field, which will be assumed to be the
vacuum state |0)(0 |, defined as the lowest-energy state. Notice that [0){0] is
not necessarily the same as for a radiation field in empty space (zero-photon
Fock state), because the medium in z < 0 will affect the state of the radiation
in z>0.

3. Dipole interaction

Expression (2.5) for the relaxation operator I’ holds quite generally. An
explicit evaluation (for instance its matrix elements) requires that we prescribe
the interaction Hamiltonian H,,. If we denote by E(r) the electric component
of the radiation field (although further unspecified), then the coupling Ham-
iltonian in the dipole approximation assumes the form

H, = —p-E(h), (3.1)

with h = he, the position of the atom.
The eigenstates of the atomic Hamiltonian H, (internal structure) are the

angular momentum states | joM.), M= —Jes---s Je and | jym,), my,=
—Jgs-+-» Jo- The eigenvalue equations are

H,| jeme) = hee| jeme), (32)
H,| jymg) = oy | jymy), (3.3)

and the frequency separation between the two doublets is w, — w, = wg > 0.In
terms of the projectors onto the e and g levels

Po= Yl jeme)(emels  Py= Xl Jymg){Jgmsgl; (34)
m, my

the Hamiltonian can be represented by

H,=hw P, + hw,P,. (3.5)
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Then the evaluation of the exponentials exp(+iL,7) in (2.5) proceeds in two
steps. From L,o=h"'[H,, o] it follows that

exp(+iL,7)o=exp(+iH,7/h)o exp(FiH,r/h), (3.6)

and with P> = P,, P} = P, we find

exp(+iH,7/h) = exp(+iwr)P, + exp(£iw,r)P,. (3.7)

Combining (3.6) and (3.7) gives

exp(+iL,m)o= ), exp[ii(wa—wB)T]PaoPﬁ. (3.8)
fees

An important property of an atomic dipole operator p is that it cannot have
matrix elements between states within a single multiplet. In terms of projectors
we can then write

P.uP,=0, P,uP,=0, (3.9)

which is essentially Laporte’s rule (p. 260 of ref. [1]). On the other hand, the
closure relation for the atomic wave functions is

E+E =1, (3.10)
so that p= (P, + P,)u(P, + P,), and with eq. (3.9) this reduces to
p=p"+p), (3.11)
Here we introduced the lowering (+) and raising (—) part of p as

W =PaP,, pI=PuP, (3.12)

and from p' = p we find

(ast, (3.13)

Now we substitute expression (3.8) twice in eq. (2.5), and we expand the
dipole moment p and the field at the position of the atom, E(k), in Cartesian
components. After some rearrangements we obtain the representation

Foa= z [p‘i’ Qiaa _UaQ;'r]’ (314)

i=x,y,z

()_

in terms of the Hilbert space operators

0, = Zf dr f, (7-) exp(—lL fr)uj] i=x, y, z. (3.15)

The nine scalar functions f;;(7) (not operators) are the field correlation
functions

f,,(7)=h">Tr, E;(h) exp(—iL)(E;(h)p,), (3.16)
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which depend on properties of the radiation field only (i.e. E(h), L, and p,).
With

E(h, 7)=exp(iL7)E(h), (3.17)
the field in the interaction picture, and with p,= |0)(0|, we can write eq.
(3.16) as

fij(1)=h"*0| E,(h, 7)E;(h, 0) |0), (3.18)

which clearly exhibits that f; () is the correlation function of the electric field
at the space point h.

Next, we insert expression (3.8) into the definition (3.15) of Q;, and we use
(3.9). The r-integral effectively amounts to a Fourier—Laplace transform of
f;;(7) according to

fi(w)= [ drer fy(r). (3.19)
0
Working out expression (3.15) then gives
Qi=2ﬁj(w0)ng'jPe’ (320)
T

where we have made the approximation
f;(=w) =0. (3.21)

That this is a good as exact for the electromagnetic vacuum follows from the
representation (3.16) of f,;(7). The field E,(h) consists of a creation and an
annihilation part, but since it works on p.= |0){0|, only the creation part
contributes. Therefore, exp(—iL,7)(E;(h)|0){0|) contains mainly positive
frequencies. It has terms like exp(—iwT) with w > 0 the frequency of a photon.
The integrand of (3.19) then has the factor exp[—i(w + w,)] for ﬁj(—wo),
and exp[ —i(w — wy) 7] for f;;(w, ). Oscillations with twice the optical frequency,
w + wy, will cause the integral of exp[—i(w + wy)7]f;;(7) over 7 to vanish
almost identically, as compared to the same integral with exp[ —i(w — wy)T].
This justifies approximation (3.21) for fields in the vacuum state (zero temper-
ature).

