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The probe-absorption spectrum of an atom, immersed in a finite-bandwidth laser field and a per-
turber gas, is calculated. Both single-mode and multimode excitation is treated, and the solutions of
the occurring stochastic multiplicative processes are obtained in closed form. Different features of
the profile are discussed, and it is seen that the spectrum is not determined by the laser line shape
only, but that knowledge of the higher-order stochastic properties of the driving field is required.

I. INTRODUCTION

The interaction of a two-level atom with an intense
monochromatic laser field is well understood.'~3 The
coherent excitation of the system amounts to Rabi oscilla-
tions of the level populations,’ and spontaneous decay
provides the relaxation mechanism for the evolution to a
unique steady state. Decay of the excited state is accom-
panied by the emission of a fluorescent photon, which can
be observed with a photomultiplier tube. The spectral dis-
tribution of the fluorescence radiation is the Fourier-
Laplace transform of the time regression of the atomic-
dipole correlation function, which is determined by the
time evolution of the atomic density operator. Hence the
details of the interaction of the atom with the strong radi-
ation field are reflected in the spectrum of the spontane-
ously emitted radiation. The generic method of studying
the interaction of an atom with a radiation field is by the
spectrally resolved detection of its emitted fluorescence,
and consequently the theory has focused on the details of
atomic emission line shapes. A two-level system in a
strong driving field exhibits a three-line spectrum, which
can be understood in a dressed-state picture,5 and has been
observed in experiment.5’

An alternative method for probing the laser-atom in-
teraction is by scanning a weak laser over the atomic reso-
nance, and measuring the absorption of the joint system
of the atom and strong driving field. The probe-
absorption profile is germane to the spontaneous-emission
profile in that it is also determined by the atomic-dipole
correlation function. This implies that the fluorescence
and absorption spectrum essentially contain similar infor-
mation. However, the net absorption is a balance between
stimulated absorption and emission, which causes the can-
cellation of the line corresponding to the Rayleigh line at
the optical frequency in the fluorescence triplet. Hence
the absorption profile is intrinsically a two-line spectrum,?
which can again be understood from the dressed-state pic-
ture.’ Furthermore, the absorption can assume negative
values, which implies the domination of stimulated emis-
sion in the probe beam over the absorption. This peculiar
feature can only appear in the presence of the driving
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laser, which supplies the energy for the amplification, as
shown by Mollow.? The different properties of the ab-
sorption line shapes have been verified experimentally by
Wu et al.'®

An atom in a laser field will, in general, be subject to
dephasing mechanisms, which affect the absorption pro-
file. In vapor experiments the atoms are immersed in a
buffer gas. The most pronounced modification is then
brought about by collisions with neutral atoms, which
broadens the absorption line.!! Another inevitable ran-
domization of the atomic dipole results from the laser
linewidth. The fluctuating laser phase broadens the laser
line, and its effect on the absorption profile was studied
by Agarwal for a Gaussian diffusive phase.!? Collisional
redistribution of radiation and laser-bandwidth-induced
energy transfer between spectral lines alter atomic spectra
in a similar, but not identical way.”‘

For a weak driving laser, which is in close resonance
with the atomic transition frequency, the collisional per-
turbations are fairly well accounted for by an impact-limit
approach,' and the laser-linewidth modifications are
completely determined by the spectral profile of the laser.
In the situation of high irradiance, or with a large detun-
ing, the spectra exhibit distinct lines. If we denote the line
separation by |Q’|, then |Q’| is a characteristic fre-
quency of the atom in the strong driving field (dressed
atom), and its inverse |Q’'| ! is not necessarily large in
comparison with the time duration of a collision and with
the laser coherence time. Then both the impact limit and
the phase-diffusion model cannot be expected anymore to
account for the details of the line shapes. Extensions
beyond the impact limit of line broadening have been
developed (binary-collision approximation,'®> Fano projec-
tion technique!®), and a finite laser coherence time was in-
corporated by the assumption that the laser phase obeys
Ornstein-Uhlenbeck statistics.!”~2° These theories have
been applied mainly to the problem of fluorescence.

In this paper we consider the laser-linewidth effects for
both single-mode and multimode excitation on the atomic
absorption profile. Since the emphasis is on the
bandwidth-induced modifications, we include collisions
only in the impact limit. This will still enable us to keep
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track of collisional intensity transfer, but without every
detail which arises due to the dynamics of a specific col-
lision.

