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The characteristic functional of the derivative ¢(¢) of a Markov process ¢(¢) and the related
multiplicative process o(1), which obeys the stochastic differential equation

io(t) ={A4 + ¢(t)B)o(t), have been studied. Exact equations for the marginal characteristic
functional and the marginal average of o(¢) are derived. The first equation is applied to obtain

a set of equations for the marginal moments of $(¢) in terms of the prescribed properties of
&(1). It is illustrated by an example how these equations can be solved, and it is shown in
general that @(2) is delta correlated, with a smooth background. The equation of motion for
the marginal average of o(¢) is solved for various cases, and it is shown how closed-form
analytical expressions for the average (o(#)) can be obtained.

I. INTRODUCTION

The equation of motion for the density operator of an
atom in a finite-bandwidth laser field or the equation for the
regression of the atomic dipole correlations assumes the gen-
eral form'?

1% 4+ 4B,
dt

where 4 and B are linear operators in Liouville space, which
act on the Liouville vector o(¢). Here ¢(¢) represents the
laser phase, which is considered to be a real-valued stochas-
tic process. The fluctuating phase broadens the laser line, but
the atom responds to the instantaneous frequency shift ¢ (¢),
which is the time derivative of the laser phase.® The process
gz'S(t) is again a stochastic process, and via Eq. (1.1) the state
of the atom or the correlation functions o (f) become sto-
chastic quantities. The issue in quantum optics is then to
solve the multiplicative stochastic differential equation
(1.1) for the average (o (¢)). The first solution was obtained
by Fox,* who assumed the process ¢ (¢) to be Gaussian white
noise, which corresponds to a diffusive Gaussian phase ¢(¢)
(the Wiener—Lévy process). This result was generalized to a
Gaussian process éi(t) with a finite correlation time and an
exponentially decaying correlation function®™”’ (the Orn-
stein-Uhlenbeck process), and to a process ¢(#), which is
again diffusive, but not Gaussian®® (the independent-incre-
ment process). Furthermore, Eq. (1.1) can be solved for
{o(1)) if we have é&(t) as a Markov random-jump pro-
cess, ! which models a multimode laser.'*'>

In these examples the solvability of the problem relies on
the Gaussian property of ¢(z), or hinges on the prescribed
stochastics of ¢ (¢). This implies that the process ¢ (¢} is actu-
ally considered to be the driving process. For a single-mode
laser in general, however, the phase fluctuations ¢(¢) are
specified rather than the derivative éS(t) of this process. A
prime example would be the atomic response to phase-
locked radiation,'® as it is generated for instance by some
ring lasers.'” In this paper we shall develop a general method
to solve Eq. (1.1) for the case that ¢(¢) is a given Markov

(L.L1)
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process. The formal theory will be exemplified by a specific
choice for ¢(¢), which models phase-locked radiation. Fur-
thermore, we shall study the time derivative of ¢(¢) itself
and extract the stochastics of #(¢) from the properties of

().

Il. THE STOCHASTICS OF ¢(?)

Let us define the phase ¢(¢) as a homogeneous Markov
process.'® Then its stochastics is fixed by the probability dis-
tribution P(¢,t) and the conditional probability distribution
P_(¢,|¢,) (r>0), which has the significance of the prob-
ability density for the occurrence of ¢(t+ 7) =¢, if
&(t) = ¢,. For ahomogeneous process this is independent of
t by definition. The higher-order statistics is now determined
by the Markov property.'® From the obvious relation

fd¢’ P,_, ($|¢)P(¢' 1) = P(d,t), t>t,,

it follows that it is sufficient to prescribe the probability dis-
tribution P(¢,t) for a single time point ¢, only. The time
evolution towards ¢> ¢, can then be found from Eq. (2.1)
and P,_, (414",

The conditional probability distribution obeys the Mas-
ter equation’®

9 p (4ild) = fd¢z{W(¢3|¢2)

or
—a($;)6(¢; — ¢2)}Pf (6,10))
(2.2)

with W(¢'|#) >0 as the transition rate of the process from ¢
to ¢’ and

a(g) = f dsW(S'|p)

which is the loss rate of ¢, independent of the final value ¢'.
The initial condition for Eq. (2.2) reads

Po(¢s)¢) =6(ds — 1), (2.4)
so a given W(¢'|¢) determines P, (@;|é,) for every 7>0.