We then insert (3.20) into (3.14), work out the commutator, use again (3.9)
and (3.10), and drop nonsecular terms [10], which finally yields for I'

Foa = Z [ﬁj(wO)Pe”in"LjPeoa +f:"7(w0)oaPep‘ng:“LiPe
ij

_(ﬁ/(wo) +f;?=(w0))Pgnu‘jPeoaPe“in]’ (322)

We remark that the only atomic property that comes in the expression for I" is
the dipole operator . On the other hand, the functions f;;(w,) embody all
necessary details of the radiation field, the wave function |0) of the radiation
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field, the properties of the substrate (through the modification of E(h)), and
the dependence of the spontaneous-emission operator on the atom-surface
distance h (through E(h)). So far, we have only used the fact that the
radiation field is in its lowest energy state, and therefore expression (3.22) is a
very general representation for I" of an atom in an empty part of space, but in
the vicinity of active boundaries.

4. Symmetries

Although expression (3.22) for the spontaneous-emission operator of an
atom is a great simplification as compared to the general expression (2.5) for a
relaxation operator, it still involves nine unknown field correlation functions
f (). In this section we shall show that by imposing the symmetry condi-
tions, as mentioned in the Introduction, the number of unknown parameters
reduces from nine to two. For an atom in empty space it follows from the
isotropy of space that all levels | j.m_) must have the same Einstein coefficient
A, for spontaneous decay, as pointed out in the Introduction. The argument
relies on the rotational symmetry only, and is independent of the mechanism
of spontaneous emission (e.g., the specific form of H, ). For the remaining
symmetry of an atom near a surface, however, we only found relation (1.7)
which reduces the number of unknown Einstein coefficients 4, , 2. + 1, to
Jj. + 1 (J, integer) or j.+ % (/. half-integer). Since we have already an explicit
expression for I, eq. (3.22), we can apply the symmetry transformation
directly on the result. In this fashion we can take advantage of the knowledge
of the details of the interaction (—p* E(h)), rather than working with general
symmetry arguments only. Also the fact that (3.22) separates the field proper-
ties f; (wp), from the atomic contribution, p;, is particularly convenient. In the
Introduction we discussed a rotation of the atom in a fixed environment (the
electromagnetic vacuum), which involves complicated rotation matrices (eq.
(1.2)). Since we know the explicit occurrence of the radiation field in the
expression for I', we can now equally well rotate the vacuum and keep the
atom fixed. Then symmetry requires that I" for a rotated vacuum around the
z-axis is identical to the original I', and the same procedure applies for a
reflected vacuum in the xz-plane.

Let us first consider a rotation around the z-axis over an angle a. Then the
unit vectors transform according to

; (4.1)

e/=cosae +sinae, e =—sinae +cosae, e =e
and the field correlations with respect to the rotated basis are
f(r)=h"X0|(E(h, 7)-e)(E(h,0)-e])|0). (4.2)
Then symmetry invariance requires

fii(7) =f;(7), (4.3)
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for i=x, y, z, j=x, y, z and for every angle a, which yields a set of nine
equations. For instance, with i = x, j=2z we find

frz(7) =cos a f.(7) +sin a £,.(7). (4.4)

Since this must hold for every a, we can take a =, which gives f,.(7)=0.
Then eq. (4.4) reduces to sin a f,.(7) =0, and if we then take a= 7/2 we
obtain f,,(7)=0. Working out the nine equations consequently gives the
relations

Fel 7Y =l r) =fulr)y=f (s )=0; (4.5)
feelm) =5 () (4.6)
fxy(T) = _fyx(T)’ (47)

and there is no restriction on f,.(7).

The second symmetry is the invariance of the vacuum for a reflection in any
plane through the z-axis. If we take a reflection in the xz-plane, then the
unit-vectors transform as

el=e., e.=—e, e .=e (4.8)

z9

and the symmetry invariance, eq. (4.3), gives immediately
fiy(1) =f(7) =0. (4.9)

Therefore, only the three field correlation functions f, (7), f,,(7) and f..(7)
can be nonzero, and the relation f, (7)=f, (7) reduces the number of
independent quantities to two. For an isotropic vacuum we would find
additionally that £, (r) equals f..(7), but near a surface there is no universal
relation between f..(7) and f..(7). With f (r)=0 for i#j the double
summation in eq. (3.22) reduces to a single summation, which is a great
simplification.