II. LASER MODELS

Since the atomic response to the strong radiation field
is not determined by just the spectral distribution of the
laser, we have to specify the details of the model. First,
we outline the general concepts, and then we specify the
models which are treated in this paper. The electric com-
ponent of the field at the position of the atom is
represented by

—ilopt+6(0)]

E(1)=E, Ree, e 2.1)

Here, E is the real amplitude, €; is the unit polarization
vector (€, -€; =1), w; is the optical frequency, and the
phase ¢(t) is taken to be a real-valued stochastic process.
The distinct models arise by adopting different stochastic
properties of ¢(t). The steady-state spectral profile of the
field equals?®!

I;(@)= lim X Re fow dre'@ToL)"

t—o T

x (e —i[¢(z+r)—¢5(t)]>st , 2.2)
where the notation ( - - - ), indicates an average over the
stochastics of the phase (the angular brackets { - - - ) will
be reserved for a quantum average). For a time-
independent phase the profile reduces to
I; (0)=8(w—wr ), but fluctuations in ¢(z) will broaden
this line around the central frequency w;. The limit
t— « in Eq. (2.2) eliminates possible switch-on effects,
and it is, of course, assumed that the stationary state ex-
ists for a given process ¢(¢). Integration of I, (w) over its
spectral width gives

[dol (=1, (2.3)

which shows that the fluctuating phase redistributes the
power over a frequency range around w;, but without af-
fecting the overall strength of the field.

It might appear that any choice of ¢(¢) yields a single
laser line around w;. Such is, however, not the case. We
can write Eq. (2.2) alternatively as

—i oL +x()]ds ])t
(2.4)

__1_ had ioT
I,_(a))——ﬂ_ Re fo dre <exp

with x(z)=4¢(z), and then consider the properties of the
time derivative x (¢) of the phase to be given. Obviously,
the process x (¢) must be stationary in order to guarantee
the time independence of the profile. Hence we can omit
the limit #— oo in this representation, and the probability
distribution P(x) of x(¢) must be independent of time.
The structure of the profile becomes quite transparent if
we consider the static limit of the process x(¢), where
x (¢) is independent of time for every realization of the
process.”>?* Then the average in Eq. (2.4) is a single-time
average, which is easily found to be
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I (w)=Plo—w) . (2.5)

This reveals that the laser profile is identical to the proba-
bility distribution of x (¢) in this case, which implies that
the possible values of w; +x(t) can be considered as the
laser modes. From Eq. (2.4) it can also be inferred that
or +x(t) can be regarded as the instantaneous laser fre-
quency. For a nonstatic process x (¢), the field will switch
between the occurring values of x (), and thereby distort
the profile (2.5). If we allow P(x) to consist of a sum of §
functions, then the profile I;(w) represents a genuine
multimode field. Hence our model (2.1) of the finite-
linewidth laser field pertains to both single-mode the mul-
timode radiation, and can therefore be regarded as a quite
general representation of a laser field, although other
models could be conceived.?*

The theory of laser-linewidth effects on the atomic
response to strong incident radiation is essentially a topic
in stochastic processes. With recent developments in the
theory of stochastic differential equations, it has become
feasible to average two-time operator-valued quantities ex-
plicitly, and without any approximation (decorrelation as-
sumptions). The most simple example is the laser profile
itself. Let us introduce the stochastic function

g(t',t)y=exp |—i frl'ds x(s) |, (2.6)
which obeys the equation

g, ) =x (g (1,1) @7
and the initial condition

gl,t)=1. (2.8)
With the Fourier-Laplace transform of its average,

Flow,t)= ftwdt’ei“’("_’)(g(t',t))st (2.9)
the laser profile can be written as

IL(w)=tEn; ~71;Re§(w—wL,t) . (2.10)

This implies that if we are able to solve the multiplicative
stochastic differential equation (2.7) for the average
(g(#',1) )¢, then we can obtain the laser profile after a
Fourier-Laplace transform.

The class of single-mode models we consider assumes
the phase ¢(¢) to be a homogeneous Markov process,? de-
fined on — 0 <@(f) < 0, and with a transition rate from
¢ to ¢’ which depends only on the phase difference ¢ —¢'.
This process is usually called the independent-increment
process,”® and it has the transition rate w(¢—¢') as an
arbitrary parameter function. We suppose that w(d)
=w(—¢), which implies that the phase fluctuations
broaden the laser line, without shifting it. The probability
distribution P(¢,t) for the phase ¢(t) is given by the
Fourier integral

P(¢,1)

—ipp—t [ dn(1—e®Muw(y)

(2.11)

= i f_ww dpexp
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in terms of the prescribed function w(7). The conditional
probability for the occurrence of ¢(t +71)=4¢,, if ¢(1)=¢,,
follows from the relation

P‘r(¢2 ’ ¢1)=P(¢2_¢l’7—)7 TZO . (2.12)

Together with Eq. (2.11) and the Markov property of the
probability distributions, this relation fixes the stochastic
properties of the phase. Notice the appearance of ¢ in the
integrand of Eq. (2.11), which shows that ¢(¢) is nonsta-
tionary. It is a non-Gaussian diffusion process, in general.