2.1

(2.3)
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Hence the stochastics of a homogeneous Markov process
& () is fixed as soon as P(¢,t,) and W(¢'|¢$) are prescribed.
These functions will from now on be assumed to be given.

lIl. THE CHARACTERISTIC FUNCTIONAL

A convenient way to represent the stochastic properties
of a stochastic process is by means of its characteristic func-
tional.>? Since we are concerned with the process ¢#(¢), we
define

Z[k]l= <exp(—if dsg's(s)k(s)», t>t,, (3.1)

which is a functional of the test function k£ (¢). Here the angle
brackets denote an average over the stochastic process ¢(?)
or (1), whatever is prescribed. A general method to evalu-
ate Z, [ k ] for the case where ¢ (7) is a homogeneous Markov
process has been given by van Kampen.?!

Knowledge of the characteristic functional Z, [k ] de-
termines completely the stochastics of ¢(#), which can be
seen as follows. Choose k(s) as the sequence of § functions

k)= — 3 8Gs—t)ki, >0, (3.2)
I=1
and take t = o in (3.1). Then we find
Z_ [k] = {explik,d(t,) + - + ik $(1))), (3.3)

which is the moment-generating function of ¢ (¢). If we write
2, (k,st,;.5k1,t)), then we can obtain the moments of
¥(t)=¢(2) according to

('/'(tn)" '¢(t1))

wn 0 a
=(—D" 3 ﬁ;
X2z (Kpslyseskist) |1y = o =k, =0 5 (3.4)
and the probability distributions by
P, (hustisthts)
- (211”" fdk,, e-dk,
Xe Kb m Kby (e bsesknty) (3.5)

where we have introduced F’,, in order to distinguish from
the probability distributions for ¢(#) itself.

IV. THE MARGINAL AVERAGE
A. General

The exponential in Eq. (3.1) isa fuqctional of both k(¢)
and ¢(1), so it depends on the values of ¢(¢) in the complete
interval [z,,7]. After the average has been taken it will be
only a functional of k(). The general attempt to evaluate
averages of a functional is to derive an equation for the aver-
age. For subsequently solving this equation for functionals
which involve Markov processes, this scheme is most conve-
niently carried out by an intermediate introduction of
Burshtein’s marginal averages.?? Since in our problem the
stochastics of ¢(¢) is assumed to be given, the appropriate
marginal characteristic functional, which is related to
Z,[k ], should be defined as
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0. 1gok 1 = (861 — doexp( - zf &s ko)),

(4.1)
for t>1t,. The initial value is then
Q:o [¢o:k ] = <6(¢(to) - ¢o)> = P(¢o’to) ’ (4.2)
and Z, [k ] follows from Q, [#,,k ] according to
Z,1k1 = [ b, 0,180k 1. 43

For t = 1, we find with Eq. (4.2)

Z k] = f do P(Jote) = 1,

in agreement with Eq. (3.1).

In order to derive an equation for the time evolution of
Q, [0,k 1, we first increase f by a small amount At > 0. This
gives

0., sk ] = (S60 + A0 — 49
Xexp{ — i@t + Ar) — ())k(2)}

Xexp( - z'f ds:}(s)k(s))) .

Subsequently, we expand the exponential functional of
&(s) in a series, and we take the average in (4.4) term by
term. Hereafter, we apply the Master equation (2.2) for
P, A, (¢|d,) and take the limit Az—O0. This yields an equa-

tion for the marginal average, and explicitly we find
2 0,180k 1= [ d6UW(4ol8) — a($)5(8 — 91}

Xe~ b= KD 0 [4k]. (4.5)

The Markov process ¢(¢) is characterized by P(ég,t,) and
W(dy|#), which, respectively, determine the initial value
and the time evolution of Q, [#,k ]. For a specific choice of
W(é,|¢), we have to solve Eq. (4.5), after which the charac-
teristic functional Z, [k] can be obtained from Eq. (4.3).