5. Evaluation of I

In eq. (3.22) the p, are operators in atomic Hilbert space, and for a further
evaluation of I" we need the matrix elements of p, with respect to the angular
momentum states. In p,, the i refers to a Cartesian component x, y or z, but
the matrix elements of p are more conveniently expressed in spherical compo-
nents with respect to the z-axis. In terms of the spherical unit vectors

e,.=F(e tie,)/V2, ey=e,, (5.1)
we can expand p as
p=Y el (52)
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with 7= —1, 0, 1. From p' = p we find

ph={—1)"p_- (5.3)
Then the Wigner—Eckart theorem [11] states that the matrix elements of p,
can be written as

Ceme e | Jgmg) = (Jemgl | jeme)Gell wll Jg) /2 + 1, (5.4)
and ( jym,|p. | jem.) follows after complex conjugation, in combination with
(5.3).

Now we insert the expansions (3.4) for the projectors P, and P, into (3.22),
use the properties of f, (@) as found~ in the previous section, and omit the
small imaginary parts of f,,(w,) and f.,(w,) (the Lamb shift), which gives for
r

I'o,=3Y A,{d.dfo,+0,d,d —2d]od.}. (5.5)

Here we introduced the “dipole-allowed raising operator”

d,= Y (Jgmglr|jeme) | jeme)(jgmgl, 7= —1,0,1, (5.6)
memg

which has the property that it transforms a state | j,m,) into | j.m.), but only
if the Clebsch-Gordan coefficient (j,m/l7| j.m.) is nonzero, e.g., if the
transition is dipole allowed. The coefficients 4, are defined by

Ay =2f (@) [Gellmll je) 17/\2 )+ 1, (5.7)
Ag=2f. (o) |G llnll i) 1P/42)+ 1. (5.8)

Egs. (5.5)—(5.8) constitute the central result of this paper. Expression (5.5) is
the most general form of the spontaneous-decay operator for an atom near a
surface. It is important to realize that the entire operator in curly brackets is
parameter free, and therefore its structure is completely determined by the
symmetry requirements. Furthermore, the two independent vacuum-field cor-
relation functions and the matrix elements of the dipole operator only enter
the expression for I' through the two parameters A4 , ; and A4,. These parame-
ters are proportional to f, (w,) and f,.(w,), respectively, and are independent
of the level structure (degeneracies) of the multiplets.

6. Equation of motion

In this section we consider the equation of motion for an atom near a
surface, and the significance of its solution will be discussed in the next
section. The solution of eq. (2.4) is

pa (1) = exp[ —i(L, = iI)] p,(0), (6.1)
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for >0 and a given initial state p,(0). Atomic Liouville space has (2, +1 +
2+ 1)? basis vectors | j,m ) Jgmp|, and therefore a matrix representation of
L,—iI on this basis has 16( j, +j, + 1)* matrix elements, which is already a
large number for very small angular momentum quantum numbers j, and j,.
The minimum number for a dipole-allowed transition is 256 (j. =1, j, =0, or
L=0, jy=1,0r j=j= 1), and it might seem that an analytical evaluation of
the exponential in eq. (6.1) is intractable. This is not the case, as we shall now
show.

If we insert the explicit form of 4. from (5.6), and its Hermitean conjugate,
into (5.5), then I'o, assumes the form

To,=3 Y Ay (1 jeme){Jeme| 0a+ 0,1 Jeme){ jem.|)

mE
- X A(ggmdr|jemc)(JgmelT]| jem'.)
memgTmomg
X | jgmg )y Jgmy | (Jeme | 0, | Jeme), (6.2)
where we introduced the abbreviation
. . 2
A, = ZAT(jgmgl'rUeme) . (6.3)
m,T

g

Then (6.2) is substituted into (2.4), and we take all possible matrix elements of
the equation. We obtain

d . . . .y
a(.’emelpa(t) '.]eme> = _%(Am=+Am;)<jeme|pa(t)|]eme>’ (64)

L mgloa(0) 1 igmy)