The multiplicative stochastic differential equations for
this phase model have been solved in a previous paper,'?
and the solutions were applied to evaluate the fluorescence
spectrum of a two-level atom in a perturber bath. It
turned out that only two parameters of the process deter-
mine the atomic line shapes, rather than the very details
of w(n). They are

A= [ dn(1— cospu(n) (2.13)

A= f_: dn[1— cos(2n)]w(n) , (2.14)
which are both real, and obey the inequality

O<A <4A . (2.15)
Any function w(7) gives rise to the laser profile

ILW:%’ 2.16)

which is a Lorentzian with half width at half maximum
(HWHM) equal to A. Hence the parameter A has the clear
interpretation of the laser linewidth, and it can be shown
that A’ depends on the higher-order photon correlations of
the laser field. This means that any appearance of A’ in
an atomic spectrum indicates that knowledge of the laser
profile is not sufficient to evaluate the atomic response to
the laser.

In the Gaussian limit of this independent-increment
process, which is the common phase-diffusion or Wiener-
Lévy process, the parameter A’ is no longer independent
but is related to A as A'=4A. A different single-mode
laser model can be defined by considering the phase as a
stationary random-jump process.?”»?® This is known as
the Lorentz wave.?>3° However, it can be shown’! that
this model yields identical results as the independent-
increment process in the limit A'—A. Therefore, our
single-mode laser model covers the more familiar models
as special cases (A'=A and A'=4A), but is more general,
since we have only the restriction (2.15).

For a multimode laser we prescribe the stochastics of
x (t). The process x (2) is assumed to be a stationary Mar-
kov process with probability distribution P(x) and condi-
tional probability

P.(x;|x;)=e778(x;—x1)+P(x)(1—e "), 7>0,

(2.17)

where y >0 is the switching rate between the modes, or
the inverse laser coherence time. Consider a discrete dis-
tribution P(x). Then for y—0 the laser profile is given
by Eq. (2.5), which is a sum of 8 functions in this case.
However, a finite ¥y ~! can be interpreted as the average

“dwelling time” in a single mode, and hence the switching
between different modes causes a broadening of every
line.3? For the process x (¢), which is generally referred to
as the random-jump process, we can solve the stochastic

differential equation (2.7), and the Fourier-Laplace
transform of the solution reads*
I (@)=L Re 1 l,
m
1— dx P(x)————
14 f x (X)m—wl_ —X+iy
X [ dx P(x)——————. (2.18)
O—w;p —X+1Y

In the case where P(x) is a sum of 8 functions, the in-
tegrals reduce to summations. Figure 1 illustrates the
dependence of this profile on the switching rate y for a
three-mode laser.

The nomenclature single-mode and multimode field
pertains to prescribed stochastics of ¢(z) and x (¢), respec-
tively, but a single-peak distribution P(x), centered
around x =0, actually represents a single laser line around
w=w;. We pointed out in a previous paper, Ref. 33, that
the choice of a Gaussian P(x) greatly resembles the com-
monly applied single-mode model with a finite coherence
time,!’~%° where x(z) is taken to be the Ornstein-
Uhlenbeck process. It gives rise to all the desired features
of a realistic laser model, e.g., Poissonian photon statis-
tics, a Lorentzian profile near the line center, and Gauss-
ian in the line wings. The so-called cutoff frequency in
the Ornstein-Uhlenbeck process, which determines the
transition from a Lorentzian to a Gaussian with increas-
ing o, equals ¥ in our multimode model. Furthermore,
the mode-correlation function {(x(#)x(¢'))y decays ex-
ponentially in both models. Hence our unified “mul-
timode” theory incorporates the standard single-mode
model as a special case.

0.6
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0.3
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|
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FIG. 1. Plot of the laser profile I; (w) from Eq. (2.18), shift-
ed over w;, for the case of a three-mode field. The dotted lines
indicate the positions of the modes, which have a relative proba-
bility distribution of 1:2:1. Curve a (b) corresponds to y=1
(0.7). All frequencies are in the same, arbitrary, units.
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III. EQUATION OF MOTION

The two-level atom in a perturber bath, subject to spon-
taneous decay and immersed in a strong laser field, obeys
the equation of motion

iﬁ%ﬂm+Ha,(t),p]~iﬁ1‘p—iﬁ‘1>p, p'=p, Trp=1.

