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An atom adsorbed on the surface of a harmonic crystal is considered. The binding potential well
supports many vibrational bound states, and the coupling of the motion of the atom with the sub-
strate gives rise to phonon-exchange reactions, which subsequently amount to atomic transitions be-
tween the bound states. This process of thermal relaxation of the adatom density operator is com-
monly described with reservoir theory, in which the crystal is regarded as a thermal bath with an ex-
tremely short correlation time. The latter property then justifies the neglect of any memory in the in-
teraction, which is usually referred to as the Markov approximation. It is shown, however, that the
reservoir correlation time is not necessarily small in comparison with the inverse (relaxation) frequen-
cies of the system, which implies a breakdown of this approach. The equation of motion for the ada-
tom density operator is then solved without the Markov approximation, and the result is used for the
evaluation of the spectrum and line profile for absorption of infrared radiation. Essentially different
results are obtained than with the approximate theory, but the solutions can be expressed in terms of
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the same parameters.

I. INTRODUCTION

A very sensitive method for studying atomic or molecu-
lar systems and the interaction with their environment
(for instance collisions) is by observation of the absorption
line shapes. A low-intensity laser with power I; (energy
per unit of time through a unit area, perpendicular to the
direction of propagation), frequency w;, and polarization
€ is scanned over the resonances of the molecule. Dipole
coupling between the system and the laser field then
amounts to absorption of radiation at a rate (energy per
unit of time)'

I o
€ofic

I w;)= Re for dTemLTTrﬁ[y(T)-ez,u'eL] R

(1.1)

with p(7) the dipole-moment operator in the Heisenberg
picture. The thermal-equilibrium density operator p
represents the state of the entire system of the molecule,
environment, and interaction, but not the laser. The ad-
vantage of weak-field absorption is that the incident field
does not disturb the system, but only probes it. Then the
absorption profile can be obtained from the golden rule
which leads to Eq. (1.1), where reference to the laser field
in the dynamical variables g and u(7) has disappeared.

We consider adsorbed atoms on the surface of a crystal.
Electromagnetic (van der Waals) interaction between an
adsorbate and the atoms of the substrate is accounted for
by a potential well, which supports many bound states.
The motion of the atom will be restricted mainly to the
direction perpendicular to the surface, which will be
denoted by the unit vector e,. Transition frequencies be-
tween vibrational states are in the infrared, and the
motion of the atom induces an optical activity in this re-
gion of the spectrum. This implies that the bond has non-
vanishing dipole-moment matrix elements between the
various states, whereas both the atom and the crystal are
assumed to be transparent for infrared light. Since we
neglect lateral motion, the dipole-moment operator takes
the form p=pue,, with u a scalar operator in the Hilbert
space, which is spanned by the adatom states. Then we
can write

plr)=e, expliLT)u , (1.2)

for the time evolution of u, where L is the Liouvillian,
which is related to the Hamiltonian according to

Lp=#""H,p], (1.3)

for an arbitrary Hilbert-space operator p. Here, H
represents the entire system of atom, crystal, and interac-
tion. Subsequently we use the identity
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Trp[p(7),u]=Tru exp(—iL7)[u,p] , (1.4)

which allows to cast the absorption profile in the form

1CZ‘GL |2

I((DL)=ILQ)L edic
0

ReTru

® ilop L)ty _

><fO dre [w.p] - (1.5)
This representation clearly shows that the peaks of the
spectrum are located at the resonances of the complete
system, which equal the eigenvalues of L rather than the
adatom transition frequencies. Moreover, the frequency
dependence of I(w; ) reveals the details of the dynamics.
From Eq. (1.5) it follows that the shape of a spectral line
is germane to the time evolution of the density operator,
which explains the significance of the study of absorption
spectra.

II. EQUATION OF MOTION

The atom with mass m is bounded to the crystal by a
potential V' (z), where z is the atom-surface normal dis-
tance, and hence the adatom-bond Hamiltonian takes the
explicit form

—# d?
2m dz?