= Z, A-r(jgmngIjeme)(jgm;]-'rljemé)<jeme|pa(t) Ijem¢/3>’ (65)
d .. . 1 . : .
35 Ceme 0a(1) [ Jgmg) = = (34, + 1600 ) Ceme | 0a(2) | Jgmg), (6.6)
d . . . . .
E<]gmg I pa(t) Ijeme> = _(%Ame - 1w0)<jgmg ' pa(t) |Jeme>’ (67)

which constitutes a set of 4( j, +j, + 1)? equations. The solution is
<jeme | pa(t) I jem;> = exp[ - %(14me + Am;)t] <jeme | pa(o) | jeme>’ (68)

{Jmgl (1) | Jgmy)
2A
= (Jgmg|pa(0) Ljgm) + ¥ 2= {1—exp[ = 3(4,, + 4,)1]}

X (jgmng I jeme)(]gmél'r I jem;)<jeme I pa(o) | jemé> ’ (69)
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<jeme | pa(t) I .jgmg> = exp[ - (%f‘lmE + in)z] <jeme I pa(o) | jgmg>’ (610)
Cgmg |0 (1) Loy = exp| = (34, = 160 )] Ggmg | 2 (0) | o), (6.11)

for any initial state p,(0). In the limit 7 — oo all matrix elements approach

zero, except  jym, | pa(00) | Jym g> which reflects the fact that all population is

in the ground state. Furthermore, we notice that this long-time solution is not

unique, due to the term ( j,m,|p,(0) | j;m g) on the right-hand side of (6.9).

The solution for ¢ — oo depends on the preparation of the system at z=0.
From (3.14) we readily derive

Tr,(I0,) =0, (Io,)"=Tof, (6.12)

for every o,. The first identity guarantees the conservation of trace in the time
evolution of p,(z), and the second relation implies that a Hermitean initial
density operator p,(0) remains Hermitean in its time evolution. Both proper-
ties can easily be verified for the solution (6.8)—(6.11).

7. Einstein coefficients

In the previous section we introduced the parameters A4, , which are the
m -dependent Einstein coefficients for spontaneous decay of the level | j.m.)
to any ground state. This interpretation follows immediately from (6.8), which

becomes for m, = m_.

(eme | pa(2) | jeme) = exp(— A, 1) Geme | pa(0) | Jeme)- (7.1)

The population of m, decays with a lifetime 1/4,, , and from (6.5) we can
determine to which ground levels the population decays We find for m, = m, g

a<jgmg | pa(t) ' jgmg> = Z A'r(jgmng I jcme) <jeme l pa(t) I jeme>’ (72)
showing that | je .y loses its population to | jym,) at a rate
A ( ng 17| j.m,.)*. Summed over all possible (three at most) values of m,,
this gives 4,, from eq. (6.3). (The Clebsch—Gordan coefficient ( jym 17| jom.)
is only nonzero for mg+ 7=m,, so that the double sums in (6.3) and (7.2)
effectively reduce to single sums.) The splitting of 4,, in contributions from
different transitions is called branching, which is illustrated in fig. 1.

From (5.2) and (5.4) we see that a factor (j,m,l7| j.m.) comes from the
component p_e* of the dipole operator. Since the e*, lie in the xy-plane and
el is perpendicular to that plane, we can identify

A =4, A=A, (7.3)

where A4, (A4 ) is brought about by the parallel (perpendicular) component of
p. For atoms in empty space we have fu(w) = =f..(w,), and therefore A4=4,
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ligmg>

) . 2 ) )
A”(qugllheme) A“(jgmgl-lljem

N

WV
Al(jgmglOHeme)z

i mo=m-1> i m = =
I’gmg m - "gmq me> ||gmgm+l>

Fig. 1. An excited atomic state | j,m,) decays to the ground state, and the lifetime for this process
is 1/A4,, . The dipole selection rule m, =m.—1, m. or m.+1 allows in general three pathways
for the transition to the ground level, as lndlcated in this flgure The three branches contribute
differently to A4,, . Transitions to | jym. + 1) have a rate constant 4 (jgmy1 F1| jom m,)?, whereas
lhe vertical transition has an inverse lifetime equal to A4, (jgmy10] j.m, )2. Their sum equals
A,, . If one or two of the ground levels is not present, then the corresponding Clebsch—Gordan
coefficient is zero. For instance, in a j, =1, j, =0 system, the only ground level is [00).