Notice the resemblance between the result (4.5) and the
Master equation (2.2). If we multiply Eq. (2.2) by P(4,,¢,),
take 7 = t — ¢, and apply the relation (2.1), we find

%P (o) = f AL ($ol$) — a($)8(do— D) IP(SD) ,

(4.6)

which is the Master equation for P(gg,¢). This equation is
identical to Eq. (4.5), including the initial condition (4.2), if
we set £(¢) =0. On the other hand, it follows from Eq. (4.1)
that Q,[d.k] = (8(d(£) — &) = P(Pot) if we take
k(2z) = 0, so that in this case Eq. (4.5) should indeed reduce
to Eq. (4.6).

(44)

B. independent increments

In order to display the usefulness and applicability of
the marginal-functional approach, we consider an example.
Let us specify the transition rate by

where the function w(7) is normalized as
H. F. Arnoldus and T. F. George 341

Downloaded 11 May 2004 to 130.18.54.201. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



fdn w(n) =1. (4.8)

The stochastic process ¢(¢) will be defined on the real axis,
with — o0 <@ < «. The assertion (4.7) states that the prob-
ability for a transition ¢ — ¢, depends only on the phase dif-
ference ¢, — ¢, and from Eq. (2.3) we find thata(¢) =y, so
that the total loss rate for ¢ is independent of ¢. This is a
diffusion process, and it is commonly referred to as the inde-
pendent-increment process. As an initial condition for the
probability distribution, we take

P(g,t) =6(4) . (4.9)

Comparison of the Master equations for P, (¢|¢') and
P(¢,t) then shows that the probability distribution and the
conditional probability distribution are related according to

Pt——to(¢|¢0) =P(¢—-¢0,t) . (4.10)
The Master equation (4.6) for P(¢,t) can be solved by
Fourier transformation with respect to ¢. If we write

i’(p,t) = (¥?V) = JW d¢ e?P(g,1) , (4.11)

which has f’(p,to) = 1 as the initial condition, then the solu-
tion of Eq. (4.6) is immediately seen to be
P(p,t) = er@®) —NG—t) | 5y (4.12)

in terms of the Fourier transform i (p) of w(¢#). Note that
W(0) = 1, as a result of the normalization (4.7). Along the
very same lines we can solve Eq. (4.55) for the Fourier trans-
form Q, [p,k]. We obtain

a, [p.k ] =exp(—yf dsf dé(1 —ei"’"’_"‘s”)w(gb)),
t — ®
(4.13)
after which the characteristic functional follows from

Z k1 =0.00k],
which yields the familiar result.®

(4.14)

V. THE MARGINAL MOMENTS
A. General

If we take k(s) as the sequence of delta functions (3.2)
in the definition (4.1) of the marginal characteristic func-
tional, it assumes the form

0,10k 1 = (86 — dofesp(i 3, k)0 - 0)).

(5.1)

with¢(z) = fﬁ(t) and ©(¢) the unit-step function. Just as we
can find the moments (¥(z,) - ¥(t,)) of #¥(¢) from
Z_ k], we can obtain the marginal moments
(5(@(2) — dolip(2, )~ 9(2,)) from Q, [do.k]. Obviously the
integral over ¢, of the marginal moments yields the mo-
ments. The characteristic functional Z, [k] becomes inde-
pendent of ¢ if t>¢, for all /, but @, [d,,k] remains time
dependent. This is due to the appearance of §(¢ () — dg).
Furthermore, the time ¢ is a dynamical variable in Eq.
(4.55), so that care should be exercised in the time ordering.
The marginal moments follow from Q, [#,,k] by differenti-
ation, according to
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(8lp(8) — dop(2,) - P(1,))O(t —1,) Ot — 1)

= —i)“ai-~-—‘9— 0, [4ok ]

5.2
k, Ok, (3-2)

ky=---=k =0
Equation (4.5) for Q, {#,,k] implies an equation for the
marginal moments. First, we note that

exp{ - ’(¢0 - ¢)k(t)}Qt [¢’k ]
= {516 — drexp(i 3 bl — #1650 — 1)