Viz) . (2.1)

a

We shall not specify V(z) any further, but only remark
that the common choice is a Morse potential.>~’ A gen-
eral representation for the Hamiltonian of a harmonic
crystal reads®

H,=Y fio,(k)aax (2.2)
k,s

in terms of the phonon creation (GL) and annihilation
(ays) operators, which obey boson commutation relations.
The summation runs over the modes ks, with k the wave
vector and s the polarization, and w,(k) is the dispersion
relation. Coupling between the adatom bond and the
phonon field is assumed to be brought about by single-
phonon transitions, which is accurate, as long as the level
separations of H, do not exceed the cutoff frequency of
the dispersion relation. Then the complete Hamiltonian
can be written as

H=H,+H,—RS (2.3)
with the atomic part of the coupling given by?
S =dV/dz 2.4)

in terms of the prescribed potential V' (z). The operator R
equals the z component of the displacement field for the
crystal atoms evaluated in the vicinity of the adsorbate.
Explicitly this becomes

172

v (@ +a" 1 )ews-e.)

2MV o, (k) 2.5)

R=3

k,s

which involves the mass M of a crystal atom, the volumes
V and v of the crystal and a unit cell, respectively, and the
unit polarization vectors ey;.
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The equation of motion for the density operator p(¢) is

d
i— =[H .
lﬁdtp(t) [H,p(1)], (2.6)
which has the solution
p(t)=exp(—iLt)p(0) (2.7)

in terms of a given initial state p(0). Comparison with ex-
pression (1.5) then shows that the time evolution of p(t) is
governed by the same exponential which determines the
spectral distribution of the absorption. Furthermore, Eq.
(1.5) contains the thermal-equilibrium state p, which
equals the long-time solution

p=lim p(1) . (2.8)

l— 0

III. RESERVOIR INTEGRAL

It will be obvious that an exact evaluation of exp( —iLt)
is not feasible. Fortunately, this is not necessary. It will
turn out to be sufficient for the calculation of observable
quantities, like /(wy ), to obtain an equation for the re-
duced adatom density operator, defined by

pol)=Tr,p(1) (3.1)

where the trace runs over the states of the phonon field.
The large crystal with its many, closely spaced, degrees of
freedom (phonon modes) merely acts as a thermal bath,
and its thermal-equilibrium density operator p, is not
affected by the presence of the single atom.

Now it is a standard procedure’'! in reservoir theory
to derive an integral of the equation of motion (2.6),
which only involves the adatom-bond density operator
po(t). In particular, the product form RS for the interac-
tion allows a concise formulation, and the result is'? (see
the Appendix for details)

d I '
. .
t—dtpo(t):L,,po(t)———2 Lg fo drexp(—iL,7)

XL (m)polt —7) , (3.2)

where we have introduced the Liouvillians

Lop=#"[Ha.p] , (3.3)

Lsp=[S,p] (3.4)

pertaining to the free evolution of the adatom (L,) and
the atomic part of the interaction (S). The Liouvillian
L.(7) is defined as

L (1)p=G(1)Sp—G(1)*pS , (3.5)
which contains the reservoir correlation function
G (r)=2m#%"?Tr,Rp, expliL,7)R , (3.6)

with L,p=#"'[H,,p]. Properties of the substrate only
enter Eq. (3.2) through the function G (7), which equals
the correlation function of the displacement of the surface,
due to thermal motion of the crystal atoms. In Sec. VIII
we shall evaluate G (7) explicitly for a simple model.
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In deriving Eq. (3.2) from Eq. (2.6) we have taken for
the initial state the factorized form

p(0)=po(0)p, , (3.7)