(see (5.7), (5.8)), and they both equal A, from (1.1). With the sum rule for
Clebsch—Gordan coefficients

& . 2
Y (gmelr|jem.) =1, (7.4)

mg'r

we then find from (6.3) that 4,, = A, for every m,.. Conversely, the m-depen-
dence of A4,, for atoms near a surface comes from the possibility that fo(wo)
is not necessarﬂy equal to f,z(wo) e.g., from the lack of spherical symmetry.

With the help of (7.4) we can also perform the summation in (6.3), which
gives

A, =A+ (jyme10| jom,)' (A, —4,). (7.5)

This shows again that A4, is independent of m, whenever 4, equals 4.
From the properties of Clebsch—-Gordan coefficients we can easily prove that
(Jgm.10] J.m.)* depends only on m, via m?, which implies

A=Ay (7.6)

This is the symmetry relation which follows from reflection invariance, as
pointed out in the Introduction. Then we recall the relation

Y (Ggmglrljeme)’ =3(2j.+1). (7.7)

momg
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Summing eq. (6.3) over m, then gives

2je+1§Amc=3ZA 14, +34,. (7.8)

Since there are 2 j, + 1 values m, and three values 7, (7.8) expresses that the
average of A4, equals the average of A4,. Furthermore, we like to emphasize
that the me-dependence of 4, is mamly geometrical and independent of the
details of the radiation field in the vacuum. This follows from (6.3), which has
only the 4, and A, as parameters. The m.dependence comes from a
Clebsch—Gordan coefficient and is therefore model independent.

Finally, we recall the causality condition which states that for a large
atom-surface separation the 4,, must reduce to their free-space value 4;. If
we introduce the parameters

b,=A4,/A;, 7= -1,0,1, (7.9)
and similarly b, and b, , then (6.3) can be written as

. . 2
A, =A; Y b,(jymglr| jom.)". (7.10)

-3
The two dimensionless parameters b, and b, determine completely the
spontaneous-decay operator. They depend on the details of the radiation field,
incorporate the h-dependence of I', and contain all necessary information
about the substrate, like its dielectric constant or reflectivity. Everything else is
determined by symmetry. By definition, the b, obey
lim b, =1. (7.11)

h— o0

8. Determination of b, and b,

So far we have only applied symmetry considerations, and it appeared that
the spontaneous-decay process is completely determined by the two dimen-
sionless parameters b, and b, . Evaluation of these quantities requires ad-
ditional knowledge about the optical properties of the medium, or about the
electromagnetic vacuum field. In this section we illustrate with simple exam-
ples how b and b, can be computed in specific situations.

8.1. Direct method

From (7.9) and the definition of A_we find the explicit, defining relations

6mey hc?
bH_ : \\'(wO) (8’1)

0

6we0hc

by =—5—Tlu{w), (8.2)
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in terms of the field correlation functions from (3.8). For the calculation of
fi,(r) or its Fourier-Laplace transform we need to know the quantized
radiation field E(r) in r=h, the Hamiltonian H, of the field, and the wave
function |0) of the vacuum. It will be obvious that in most practical cases this
information is not available. For the trivial case where the medium is absent,
we have

Z S Gnks, exp(ik+r) +h.c., (8.3)

with V' the quantization volume, a,, the annihilation operator for photons in
the mode ks, and €, a unit polarization vector. The Hamiltonian is

I{r= Zhwkazsaks’ (84)
ks

with w, = ck, and |0) is the zero-photon Fock state. Standard calculations [12]
then give

8 3 L —iwT
f,j('T) m[ dw w e 3 (85)

and we find indeed f, . (7)=f, (7)=/f.(7), and f;(7)=0 for i+#j. The
Fourier—Laplace transform at w is
3

f:_/(wO) 8”6 h ’ (86)

where we have dropped the imaginary part. Then egs. (8.1) and (8.2) give
by=b, =1, (8.7)

as it should for an atom in empty space. For more interesting cases this direct
method is probably intractable, because it requires the full quantized electro-
magnetic field.