+ :p(t,)e(t—t,)}» ) (5.3)

After substituting this expression in the right-hand side of
Eq. (4.5), differentiating with respect to %,,...,k,, setting
k, = -+ = k; = 0, and integrating over time, we obtain

(8(d(2) — o) (t,) - 9(1))O(t —t,) - O(t—1))
= [ 4w 4l$) — a()568,— $1)

xfdt’<6(¢(t') —H(do— )" —1,)

+¢(,)01¢ —1t,)}

o {(Go— )t — 1) + ¥ (1)O( — 1t} .
(5.4)

When we set ¢ > ¢, for all /, we have a Master-like equation
for (S(¢ (1) — o) ¥(2, ) 9¥(2,)), and the lower-order mar-
ginal moments (5(d(2) — bl (¢,,) - ¥(t,)) with m<n
appear as inhomogeneous terms. Hence Eq. (5.4) should be
solved successively for n =1, n = 2,... . We note that Eq.
(5.4) provides an explicit expression for (#(¢, ) -#(¢,)) in
terms of the lower-order marginal moments after an integra-
tion over ¢,. Indeed, from the property
fd¢o{W(¢o|¢) —a($)8(¢—¢)} =0, (5.5)
the term with (S(¢(z") — @)¢(z, ) - -¥(¢,)) on the right-
hand side of Eq. (5.4) vanishes after an integration over ¢,,.

B. Lowest orders

In order to exhibit clearly the structure of the equation
for the marginal moments, we consider the cases 7 = 1 and
n = 2 in some more detail. After a slight rearrangement, Eq.
(5.4) for n = 1 can be written as

(8(p(2) — do(t,))
= f A6 W (Bold) — a($)8(do— $)}

x| do— 9P

+f ;d"(a(‘“") ~owan),

for ¢>¢,. This integral equation in time is equivalent to the
differential equation

(5.6)
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% (B((1) — do)¥(1)))

- f AW ($o|9) — a($)8(do— )}

X(6(d () — SW(2))), (5.7
together with the initial condition
(Blg(1)) — dol(2)))
= [ @bt 4i#) — 0§56~ $))
X ($o — )P ($,t,) . (5.8)
The equation for the first marginal average

(8(d(1) — Po)¥(ty)) is identical to the Master equation
(2.2), but with a different initial value.
Integration of (5.8) over ¢, yields

1)) = f d¢f ddo W(dol$) (do— HPB.1)

(5.9)

which expresses explicitly the average of (#(¢,)) in the given
functions W(¢,|#) and P(4,t,). With the aid of the Master

equation, we can cast (5.9) in the form
a3

t))=|dod—
W) = [ dp o -

as it should be.

The solution of Eq. (5.6) for (8{¢(t) — do)¥(¢,)) pro-
vides the input for the explicit expression for the two-time
correlation function, which becomes

WEP(e))
- f dé j db LW (o) — a($)8(bo — $)}

X{(do — ¢)?6(2, — 1,)P(,1,)
+ (o — @) ({8(P(t,) — B)(1,))O (1, — 1)

+ (8((1,) — BY(£,))O(2; — 1,))} . (5.11)
The appearance of 8(¢, — ;) shows that the time derivative
of any Markov process is § correlated with a continuous
background.

P(dit,) = dit @),  (5.10)
1

C. Random jumps

Equation (5.11) for instance might seem awkward, but
it is really straightforward in its application. Let us illustrate
this with an example. Consider the random-jump process
(1), defined as a stationary process with transition rate

W(é|¢') =yP(4), y>0, (5.12)

in terms of an arbitrary probability distribution P(¢). Equa-
tion (5.12) is equivalent to the statement that the probability
for a transition ¢’ —¢ is independent of the initial value ¢’
(see Ref. 13). From Eq. (5.9) we immediately derive

(Y(t)) =0, (5.13)

which is, in view of (5.10), necessary for a stationary pro-
cess. From (2.3) we obtaina(¢) = ¥, and the solution of Eq.
(5.7), with initial value (5.8), is readily found to be
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(5(8(1) — Gl (1)) = ¥P(do) (do — by)e 7=, 1>t
(5.14)