(3.1

In terms of the projectors P, = |e)({e | and P;=|g){g |
onto the excited state |e) and the ground state |g),
respectively, the atomic Hamiltonian can be represented
as

H, =70 P, +#0gP, , (3.2)

and the coupling of the field (2.1) with the atomic dipole
p attains the form

Ho ()= — 120 1%y L g e (3.3)

in the rotating-wave approximation. Here we have denot-
ed the coupling strength by Q=E;|(e|pu-€. |g)| /%
(Rabi frequency), and adopted the notation d= |e)(g |
for the atomic raising operator. It is convenient to intro-
duce a Liouville operator L;, which is defined by its ac-
tion on a Hilbert space operator p, according to

Lyp=[Py.p] -

Then the spontaneous-decay operator I' can be written
34
as

I‘p=%AL32p+A(Pe—Pg)<e lp|e)

(3.4)

(3.5)

in terms of the Einstein coefficient 4 for spontaneous de-
cay of the two-level system. The collisional relaxation is
incorporated in the operator ®, defined by

Dp=(aLl—iBLy)p , (3.6)

which contains the collisional width a and shift 8 of the
low-intensity absorption profile. The quantities a and B
can be expressed in elements of the S matrix for a single
collision, averaged over the perturber velocity distribu-
tion.*

The equation of motion (3.1) is a stochastic differential
equation, due to the appearance of ¢(¢) in H,(t), and
hence p(t) is a stochastic process. Evaluation of the aver-
age over the phase fluctuations is greatly facilitated by a
stochastic transformation of p(z),’6~3® which eliminates
the fast oscillations with the optical frequency w; in the
Hamiltonian, and turns the equation of motion (3.1) into a
standard form from the point of view of stochastic pro-
cesses. This transformation can be written most transpar-
ently in terms of the operator L, from Eq. (3.4). We de-
fine (1) by

—ilopt+¢(0)]L

o(t)=e Ep(t) . (3.7

From Egq. (3.1) we then obtain the equation of motion

iﬁé—?:[ﬁ[wL +x(0]Py +H, +H, (0),0]

—ifilo—ifido , (3.8)
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which now contains x (z) as the driving stochastic process,
rather than the phase ¢(¢) itself. Then the dressed-atom
Hamiltonian is defined by

Hy=—+A[AP,—P,)+Qd +d 1], 3.9

where A=w; —(w, —w,) is the detuning of the laser from
resonance. With the abbreviation for the corresponding
Liouvillian

Lo )p=#""[Hy,p], (3.10)

where the w; dependence is displayed explicitly for later
purposes, the equation of motion for o(t) acquires the
simple form

i%—ta—.:[Ld(wL)+x(t)Lg—iF—id>]cr, of=a, Tro=1.

(3.11)

Notice that this equation is equivalent to Eq. (3.1) since
the transformation (3.7) can be inverted.

IV. POPULATIONS

After an expansion of the exponential in the transfor-
mation (3.7), we can relate the matrix elements of p(¢) and
o(t). In particular, we find

(elo(®)|e)=(e|p(t)]e),

and from Trp(t)= Tro(t)=1 it follows that also the popu-
lations of the ground state of o(¢) and p(#) are equal. The
transformation only affects the coherences. Hence the
stochastic average of the populations of the levels can be
found from (o(1))y. Due to spontaneous decay, col-
lisions, and the laser linewidth, the solution (o(z)) st Will
reach the steady state

(4.1)

d= lim (o(t)), , (4.2)

t— oo
but the solution o(7) of Eq. (3.11) will never evolve to a
time-independent value, because of the persisting fluctua-
tions in x(z). Of particular interest are the steady-state
populations

n,=(e|dle), ng=(g|5|g)=1—n, . 4.3)

For the processes x(¢) under consideration, it will turn
out that the stochastic averages can be expressed more
easily in the Fourier-Laplace domain. Therefore we adopt
the transformation

Fa)= ["dre" T an),, (4.4)
0
which amounts to the identity
= lim —iwd(w) (4.5)

w—0

for the steady-state density matrix.