which can be done arbitrarily, since p(0) is not prescribed
by the equation of motion. The only approximation
which had to be made to arrive at Eq. (3.2) was a factori-
zation p(t —T)=po(t —7)p, in the integrand. Of course,
this is not exact, but it is much better than the usual Mar-
kov approximation (Sec. VI), which can be argued as fol-
lows. The first term on the right-hand side of Eq. (3.2),
L,po(t), would account for the evolution of the adatom if
there was no crystal at all (RS=0), and the second term
represents the coupling to the heat bath. This interaction
gives rise to phonon transition between levels |k) and
| 1), which can be regarded as stimulated absorptions of
phonons from the crystal (excitation of the atomic bond),
and emissions of phonons into the crystal (decay of the
adsorbate). A transition |k)— |/) then occurs at a rate
nkay, with ny the population of level | k) and ay the
rate constant for this particular transition. If we look at
the relaxation integral in Eq. (3.2) as an operator acting
on po(t —7), then ay equals a matrix element of this

|

. d l t o] . r
I:Epo(t)=L,,po(t)—EL5 fo dr f_wdcu exp[ —i(w+ Ly )Tl (w)polt —7) .

With Eq. (3.5) we can express L.(w) in G(w) as

L(w)p=G(w)Sp—G(—w)*pS . 4.4)

The Fourier-Laplace transform of Eq. (4.3) is now easily
found to be
i/

o—L,+ilNw) @)

polw)= po(0)
in terms of an operator inversion. Here, the frequency-
dependent relaxation operator I'(w) is defined as
[ T ’
L. (o).

4.6
wo—o' —L, “.6)

1 =)
—_— ’
I(a))—4 Lg fﬁwdw

Equation (4.5) relates the (transformed) adatom density
operator for ¢t >0 to the given initial value py(0), which is
the desired solution.

Although Eq. (4.5) is an explicit solution, the combina-
tion of the operator inversion, with the definition of I'(w)
as an integral over a product of an inverse operator with
L.(w), might seem awkward. We shall show, however,
that the evaluation of the absorption profile has exactly
the same degree of complexity as in the usual Markov ap-
proximation.

V. EVALUATION OF I'(w)

A matrix representation of I'(w) is easily derived.
First, we rewrite Eq. (4.6) in the form
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operator. The factorization p(t —7)~po(t —7)p, in the
integrand then introduces a small error in aj;, but the
correct time dependence is retained. Because it is the
time evolution of the density operator which determines
the spectral distribution of the absorption, rather than the
density operator itself, only a small error is made by the
factorization.

IV. SOLUTION

In this section we solve Eq. (3.2). To this end, we first
introduce the Fourier-Laplace transform of G (7) by

Glw)=7m"" fo“ drexplinr)G (1) , 4.1)
which has the inverse integral
G(r)=1 f°° doexp(—iot)G(w), 7>0, (4.2)

and in the same way we define the Fourier-Laplace trans-
form of any other time-dependent quantity. Substitution
of the inverse integral of L.(r) into the equation of
motion (3.2) then yields

1 o , [ ilw—0'—L)t= , ,
Pw)=7—Ls [* do' [ “dre L) .
(5.1)

Then we insert the inverse integral for L. (w’) and perform
the ’ integration, which yields the alternative expression
for I'w)

Mw)=——Ls [ dre "™ L () . (5.2)
0
Atomic-bond states are by definition the eigenstates of

H, from Eq. (2.1). The eigenvalue equation reads

H, k)=t | k) , (5.3)

which defines the states | k) and the eigenvalues #w;. In
turn, H, can be represented with respect to its own eigen-
states as

H, =3 fiw, Py , (5.4)
X

where Py = | k){k | is the projector onto | k). Then we
can express L,, Eq. (3.3), in terms of projectors and cal-
culate the exponential exp(—iL,7). Finally, we obtain

expl —iL,T)p=" exp(—iAy7)PypP, (5.5)
k,1
in terms of the transition frequencies
Ay =0 —w; . (5.6)
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Next, we substitute the definition (3.5) of L.(7) into Eq.
(5.2) and apply the expansion (5.5), which gives
Nw) ZLS[P1SPPkG(Ak1+w)

—PpSPIG(Ay —)*] . (5.7)

This result shows that I'(w) can be expressed entirely in
the adatom operator .S and the Fourier-Laplace transform
of the reservoir correlation function G (7). In order to

1

(a |[[T(w)p]|b)=13 [
k!