Here we have introduced the moments of P(¢) as
b= [as 4o, (5.15)

which are parameters of the process ¢(¢). Solution (5.14)
can be substituted into Eq. (5.11), which gives the correla-
tion function
W)Y()) =y(b,— b}){28(t, — 1) —ye~"=" 11},
(5.16)
for all ¢,,¢,. From (5.15) it follows that
b,—b2>0, (5.17)

so that for ¢,5#t, the correlation (5.16) is negative. For
t, =t, the & function dominates the negative term, so that
(¥(2,)?) is positive, as it should be.

VI. THE MULTIPLICATIVE PROCESS

So far we have considered the stochastics of é&(t) itself,
and its characteristic functional. In this section we shall gen-
eralize the method, in order to solve the multiplicative equa-
tion (1.1). To this end we write the formal solution of (1.1)
for the stochastic vector o(z) as

a_(t) =e—iA(l—fo)Texp[ —lf ds¢(s)§(S)]0'(to) ’
fo

(6.1)
where T is the time-ordering operator and B(¢) is defined as

B(t) = e~ Be— M- (6.2)

In close analogy to the definition of Q, [d4.k] in Eq. (4.1),
we now introduce the marginal average of o(¢) by

$(@ot) = (8(p(1) — oo (D)) .

Then we substitute the expression (6.1) for o(¢) and replace
tby t + At, which gives a formula similar to Eq. (4.4). That
this can also be done for the time-ordered exponential is
sometimes referred to as the semigroup property of the evo-
lution operator. Along the same lines that led to Eq. (4.5) we
now find

(6.3)

ig;;wo,o = AL(Bot) +i f AW (old)
- a(¢)5(¢0 - ¢)}e_ i(¢°—¢)8§(¢’t) s

(6.4)
or equivalently
. d ,
(’ “'9; —A4A+ la(¢o)>§(¢o,t)
=ifd¢ W(do|p)e " P—PBL(4,t) . (6.5)

Notice that the operator B appears in the exponential, rather
than B(z), as could be expected by analogy with the charac-
teristic functional. For a given stochastic process ¢(¢), e.g., a
given W(¢|¢') and P(g,t,), we have to solve Eq. (6.4) with
the initial condition
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$(Poto) = (8le(1o) — dolo(to)) , (6.6)
after which (o (#)) follows from
(o()) = fd¢o $(dost) - (6.7)

For a given nonstochastic state o(z,), the initial condition
reduces to

$(Posto) = P(douto)o(ty) (6.8)

which differs from (6.6) by the fact that there are no initial
correlations. This means that the process ¢ (¢) has no mem-
ory to times smaller than ¢,, and consequently its evolution
for 2>¢,is completely determined by its initial state o(¢,). It
was emphasized by Arnoldus and Nienhuis'® that the com-
mon choice £(dg,ty) = P(dosty) (0(2,)) is merely an ap-
proximation which only holds for small correlation times of

é(2).
VIl. SOLUTIONS

A. Independent increments

Equation (6.5) for the marginal average of o(¢) can be
solved for the independent-increment process with the same
procedure as in Sec. IV, where we obtained the characteristic
functional. If we adopt the Fourier transform

Ept) = F dp e°?t(g,1) = (e#*PVo(t)) ,

where the second equality follows after application of Eq.
(6.3), then {o (1)) can be found from

(7.1)

(o)) =0, . (7.2)

With the technique of Sec. IV we can find 2 (p,t), and if we
differentiate the result with respect to time, we find

i%g‘(p,t) =4 —iWE)EpD) (7.3)
with
Vo =y [ anci—eme-muem. a4

The operator ﬁ’(p) accounts for the phase fluctuations. If
we set p =0 in Eq. (7.3), we achieve the equation for
{o (1)), with solution