Suppose that a nonstochastic initial state o(t,) is given.
For a single-mode laser (independent-increment process)
the average atomic state is then found to be!?

i

dlw)= o(ty) (4.6)
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in terms of an operator inversion. The laser linewidth ap-
pears to be accounted for by the effective relaxation
operator

Wo=AL?, 4.7)

which is proportional to and depends only on the
linewidth A. Hence the details of the laser-field stochas-
tics do not enter the solution for the average density
operator. The unique steady state follows from

[Lylwy)—iWo—iT—i®)g=0, &'=5, Tro=1, 4.8)

which can be solved immediately. The population of the
excited state becomes

TQU T A+ A +a)

ne——— »
Q3 A+A+a)+A[(A—BP+(+ A+ 1 +a)?*]
4.9)
and the coherence of & is found to be
iA[TA+A+a+i(A—PB)]
(e|F|g)=—" n,.  (4.10)

Q+A4+A+a)

This determines explicitly & for a single-mode driving
field.

Combination of the definition (3.9) of H,; with the fact
that P, + P, equals the unit operator for a two-level atom
enables us to write

Ly(wp)+x(t)Lyg=Lilw; +x(1)) . (4.11)

With this observation, the equation of motion (3.11) can
be cast in the form

i%.——[Ld(wL 4x(6)—iT—i®]o .
Then, the stochastic average 6(w) for the random-jump
process (multimode field) can be expressed in the resol-
vent3®—4!

(4.12)

i

U(wl,w2)= > (413)

provided that the initial value o(¢y) is not stochastic (e.g.,
prescribed). The equivalent of Eq. (4.6) now becomes

1
B l—yfde(x)U(w,x

&w) ) [ dx P(x)U(w,x)o(ty) ,

(4.14)
and the steady-state density operator is the solution of
[ dx P)[1—yU(0,x)]5=0, (4.15)

where we used f dx P(x)=1. The operator U(0,x) is the
inverse of an x-dependent 4 X 4 matrix, and the feasibility
of an analytic integration depends on the form of P(x).
For a discrete distribution the integral reduces to a simple
summation, and Eq. (4.15) can be solved directly for &.
In Fig. 2 the behavior of the steady-state population n, as
a function of the mode-switching rate ¥ is plotted for the
three-mode laser from Fig. 1.

In the limit ¥ — o, which implies a very fast mode
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FIG. 2. The excited-state population n, for the case of a
three-mode laser field, calculated from Eq. (4.15), as a function
of the switching rate y. Frequencies are in the unit of the Ein-
stein coefficient A. The laser modes are situated at w; —24,
wr, and w; +2A, with probability distributions of 0.25, 0.5, and
0.25, respectively. The Rabi frequency equals =54, and the
detuning from resonance is A—pB=34 (w; =wo+F+3A4). The
collisional width is a=1.54. For y— o the population ap-
proaches the asymptotic value n,=25/63, which is indicated by
the dotted line.

switching, the atomic system responds only to the average
(x(2))4.** For a symmetric profile, like the three-mode
laser, we have (x(t)),=0, and hence the results reduce to
the situation of monochromatic irradiation. In particular,
the population of the excited level becomes Eq. (4.9) with
A =0, which is the dotted line in Fig. 2.

V. ABSORPTION PROFILE

A weak probe laser, with power I, (energy flow per
unit of time through a unit area, perpendicular to the
direction of propagation), frequency w, and polarization
€p, is tuned over the atomic resonance. The atomic dipole
p absorbs photons from and emits photons in the beam.
A formal expression for the absorption profile reads*3

I,(w)=BI, lim iRe fow dre'®r

t—o0 T
X Trp(D[d (1 +7),d (O] ,

(5.1)

which is the number of absorbed photons per unit of time.
The two terms in the commutator pertain to stimulated
absorption and emission, and the spectrum equals the bal-
ance between these two processes. Stimulated transitions
are governed by the Einstein B coefficient,

B=

6;26 [Celpelg)|?, (5.2)
0

which appears only as an overall factor.
In order to evaluate the absorption spectrum, we have
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to find the dipole correlation ( - - - ) from Eq. (5.1). If
we denote the atomic evolution operator by X(tz,t'), we
can write

p()y=X(t,t")p(t’), (5.3)

and the form of X(z,t') follows after integration of the

equation of motion (3.1). Subsequently, we transform the

Heisenberg representation from Eq. (5.1) to the

Schrédinger representation, which yields the relation
([d'("),d(1]) = Trp(n[d"(¢)),d(1)]

=Trd ' X(¢",0)[d,p(1)] , (5.4)

for ¢’ >t. With Eq. (3.7) we then obtain the equivalent o-
picture representation,

<[d1(t,)d(t)])=e-i[mL(t'—t)+¢(t’>—¢(t)]
X Trd Y (¢',1)[d,0(D)], t'>1t (5.5)

where Y(t’,t) is the evolution operator for o(t’), as it is
determined by Eq. (3.11). This dipole correlation function
can be written as

([d"),d)])=e

where the two-time stochastic operator C(t',¢) is defined
by

Clt',t)=e —i[¢(t’)—¢(t)]Y(tl’t)[d’o.(t)] .