— L[S S G (A +0)+S5SE G (A —)* Ik [p| 1),
il

which relates the matrix elements of I'(w)p to the matrix
elements of p. We notice that the frequency dependence
of I'(w) only enters as a shift of the resonances Ay; in the
arguments of the correlation function.

From Eq. (5.4) we immediately find

(a |[[(@—L,)pl|b)=(w—Ag)a |p|b)

for the matrix representation of w—L,. Combination
with Eq. (5.10) then gives the expansion of w—L, +iT,
which is the matrix to be inverted for evaluation of gy(w)
from Eq. (4.5) and, as we shall see in due course, for the
evaluation of the absorption profile.

(5.11)

VI. MARKOV APPROXIMATION

In order to illuminate the physical significance of a
frequency-dependent relaxation operator, and to establish
the relation to earlier approaches, we summarize the com-
monly applied Markov approximation. The phonon field
has a broad spectrum of closely spaced modes and a rela-
tively high cut-off frequency which equals the Debye fre-
quency wp for a crystal. These features guarantee that
the reservoir correlation function G (7) decays to zero
quite rapidly for increasing 7, and typically on a time
scale wp'. Besides wj!, the other two typical time scales
in the problem are the inverse of a level separation Ay
and the inverse of a relaxation constant ay;, which is a
matrix element of I'(w). One then asserts that

ay <<wp , 6.1)

for all kI, which implies that L.(7) in the integrand of Eq.
(3.2) only deviates from zero for 7Swp!. Since this is
small in comparison with the relaxation time, by virtue of
Eq. (6.1), we can replace the time evolution of po(t —7)
over this small time interval by its free evolution. Hence

we approximate po(¢ —7) in Eq. (3.2) as
polt —7)~expliL,T)po(t) , (6.2)

and subsequently we can take po(f) outside the integral.
Then we assume that we are not interested in the time
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find the matrix representation of I'(w), we expand Lgs as a
commutator and then insert the closure relation

> P=1 (5.8)
k

in various places in Eq. (5.7). In terms of the matrix ele-

ments
Su=(k |S|)=Sik, (5.9)

we then find

G(Ap+o)I [p|b)+SkSHG(Ay —w)*<a |p|1)]

(5.10)

T

evolution of po(?) in a time interval of the order of wp !
after the preparation of the initial state po(0), which im-
plies that we can replace the upper integration limit ¢ by
infinity. In spectral terms the restriction (6.1) means that
the width of a line is much smaller than the Debye fre-
quency, and the second approximation states that we do
not consider the details of the line in the far wings, where
“far” means of the order of wp from the line center.
Combining everything then yields the equation of motion
in the Markov approximation

jtpo( )=(L, —iTp)po(t) , (6.3)
where the relaxation operator is now defined as

1 o —iL,T iL,T

Py=5-Ls [ “dre " Le(re (6.4)

The solution of Eq. (6.3) reads

polt)=exp[ —i (L, —iTp)t]po(0) , (6.5)

which has the Fourier-Laplace transform
i/m
O = . .6
polw) o—L,+iTa po(0) (6.6)

Comparison with our result (4.5) shows that the frequency
dependence of the relaxation operator has vanished, and
that the Markov approximation effectively amounts to the
substitution I'(w)—T"s. Conversely, it then follows from
the discussion in the first paragraph of this section that
the frequency dependence of I'(w) reflects a time resolu-
tion on a time scale of the order of wp'. This, in turn,
gives the process a memory time of the order of op'. In
the frequency domain this has the implication that now
also the line wings are properly described, rather than
only the line center.

VII. RELATIONS BETWEEN I'(w) and 'y

From the representation (5.2) of I'(w) we directly
deduce



36 NON-MARKOVIAN LINE SHAPES OF PHYSISORBED ATOMS . ..

[ doexp(—ior)N(w)=Ls exp(—iL,T)Lc(7), >0,
(7.1)

which reveals that the Fourier-Laplace inverse of I'(w) is
proportional to L.(7), and therefore it decays to zero as a
function of 7 on a time scale wp!. Then I'(w) must have
a frequency width of the order of wp. The right-hand
side of Eq. (7.1) also appears in the definition (6.4) of 'y,
which gives rise to the relation

——f°°d [ drTe

between ')y and IN'(w).
gives alternatively

Jexp[ —i(w—L,)r]  (7.2)

Carrying out the time integral

1 fe o) i
FM:_Wf_wd“’F(“’)La_w , (7.3)
showing that I'y; does not equal I'(0).