(o(1)) = e~ M- FON=0 (5(1)) (7.5)

for £>t,. We note that (o(¢)) can be expressed in terms of
{o(1,)) for this process, so that there are no initial correla-
tions for the diffusion process. The process ¢ () has no mem-
ory, and with the results of Sec. V it can be shown that $(t)is
indeed delta correlated. This means that {$(¢, ) *¢(#,))
for all n contains only & functions, which implies the factori-
zation in (7.5).
A special case arises if we take

yw(n) =yd(n) + 486" (), A>0, (7.6)

where the primes on the § function denote differentiation
with respect to its argument. It is easy to check that this
process is the Wiener—Lévy process, or the phase-diffusion
process. If we substitute (7.6) into (4.12), we find that
P(¢,t) is Gaussian, and obviously this is the only Gaussian
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limit of the diffusion process. The operator ﬁ’(p) in (7.4)
reduces to

W(p) =Ai(p — B)?, (1.7)
and the equation for (o (#)) becomes
i% (0(1)) = (4 —iAB?)(a(t)), (7.8)

which is the result of Fox.?

B. Ornstein-Uhlenbeck process

The diffusion process has no memory and is essentially
nonstationary. The initial distribution P(é,t,) = §(¢) dif-
fuses over the whole ¢ axis, — o <@ < . Theinclusion ofa
finite memory time can stabilize this process. Let us define
the transition probability as

W(do|d) — a($)(do — &)
= 28" ($o— )
+ vd6' (¢ — ¢) , A>0, ¥>0. (7.9)

Then the Master equation (4.6) for P(¢,t) becomes the
Fokker-Planck equation'®

ad ( a? ad )

— P(d,t) ={A — — ¢ |P(¢,t), 7.10

EY (42) ¢9¢2+y3¢¢ (¢,1) ( )
which has the solution, for t— «,

P(¢) = Qma®) V=¥ P =A/y. (7.11)

This P(8), together with W(é,|#) from (7.9), defines a sta-
tionary Gaussian-Markov process, the Ornstein—Uhlen-
beck process. In the limit ¥ —0and A finite (s0 0° - o0 ), the
process ¢(2) reduces to the Wiener-Lévy process from Sec.
VII A. From (7.11) we see that ¢(¢) is centered around
¢ = 0. The distribution is Gaussian with a variance o”
around the average ¢ =0. The preference for ¢ =0 ex-
presses that this process can be considered as a model for
phase-locked radiation.

With the specific choice (7.9) for the transition rate, the
Master equation (6.5) assumes the form of a second-order
partial differential equation. We obtain

a
.9 , Bz) ’
(tc?t A+ iAB?)5(4,0)

= iy{02(2iB + —;?) —‘% + (iB + %)qﬁ];(c&,t) .
(7.12)

In thelimity—-0and A = yg\z finite, we recover (the Fourier
inverse of) Eq. (7.3) with W(p) from Eq. (7.7).

In order to obtain a solution of Eq. (7.12), we start with
a Fourier transform with respect to ¢. The transformed
equation then reads

a Ea)
| —— A MBZ) N
(z F + ¢ (p,t)

(7.13)

which is still a partial differential equation. Since we are
interested in £ (0,¢) = (o(¢)), the obvious approach? would
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be a Taylor expansion around p = 0. This yields however a
cumbersome inhomogeneous four—term recurrence relation
for the Taylor coefficients. This can be avoided by the trans-
formation'’

Epy =Pp)gon) (7.14)
which defines £(p,?). The Fourier transform of the probabil-
ity distribution is explicitly

P(p) = (eP¥D) = g— /2P (1.15)
and in particular we have f’(O) = 1. The equation for g (p,?)
becomes

J
2 _4 MBz)é 2
(1 P + (p,t)

, J 9\

and it has to be solved for
8(0,1) = (o(1)) . (7.17)

Let us define the Taylor coefficients 7, (¢) by the expan-
sion

00

ton= 3 Bqw), (7.18)
n=0 .
which can be inverted as
m, (1) = (a(t) (i)" P ‘5“""”2> (7.19)
3lp p=0

Substitution of (7.18) into (7.16) then gives the equation for
the Taylor coefficients

(i%—A +iAB? +i7n)1r,,(t)

=¥B(no’m, _, (8) — 7, 1 (D)), (7.20)
which has to be solved for
mo(t) = {(a(1)) . (7.21)

Equation (7.20) looks like a homogeneous three-term recur-
rence relation, but it will be shown below that the time derivi

K(w) = vB 1o?

ative d /Jt gives rise to an inhomogeneous contribution. No-
tice that for n = 0 Eq. (7.20) reduces to a two-term relation
between 7,(¢) and 7,(¢) only.