—iop (t'—1t)

Trdfc(t',t) , (5.6)

(5.7)

Differentiating this expression with respect to ¢’, and re-
calling that Y(t',z) is the evolution operator for o(t’), we
obtain the equation of motion for C(¢',¢) for t' > ¢,

i%C(l’,t):[Ld(mL J+x (' Ly +1)—il —iP]C(t',t)
(5.8)

where the initial condition reads

C(t,t)=[d,o(t)] . (5.9)

Notice that the regression equation (5.8) is not identical to
the evolution equation (3.11) for the atomic density opera-
tor o(?), in that L, has been replaced by L, +1. This is
due to the exponential in Eq. (5.7). If we can solve Eq.
J

i
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(5.8) for the stochastic average (C (¢',2)), and then take
its Fourier-Laplace transform

Clw,t)= ft‘”art'f_»"w“’—"(C(t',z)>st , (5.10)

we can express the absorption profile in this solution as

I(@)=BI, lim ~ ReTrd"Clo—wy, 1) .

t—c T

(5.11)

Comparison with Sec. II shows the close resemblance with
the evaluation of the laser profile. We merely replace
g(t',t) by C(¢',t). The important differences are that (1)
the quantity C(¢’,t) is operator valued, and (2) the initial
condition of C(¢',¢), Eq. (5.9), is a stochastic operator as a
function of time, whereas g(t,t)=1.

The integrated profile follows from Egs. (5.10) and
(5.11). For any laser spectrum we find

J doI(0)=BL(C(t,0),, (5.12)
which is again
[ dol,(@)=BI, Trd'[d,c]1=BI,(n,—n,)>0.  (5.13)

Therefore the integrated spectrum is completely deter-
mined by the steady-state density matrix &, which was
evaluated in the previous section.

VI. SINGLE MODE

The stochastic differential equation (5.8) is easily solved
for its average ( C(¢',¢) ) in the case that the phase ¢(z) is
the independent-increment process.!> The result is

(Ct'1)) =e —ilLylop ) ~iW —ir—m>](z'—z><C(t’t))st ’

(6.1)

where the operator W, which accounts for the laser
linewidth, takes the form
W p=AP,pP,+PgpP,)+A'PgpP, . (6.2)

Next we take the Fourier-Laplace transform, use Eq. (5.9),
and take the limit t— . We then obtain the expression

IA(w)=BIp%ReTrd+

[d,5] (6.3)

W—wy —Ld((z)L )+IW+ +iT+id

for the absorption profile. Comparison of W with the operator W, :kng, which governs the laser-linewidth modifica-
tions on the time evolution of the atomic density matrix, shows that the time regression of the atomic dipole is affected
in quite a different way. In particular, W, involves the second laser parameter A, and hence the absorption profile is
not determined by the laser line shape alone.

With some matrix algebra we can evaluate expression (6.3) explicitly in terms of the elementary parameters. We ob-
tain

IA(w)=BIp(ng—ne)% Re {{QZ(%A +3M +a—iA)
H(A+A—iA[FA+N +a+i(A—B—iN)][TA+a—i(A—B+iA)]} !
X |32+ (A+A—iA)[F+A+N +a+i(A—B—iA)]
o
C(A—BP 4 (tA4+Ata)

[+A+A+a—i(A—B+A4+A +a+i(A—B—iA)] ||, 6.4
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with A= —w;. The integrated profile equals BI,(n;, —n,), and from Eq. (4.9) we find

A[(A=BP+(+ A+ 1 4a)]

Ng —N, =

which is independent of A’. Furthermore, we note that
the factor w—!'Re[ - - - ] in Eq. (6.4) has strength of unity.

Equation (6.4) tracks down explicitly the dependence of
I,(w) on the various mechanisms. Due to the presence of
collisions, the resonance condition reads w; =wp+ 5, since
B is the collisional shift, and it is easy to check from Eq.
(6.4) that on resonance (A—[=0) the spectrum is sym-
metric around w=w;. The dependence on the second pa-
rameter A’ is illustrated in Fig. 3.