From Eq. (5.11) we observe that L, —w is diagonal
with respect to the tetradic adatom states |a){b |.
Therefore, expansion of the inverse of L, —w in terms of
projectors reads

(a [(Tmp) |b) =13 [SakSuG(Aw )1 |p|b)+SkSHG

k,1

L3 [SakSiG(Aya )+ SpiSEG(A)
k1

which is the usual result.'> Comparison with the expan-
sion (5.10) of I'(w) shows that the different matrix ele-
ments of p are connected by the same matrix elements of
S in both cases. The only distinction is that the correla-
tion function G appears with a different argument in the
corresponding matrix elements of 'y and I'(w). Since
knowledge of the function G(w) is already required in the
Markov approximation, no additional information about
the crystal or the atomic states is necessary in order to go
beyond the Markov approximation.

VIII. RESERVOIR CORRELATION FUNCTION

Whether a Markov approximation can be justified or
not depends on the behavior of the reservoir correlation
function G (7) from Eq. (3.6). In order to study this issue
quantitatively, we adopt a Debye model for the distribu-
tion of phonon modes in the crystal. Then the dispersion
relation reads

ws(k)=c'kH(wp —c'k) , (8.1)
with ¢’ the speed of sound and H the unit step function.
For the thermal-equilibrium density operator of the crys-
tal at temperature T we take

Pp=[Tr, exp(—H, /kgT)]~ Vexp(— H,/kgT), (8.2)

Wk |pll),
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(7.4)

in terms of its action on an arbitrary p. With the general
relation for Fourier-Laplace transforms

1 o
—_ d 4
2T — @

i
o(w')=p 7.
_w,p(a) )=plw) , (7.5)

we can evaluate the integral in Eq. (7.3), which gives

Typ=73 DA PrpPy) . (7.6)
k1

This simple relation between I'p; and I'(w) displays that
the relaxation operator in the Markov approximation is
determined by I'(w), where w only attains values which
are equal to the level separations Ay;.

With Eq. (5.10) we can calculate the action of T'(Ay)
on PypP;. We replace p in Eq. (5.10) by P,pP; and use
the orthonormality relation {(a |b)=8,, for any two
states |a) and |b). Then we sum over k and / and re-
call that Ay, + Ay =4, for every a,b,c, which gives the
expansion of I'j, in matrix elements. We obtain

(Ap)*€a |p| 1]

where kp is Boltzmann’s constant. With the explicit form
of the reservoir operator R, Eq. (2.5), we then immediate-
ly find®

= fowD doo{[n(w)+1]lexp(—iwT)

+n (w)explioT)} , (8.3)

where n (w) equals the average number of phonons in a
mode with frequency o, which is

n(w)=[exp(fiw/kgT)—1]"" . (8.4)
The parameter § is found to be
37
= , (8.5)
] #M w3

which depends only on the mass of a substrate atom and
the cutoff frequency wp of the dispersion relation.

It is advantageous to subdivide G (7) into a spontaneous
and a stimulated part according to

T)=[G(N]p+[G(T)]« ,

with [G(7)], by definition the correlation function for
T =0. Since n (0)=0 for T'=0, we find with Eq. (8.3)

(1+iwpTlexp(—iwpT)—1

(8.6)

[G(1)]p=Cwd , 87

(a)DT)Z

[6(M)u=2 [ don (@) cosiwr) (8.8)
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FIG. 1. Real (curve @) and imaginary (curve b) parts of the
spontaneous component of the reservoir correlation function as a
function of wp7 and divided by {w}.

showing that the stimulated part is real, whereas the spon-
taneous contribution acquires an imaginary component.
In Figs. 1 and 2 the correlation functions [G (7)],, and
[G ()] are plotted, and it appears that they indeed decay
to zero on a time scale of the order of wp'. However, the
spontaneous part only disappears as 1/(wp7), which is
very slow. This implies that in integrals such as in Eq.
(3.2), there is a relatively large contribution from the tail
of G(7), which makes a Markov approximation at least
doubtful when the Debye frequency becomes of the order
of other frequencies in the problem.