8.2. Indirect methods

If we would be able to calculate a quantity which depends on b or b, in
an independent way (thus without reference to field correlation functions),
then we could possibly extract the value of b, or b, from this additional
information. Let us consider the expression for the Einstein coefficient A4,
from (7.10), which holds for every level configuration. For the situation of a
I = 0, j.=1 transition, the relevant Clebsch—Gordan coefficients are

(0017|1m,) =38, (8.8)

and we see that 4, _ ., =A4¢b and 4, _o=4;b, . If we could evaluate the
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Einstein coefficients for the levels |[11) and |10) by a different method, then
this would give directly b and b, . In turn this would determine 4,, for every
other level configuration via eq. (7.10).

As mentioned in the Introduction, spontaneous decay is accompanied by
the emission of fluorescent photons, and in such way that energy is conserved.
From eq. (6.4) with m_ = m, we know that the state | j.m.) loses population
at a rate equal to 4, times the population. A transition from | Jem.) to any
of the ground states corresponds to the emission of a photon with energy Aw,,
and therefore the energy gain of the radiation field per unit of time and at
time ¢ equals

dw . .
ar = heodn Jem.| p.(2) | Jeme), (8.9)

provided that only the state | j.m.) is populated. If we prepare the atom at
time zero in the excited state | j.m.), then we obtain from (7.1)

‘L—I:/ = hwyA,, exp(—4,,1), (8.10)

and the emitted energy after completion of the decay is

© AW
W—fo di— - =he, (8.11)

as it should be. From (8.10) we also find

aw
dr

=hwyA,, . (8.12)
t=0
This implies that we know 4, (and thereby b, and b ), as soon as we obtain
an expression for the emission rate at =0, or, for an atom with density
operator | j.m.){j.m.| In the next section we illustrate this method for a
particular example.

9. Perfect conductor

The emitted atomic fluorescence is dipole radiation, and for an atom in
empty space the electric and magnetic fields are well known [13]. Now let us
suppose that the plane z=0 is a mirror, e.g., the substrate is a perfect
conductor like silver. Then the reflected field can be found from symmetry
considerations (method of images), and the total field in the region z > 0 is the
sum of the free-dipole field and the reflected field. Inside the perfect conduc-
tor the field vanishes identically. In order to find the radiated power we look
at the field far away from the dipole. If we adopt a spherical coordinate
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system (r, 6, ¢) with respect to the z-axis, then the positive frequency parts of
the electric and magnetic fields for large r are [14]
2

EM(r, t)= =4 ~(m™(1—=r/c,cos §) — (F+m P (t—r/c, cos 0))7),

4meyre
(9.1)
P'ow(%
B‘“(r, t)=mi'><m(+)(t—r/c, cos 0), (92)

with #= r/r as the direction of propagation. The vector operator m‘*’(z, cos 6)
is given by

m (1, cos 0) =2 (1) cos(wehe ™ cos ) — 2ip{P(t) sin(wyhe ™" cos 6),
(9.3)

where the #-dependence signifies the Heisenberg picture of an operator, and
p ) and p{" are the perpendicular and parallel components of the lowering
part of the dipole operator (eq. (3.12)) with respect to the xy-plane. The
operator m‘*)(t, cos 8) represents the combination of an atomic dipole p in
r=h and its mirror image in r= —h, including retardation. The argument
wohc ™! cos @ equals half the phase shift between the radiation emitted directly
in the direction # by p and the radiation that is first reflected by the surface
and subsequently emitted in the F-direction.

Now it is an easy matter to compute the radiated power. The emitted
energy per unit of time per unit solid angle £ in the direction # should be
defined as [15]

W _r—z ET(r, t)XB(r, t) =B (r, t) XET(r, 1)) F (9.4)
YR Ho< r, r, r, r, 1)y F, ]
where a minus (—) field is the Hermitean conjugate of the corresponding plus
(+) field. With (9.1) and (9.2) we can write (9.4) as

w2
3t 30 cpy

Then we recall that { - - - ) in the Heisenberg picture stands for Tr, p,(0)( - - - ),
and subsequently we tranform the expression (9.5) to the Schrodinger picture,

which yields

(EO(r, 1)+ EX(r, 1)). (9.5)

’W @) (=) (+)
IR Brlere’ Tr, p, (1 —r/c)[m(cos 6) - m ™ (cos )
—(#+m 7 (cos 8))(#+m ™ (cos 0))]. (9.6)

Here, m'*(cos ) is the Schrodinger representation of m'*’(z, cos #), which
follows from (9.3) with the substitution p(z) = p, and m‘™) =m".
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Result (9.6) gives the full angular distribution of the fluorescence in the
half-space z > 0 for any state p,(z — r/c) of the atom. The radiated power then
follows from

fd.Q s (9.7)

where the integration extends over half a unit sphere in z >0, and around
r= 0. Elementary integration gives