VII. MULTIMODE

From Eq. (2.17) for the probability distribution
P.(x,|x;), it follows that the jump process x(¢) has a fi-
nite memory time y ~!. This prohibits the factorization of
the average (C(t',t)) into a regression operator for the
evolution t—t’, acting on the average initial value
(C(t,t))g, as is the case for the diffusive phase [Eq.
(6.1)]. Moreover, the average { C(t,2) ) does not provide
sufficient information for the evolution to t'>¢, but
(C(t',t)) depends also on the evolution of C(¢',¢) in the
recent past t'<t. Since the time evolution of C(z,t) is
determined by the equation of motion for o(t) [see Eq.
(5.9)], the average (C(t’,t)) will depend on both the re-
gression equation (5.8) and on the time-evolution equation
(3.11) for the atomic density operator. This problem of
the so-called initial correlations of two-time averages has

0024
IA(w\
0012
.0 —
° -10 -5 0] 5 10
(w-w)/A

FIG. 3. The  dimensionless  absorption profile
T(w)=1,(w)A/BI, as a function of the probe frequency. In
curve a (b) we have taken A’=A (4A), and it is seen that for the
Gaussian diffusion process (b), the line structure in the right
(blue) wing is almost washed out, in comparison with the
random-jump process (a). The dotted lines indicate the position
of the laser frequency w; and the resonance wo+ . The shift of
the absorption line to the left, with respect to the atomic reso-
nance, is identified as the ac-Stark shift, which is due to the
high intensity Q2=2542 The other parameters are a=1.54,
A=A,and A—B=3A4.

QLA+ A+a)+ A[A—BP+ (LA +A+al]

(6.5)

T
been dealt with in detail in a previous paper,*? so here we
merely apply the results.

If we solve the set of equations (3.11) and (5.8), which
are tied together with the boundary condition (5.9), take
the Fourier-Laplace transform, and substitute the result
into Eq. (5.11), we obtain

I(0)=BI,~ ReTrd" 14
™ 1—y [ dx P(x)U(A—x,x)

X [ dx P()UA—x,x){[d,U0,x)5]} , (7.1)

for the absorption spectrum in the case of a multimode
driving laser field. That we can express both resolvents in
U(w,,w,) is a consequence of the identity (4.11) and of the
fact that the additional term in square brackets in Eq.
(5.8), in comparison with Eq. (3.11), is just x (¢) times the
unit operator. In general, averages like (7.1) require two
different resolvents of the form U(w;,w,). The absorp-
tion profile (7.1) is plotted in Fig. 4 for two different
values of y, but with all other parameters the same.

VIII. STRONG-FIELD LIMIT

In the absence of the driving laser (Q2?>—0) the atom is
in the ground state (n, =1), and Eq. (6.4) reduces to

0045

0015

005 5 o 5 0

(w-w)/A

FIG. 4. The absorption profile from Eq. (6.1) for the same
parameters as in Fig. 3, but with the single-mode laser replaced
by a three-mode laser. The modes are situated at w; —24, oy,
and w; +2A4 with relative probabilities of 1:2:1. The mode-
switching rate equals ¥ =84 for curve a and ¥ =0.24 for curve
b. We notice that curve b assumes negative values in the blue
wing, which reflects an amplification of the probe beam, rather
than a net absorption. Furthermore, we see that, in comparison
with the single-mode case from Fig. 3, the absorption is roughly
a factor of 2 larger for every w. This is quite remarkable, since
all optical and atomic parameters are the same. The only differ-
ence is the mechanism that brings about the laser width (phase
fluctuations or mode switching).
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1

TA+a—i(w—wy—p)

1,,(m)=31,,§ Re : 8.1)

which is a Lorentzian with a HWHM of 54 +a at the
resonance wg—+f. The collisional width a adds to the
natural width %A, and the line is shifted over B. This
picture changes considerably for a strong incident field.
Probing an atomic system by a laser amounts essentially
to measuring the positions of the resonances and their
widths, but for Q%540 these resonances are determined by
the joint system of the atom and driving field, including
their interaction, rather than by the atom itself, as is the
case for Q?=0. If we inspect Eq. (3.11) for the density
operator o(t), we notice that the time evolution is deter-
mined by the Liouvillian L,(w;), which represents the
free evolution of the dressed atom. Phase fluctuations
[x(2)Lg], spontaneous decay (—iT"), and collisions ( —i®)
then affect the basic evolution, and give rise to relaxation
of the system. Hence the positions of the resonances are
fixed by the eigenvalues of L;(w; ), and their widths re-
sult from the details of the different damping mecha-
nisms.