Matrix elements of the relaxation operator I'(w) are
determined by the Fourier-Laplace transform of G (7),
which we split up in the same way. From Egs. (8.7) and
(8.8) we derive

2 —
G (7)
a
b
A‘ /‘I
\_/ 10 w,T 20
-1 —

FIG. 2. Stimulated part of the reservoir correlation function,
which is real, as a function of @p and divided by {w). Curve a
corresponds to fiwp =kg7. In curve b (#iwp =2kgT) the plot is
truncated at wp7=10.
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1 —
G(w) |
. |
|
|
L l
-0.5 1 w/w,
\ b
-0.5 —

FIG. 3. Real (curve a) and imaginary (curve b) parts of
[G(w)],, as a function of w/wp and divided by {wp. For w <0
and o > wp the real part vanishes identically. The singularity of
the imaginary part at w=wp is a result of the sharp cutoff at wp
of the dispersion relation. For any smooth but still arbitrarily
steep decay at w=wp, the value of Im(?(cuD)sp would remain
finite.

[G(w)]sp= SwH (0)H (0p —o)

—ir" wpt+wn|l—wp/w]), (8.9)
[G((u)]s(:§|a}1n(Ia)})H(wD——[mf)
1 wp ., N 20'0
i 'EP fo alcon(a))*——~wlz_w2 , (8.10)

where P stands for principal value. The real part of

G (w)

-0.5 —

FIG. 4. Plot of the real (curve @) and imaginary (curve b)
parts of [G(w)]u/Ewp as a function of w/wp, and for
fiop =2kpT. For || >wp the real part disappears.
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[G(w)]sp is only nonvanishing for positive frequencies,
which has the significance that the spontaneous part of the
relaxation only amounts to a decay, whereas from the re-
lation

[G(—)]a=[G ()], (8.11)

it follows that the rate constants for stimulated excitation
and decay of the adatom are equal. In taking the limit
0—0 in Egs. (8.9) and (8.10), we obtain

fo“’ dr[G(D)]p=—ilwp ,
J7drlG(Dlu=ntksT /4,

(8.12)
(8.13)

which can be regarded as a measure or the relative contri-
bution of the spontaneous and stimulated component to
the reservoir correlation function. The functions [G()]sp
and [G(w)]s are drawn in Figs. 3 and 4, respectively.

IX. ABSORPTION SPECTRUM

Evaluation of the absorption spectrum /(e ) from Eq.
(1.5) is now straightforward. First, we introduce the
correlation operator

D(r)=e ~L7u,p], ©.1)

which is an operator in the Hilbert space of the adatom
and the crystal. Its reduced atomic part is denoted by
Do(7), and the Fourier-Laplace transform Dy(w) is
defined by Eq. (4.1). Then Eq. (1.5) is equivalent to

Hw)=I 0, —— |e;-€, |2Re TrauDolwy) . (9.2)

Eo‘ﬁC
Next we notice that D (1) obeys the equation of motion

L pr=LD(r),
dr
which is identical to Eq. (2.6) for the complete density
operator p(t). Hence we can solve Eq. (9.3) for the re-
duced correlation operator along exactly the same lines
that led to Eq. (4.5). This gives

9.3)

~ i/m
D =————>""-Dy(0), 9.4
] P R o4
and the initial value equals
Do(0)=Tr, [w,p)=[t.Po] » 9.5)

in terms of the long-time solution gy of Eq. (4.5). Com-
bining everything then yields

I(wL>=1LﬁwLB(ﬁ1—ﬁz)ﬁRez (k |ilog — Ly +iT@)]~ (12X | — |12 |1)
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le.-€L |2

lHop)=1 v, 7
0

XReTr,pu ) [,p0] (9.6)

i

w; —L,+iTlNwg
as a formal expression for the absorption spectrum. With
the matrix representation of I'(w) from Sec. V, we can
perform the operator inversion and subsequently evaluate
I(wyp) for any configuration of bound states. We notice
that the relaxation operator I' in the denominator has the
incident frequency w; as its argument. This reflects that
the w; dependence of the absorption will reveal the (non-
Markovian) frequency dependence of the relaxation opera-
tor.