¥ 37‘;’ Tr, p (1= r/e)[bpDpd + byl -], (9.8)
where we introduced the parameters
b¢=1—3lCOS(2€) 3 sin(2,83)]’ (9.9)
(28) (2B)
sin(2B) cos(2,B) sin(28)
b=1-= — . 9.10
g [ 28 @8 (@B } o0
with
B=wyh/c. (9.11)

We shall see in due course that b, and b, are indeed the two parameters
which determine the spontaneous-decay operator I, and thereby the Einstein
coefficients 4, of the atomic states | j.m.).

The raising part p{~) of the dipole operator p an be expressed in the
dipole-allowed raising operator 4, from (5.6) according to

<Je||u|IJg sz o, (9.12)
2j.+

€

”(—)

and p) follows after a Hermitean conjugation. The two terms 7= +1 then
give the parallel part of p'~), and the 7=0 term is the perpendicular
component. Combining everything gives

aw +
o - hwyA; Tr, p,(1— r/c)Zb d.dl (9.13)
where we used (1.1) for the Einstein coefficient 4; in empty space. Next, we
substitute the expressions for d, and d; and perform the summations over the
magnetic quantum numbers. We then obtain

aw 2, .
dl _thAf Z b(ng 1T|.]e e) <Jeme|pa(t_r/c)ljeme>’ (914)

which involves only the populations { j.m,.|p,(t—r/c)| jom.) of the states
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| jom.) at the retarded time ¢ — r/c. If the parameters b,, found in this section,
would indeed be the correct b, for the Einstein coefficients, then we could use
(7.10), and (9.14) would reduce to

dw : .
E=hw02Ame<]emelpa(t_r/c) |./eme>' (915)

This is exactly eq. (8.9), summed over m,, and as pointed out in section 8.2, an
expression of the form (9.15) unambiguously identifies the parameters b, and
b. Therefore, we conclude that (9.9) and (9.10) are the correct results for b
and b for the situation of a perfectly- conducung substrate. But then we also
know the field-correlation functions f, (w,) and f..(w,), according to (8.1)
and (8.2), which are now found without any knowledge of the quantized field
E(r), the Hamiltonian H,, or the wave function of the vacuum, |0}). Of course,
results (9.9) and (9.10) can also be obtained from the field-correlation func-
tions in an explicitly-quantized radiation field theory for an empty half-space
near a mirror [16,17], or from linear response theory [18,19].

10. Conclusions

We have studied the spontaneous decay of an atom which is positioned in
the vicinity of an optically-reflective surface, but without reference to any
specific characteristics of the medium. An expression for the spontaneous-de-
cay operator I' of a degenerate two-level atom was derived from symmetry
considerations. It appears that I" only involves the two dimensionless parame-
ters b and b, , which are independent of any of the atomic properties, and
are determined by the vacuum-field correlation functions f..(wy) and fi.(wp)
at the position h of the atom. The parameters b, and b, incorporate the
h-dependence of atomic lifetimes and the details of the characteristics of the
medium (like a dielectric constant or a nonlinear susceptibility). We have
found that the Einstein coefficients for spontaneous decay of the levels | j.m.)
depend on the magnetic quantum number m,, due to the absence of spherical
symmetry. Nevertheless, the m dependence of 4,, is almost entirely geomet-
rical, as is reflected in the existence of the sum rule (7.8) and the symmetry
relation (7.6).

Although we only worked out the case of a two-level atom near a surface, it
should be obvious that the same procedure applies to any configuration which
has a symmetry for rotation around an axis, and a reflection symmetry for a
plane through that axis. For instance, the configuration of an atom in between
two parallel mirrors, as in a recent experiment [20], and a geometry with an
atom near a spherical or ellipsoidal macroscopic body have these symmetries.
For these cases the expression for I' is exactly the same, as are the properties
of the Einstein coefficients and the solution of the equation of motion.
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Furthermore, the spontaneous-decay operator for an arbitrary multilevel atom
in a configuration with these symmetries can also depend only on the two
parameters b, and b, . This follows from the fact that the vacuum-field
correlation functions are independent of the presence of atom. It is the
symmetry of the vacuum which determines the structure of the spontaneous-
decay process.
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