Diagonalizing the dressed-atom Hamiltonian H,; from
Eq. (3.9) yields the eigenvalue equations for the dressed
states | ),

Hy|+t)=F5#Q'| ), (8.2)
with

Q' =A(1+Q%/A)'2, (8.3)
and the eigenvectors are found to be

| £)=a+|g)taz|e). (8.4)

The coefficients are given by

I,(0)=BI, 44

2087

al=5(17A/Q"), (8.5)
with the sign convention

a_>0, a,/A>0. (8.6)

The dressed states of Liouville space then diagonalize
Ly(w; ) according to

Lylop) | £ )T | =72 | £)(F | , (8.8)
and therefore the resonances with respect to w; are situat-
ed at w —w; =0 (twofold degenerate) and w —w; =FQ'.
That the eigenvalues are shifted over the laser frequency
@y is a result of the factor exp(—iwt) in the transforma-
tion (3.7).

The structure of the absorption spectrum can now be
exhibited clearly in the secular approximation,’ which
neglects the coupling between eigenvectors of Lj(w; )
with different eigenvalues. In other words, we assume
that each spectral line evolves independently. In view of
Eq. (4.11), this should be imposed for every (effective)
mode w; +x(¢) separately in the multimode case. In this
section we shall consider single-mode excitation, for
which we have only the frequency w;. Then the
linewidth gives rise to relaxation [the operators W, and
W, in Eqgs. (4.6) and (6.1), respectively], but not to addi-
tional resonances. The lines are positioned at w; —,
or,and oy +Q'. Let us consider the situation of a strong
laser field. Then the line separation | Q'| equals Q, and
is brought about by the field intensity only. This is the
ac-Stark shift. If we now evaluate the absorption profile
(6.3) in the secular approximation and take the limit of
large Q, we find, for A >0,

H5A+a+1)Q

1
— Re
™ ‘ 3BA24a+A+A)—i(w—w; +Q) ]

The spectrum consists of two distinct Lorentzians, situat-
ed at ow=w0,*Q, both with a HWHM of
+(34/24+a+A+1), and both with equal strength.
However, the line at w; + (1 has an opposite sign, and cor-
responds to effective amplification. At the resonance w;,
the line vanishes due to an exact cancellation of stimulat-
ed absorption and emission. Integration of Eq. (8.9) gives

J dolw)=0, (8.10)

which can be understood from the fact that n, =n, = 5 in
the saturation limit. Comparison with Eq. (8.1) shows the
peculiar feature that the collisional contribution to the
linewidths is a factor of 2 less than in the low-intensity
limit, and also the radiative width is altered. Further-

1 1
— Re .
™ l%<3A/2+a+x+x')—i(m_m—m ”

(8.9)

OO0l

[p(w)

-25

yO

25 [

(w-w )/A

-0.00I-

FIG. 5. Probe-absorption profile from Eq. (6.4) with parame-
ters =404, A—B=34, A=A"=A, and a=1.54. The posi-
tions of the lines are determined by the laser intensity Q2 only.
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more, we notice that the widths are proportional to the
laser parameters A’, but that the strengths depend only on
A. This property might supply an experimentally feasible
method for the measurement of A’. An example of a
high-intensity profile is plotted in Fig. 5.

IX. CONCLUSIONS

We have studied the probe-absorption spectrum of a
two-level atom in a nonmonochromatic laser field and a
perturber bath. General, recently published theories on
stochastic differential equations have been applied to ob-
tain exact closed-form solutions for the average of the
two-time dipole-correlation function in the steady state.
This has been accomplished for both a single-mode field
(independent-increment process for the phase) and a mul-
timode laser (random-jump process for the time derivative
of the phase). For single-mode irradiation the absorption
profile appears to depend on the two laser parameters A
and A’, where A equals the linewidth, and A’ depends on
the second-order intensity correlation. The parameter A’
ranges from A'=A up to A’=4A in general, and these two
extreme limits give identical results as the Lorentz wave
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(phase-jumping laser) and the phase-diffusion model [¢(z)
is Gaussian white noise], respectively. The single-mode
laser profile is a Lorentzian, but with the multimode rep-
resentation we can model any laser line shape. A special
case is the two-mode laser [random-telegraph signal for
x(2)], which can also be solved with a more simple for-
malism.*> The tendency of the absorption spectrum to
smoothen with increasing A’ or decreasing y (mode-
switching rate) is illustrated, and we find in Fig. 4 that
even the sign of the net absorption could be changed by
diminishing y. This implies that an absorbing system be-
comes emissive if the laser switches faster between its
modes, which is quite remarkable. Finally, we have ela-
borated on the high-intensity limit, for which the absorp-
tion profile appears to be antisymmetric with respect to
the laser frequency.
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