Expression (9.6) for I(wp) involves the steady-state

solution pp of the adatom density operator. From the
general identity
lim po(t)=po= Iirr%) —iTwpolw) , 9.7)

t— oo
and Eq. (4.5), it follows that py is the solution of

[L, —iT(0)]po=0 . 9.8)

Therefore, it is not necessary to calculate the Fourier-
Laplace inverse of Eq. (4.5) and then take the limit — o,
which would be a cumbersome procedure. We remark
that po is completely determined by the relaxation opera-
tor at the single frequency w=0, in contrast to pg(t) for
t < oo, which involves I'(w) at all frequencies w.

X. LINE SHAPE

An adsorbate potential V' (z) will in general have many
bound states (~25), and every transition frequency Ay
gives rise to a spectral line around w; =Ay;. In order to
disentangle the contributions from the various resonances
to the absorption spectrum I (w;), we now consider the
situation of two levels |2) and |1) which are separated
by wy—w1=wp>0. The resulting profile I(w;) is then
called a spectral line.

Diagonal matrix elements of the derivative of any po-
tential vanish identically if the wave functions are eigen-
functions of a Hamiltonian of the form (2.1).!> This im-
plies S1;=S,,=0, and it follows from Eq. (5.10) that the
relaxation operator I'(w) does not couple between popula-
tions and coherences. Since for two levels the phase of a
wave function can have no significance, we can take the
matrix elements u;, and Sy, to be real.'* Then Eq. (9.6)
can be rewritten as

(10.1)

where 7y = (k | po| k) is the steady-state population of level | k), and B is the Einstein coefficient for stimulated transi-

tion, defined as

B =m(etic) " |piaer |2

(10.2)

The summation in Eq. (10.1) runs over (k,/)=(1,2) and (2,1) only.
Solving Eq. (9.8) for pp in the case of two levels is trivial. We only mention that the population difference #; — 7,

which occurs in I(w; ), becomes
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H(w))

FIG. 5. Line profile I (w; ) as a function of w; /wo and divid-
ed by I #m 'B(7,—m,). The parameters are gwus%2:0.4,
wp =3wo, and kT =#wp. Curve b is calculated with Eq. (10.6)
and curve a is the Markov approximation. The line shapes are
not Lorentzians, as follows from their asymmetry around the
dotted line at w; =wo. For w; =wo the exact value and the
Markov approximation always yield the same value for the ab-
sorption.

Re[G(wo)]s,
Re{[G(@0)]sp+2[Glwo)]s]

ny—ny=
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FIG. 6. Same as Fig. 5 but with #iwp =0.3kpT. In this case
of relatively large temperature the Markov approximation (curve
a) deviates considerably from the exact value in the blue wing
(wr > wo) of the line. Especially for w; >wp the Markov ap-
proximation predicts a finite absorption, which cannot be correct.

(10.3)

We note that this quantity is independent of the interaction matrix element Sy, and completely determined by the reser-
voir correlation function G(wg). Obviously, this is an artifact of a two-level system.