Equation (7.20) is most easily solved in the Laplace
domain. If we introduce

(@) = f B dte“" = (1), (7.22)
then (7.20) attains the form
(@ — A+ iAB? + iyn)7(w) — ¥B (nd*#, _ (@)

—~ Ty (@) =im, (8) . (7.23)

Here the initial values 7, (¢,), for n =0, 1, 2,..., appear as
inhomogeneous terms. The set 77, (¢,) for all n represents the
initial correlations of o(?) on ¢t = ¢t,, and they connect the
time evolution of (o(#)) for ¢>1, to its recent past.'* In
other words, Eq. (7.23) relates the set 7, () for ¢ > ¢, to the
initial set 7, (¢,).

Equation (7.23) can be solved for an arbitrary initial set
m, (t,) by standard techniques,”® but the solution is not
transparent. In order to elucidate the structure of the solu-
tion, we assume a nonstochastic initial state o(¢,). From Eq.
(7.1) we thenfind at t = ¢,

E(p.to) = B(po(ty) (7.24)
and from Eq. (7.14) we obtain
8(p,to) =0 (1) . (7.25)

Hence at ¢ = ¢, the vector g(p,?,) is independent of p, and
therefore the expansion coefficients are simply

T, (1) =8,00(ty) . (7.26)

Then only the recurrence relation for n = 0 is inhomogen-
eous, and the solution of (7.23) for #y(w) = (6(®)) is read-
ily found to be

(o(0)) ={i/lo — 4 +iAB? + K(w)1}o(t,) . (7.27)

The effect of the finite correlation time, e.g., the deviation
from the Wiener—Lévy limit, is accounted for by the opera-
tor

¥B (7.28)

©—A+IiAB? + liy + yB

o—A +1'/1B2+2iy+7/B3.in

which indeed vanishes for -0, 4 finite. In this limit, Eq.
(7.27) is the Laplace transform of Eq. (7.8).

The explicit expression (7.27) provides the exact solu-
tion for situations where the initial state is nonstochastic and
for cases where the solution is independent of the initial
state. As an example from quantum optics, we mention that
Eq. (7.27) with 0(t,) = 1,4 =0, and B = 1 represents the
laser spectral profile. Another example pertains to the long-
time behavior of the solution {(o(¢)). If there is any damping
in the system, which might be caused by the stochastic fluc-
tuations itself, then the solution for ¢3 ¢, will become inde-
pendent of the initial state. If we indicate by & the solution
{o(2)) for t— o, then & obviously obeys the equation

(4 —iAB*—K(0))5=0. (7.29)
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|
For the problem of atomic fluorescence in a strong laser

field, this is the equation for the atomic steady-state density
matrix, which determines the fluorescence yield. There, the
solution & of Eq. (7.29) is unique.

Vill. CONCLUSIONS

Solving the multiplicative stochastic process o (¢) for its
average is rarely feasible by analytical methods. This is
mainly due to the finite correlation time of the driving pro-
cess ¢(¢), which prohibits the factorization of the average of
a product into the product of the averages. Averages of a
functional of ¢ (¢) might factorize if the process is delta cor-
related. For Markov processes, however, we can simulate a &
correlation by the introduction of the marginal average
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§(Post) = (6(¢(t) — do)o(2)). The combination of the mul-
tiplication by §(¢(¢) — @) and the Markov property of the
probability distributions of ¢ (z) then gives rise to a factori-
zationlike result for the formal expression for the average.
Along the same lines as in a factorization assumption, we can
now derive exact equations for £(#,). In this paper we have
studied Eq. (1.1), where we considered the stochastics of
#(1) to be given. The equation of motion for the marginal
average turned out to be Eq. (6.4). The applicability of this
equation was illustrated by some examples.
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