With the basis [2){1] and [1){2]| we find

o —wo+inlor)

O)L—La +1F(COL): _ln(wl,)

for the relevant part of this matrix. Here the parameter function 7(w/, ) is defined by

n(wL):iS%z[G(wL )—J—G(—wL )*] ,
2

which represents the operator I'(w, ) in Eq. (10.4). Then the absorption line shape is readily found to be

I(G)L):ILﬁﬁilB(ﬁl—ﬁ

In the Markov approximation 7(w, ) assumes the constant
value 1(wy), independent of w;. Then 7(wp) is merely a
parameter, which can be adjusted to fit a line shape. It
appears that in our more thorough approach, the function
1n(w) should be evaluated at the frequency w; of the probe
field. Especially the property

Ren(a)L):O, w;p >wp , (10.7)

for a Debye model shows that the absorption is identically
zero for w; > wp, whereas in the Markov approximation
the absorption is finite in this case. That I (w;) should
vanish for w; >wp, follows from energy conservation.
An adsorbed photon must eventually end up as an excita-

)
Y 0d— 0} +20, Imn(op )P +402 [Ren(w, )]

—inlwr)
wp +oo+in(or) | (10.4)
(10.5)
dwyw} Renlw;) (10.6)

r

tion of the phonon field, but for w; >wp there are no
phonon modes which can accommodate the quantum.
Different features of the line shape are illustrated in Figs.
5 and 6.

XI. CONCLUSIONS

Vibrational relaxation of physisorbed atoms on a har-
monic crystal is studied, without the usual Markov ap-
proximation. It has been shown that the Markov approxi-
mation can be poor if the Debye frequency has an order
of magnitude which is comparable to the widths and posi-
tions of the spectral lines, or in general where the line
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wings are concerned. We have derived a frequency-
dependent relaxation operator I'(w), and from Eq. (7.1) it
follows that I'(w) deviates from a constant value due to
the finite correlation time of the reservoir. This in turn
gives rise to a memory in the time evolution of pg(?),
which is expressed by the fact that pg(z) obeys an
integrodifferential equation [Eq. (3.2)] rather than a first-
order differential equation. The memory is brought about
by the finite time width of the operator L.(7) in the in-
tegrand. We have solved the equation of motion with a
Fourier-Laplace transform and applied the same tech-
nique to evaluate the absorption spectrum. Significant
differences between the present theory and its Markovian
equivalent are found in the spectral line profile.
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APPENDIX: DERIVATION OF Egq. (3.2)
FROM Eq. (2.6)

In this Appendix we derive Eq. (3.2) from the general
equation of motion (2.6). As an abbreviation we intro-
duce the interaction Liouvillian L; as

Lip=—#"'[RS,p] . (A1)
Then Eq. (2.6) reads
i—d—p(t)=(La +L,+L;)p(t), (A2)

dt

which has to be transformed into an appropriate equation
for po(t). Integration of Eq. (A2) gives
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—i(Lg+Lyt

plt)=e p(0)

Y —iLy + L)t —1)
— dt’ aree Lp(t’) . (A3)
I f o e p(
Next we replace ¢ by ¢’ and substitute the right-hand side
of Eq. (A3) for p(z') in the integrand. Differentiating the
result with respect to time and changing the integration
variable then yields

—i(Ly+Lyn

()= (L,+L,)p(t)+L;e p(0)

Yt

N ~iLg Ly,

iL; [ 'dre Lip(t —7) (A4)
as an exact integral of Eq. (A2).

As initial state p(0) we take p(0)=po(0)p,, Eq. (3.7),
and subsequently we factorize p(z —7) in the integrand, as
argued to be reasonable in Sec. III. Then we take the
trace over the phonon states and insert definition (A1) for
L;. The second term on the right-hand side vanishes
identically as follows from

—il t_

Tr,[R (e "*'p,)]=Tr,Rp, =0, (AS5)

where the right-most equality relies on the explicity form
(2.5) of R. The appearance of two factors L; in the last
term of Eq. (A4) gives rise to four terms, since L; is a
commutator. Because R and S commute, as do L, and
L,, we can rearrange every term in such a way that all
phonon operators are to the right, and all adatom factors
are to the left. As a last step we use R T:R, the cyclic in-
variance for operators under a trace, and

o —iL

ef(i/ﬁ)H eli/ﬁ)Hl

tp — tp (A6)
for any L and p. Comparison with the definition (3.5) of
L.(7) then shows that Eq. (A4) can be cast in the form

(3.2).
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