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An atom, bounded to the surface of a crystal, absorbs photons from a strong incident laser field and subsequently
emits phonons into the solid. In this paper we study the influence of the laser linewidth on this photon-phonon
conversion process. The appearance of coherences obscures the interpretation of the equation of motion in terms
of transition rates and prohibits the derivation of a master equation in the transient region. The absorbed energy
from the driving field, which is assumed to be resonant with a set of two levels only, results from the work done by the
external field on the transition dipole. In the steady state, the energy absorption from the radiation field equals the
energy emission in the phonon field. It is shown that in this long-time limit the coherences can be expressed in
terms of the populations, and hence the system is again described by a masterlike equation. Specific aspects of the

finite laser bandwidth are pointed out.

1. INTRODUCTION

Irradiation of dye-coated surfaces or adsorbed atoms on a
crystal with strong infrared laser light amounts to photon—
phonon conversion reactions. The internal vibrational
modes of the molecule or the atom-surface bond absorbs
photons from the radiation field (stimulated excitation), and
the subsequent spontaneous decay (coupling to the phonon
field of the crystal) is accompanied by a phonon emission
into the solid. Additional processes such as thermal or radi-
ative desorption and spontaneous emission of radiation are
negligible in comparison with the thermal transitions in the
adbond. In this fashion the resonant coupling of vibrational
modes of adsorbed species with the incident electromagnetic
field provides an effective method for heating a crystal,
which itself might be transparent for the impinging light. In
this paper, we study the effect of the laser linewidth on the
adbond-mediated energy transport from a laser field into
the phonon field.

The interaction of an adsorbed atom in a vibrational bond
with a harmonic crystal is commonly described by a Pauli-
type master equation.!® The distribution of the population
over the vibrational levels is determined by the phonon
absorption and emission processes, which occur at a rate
ni(t)ay; for a transition from the initial state |k) to the final
state |l). Here the rate constants ay; depend on the tem-
perature of the crystal and the shape of the potential well in
which the atom is bounded (apart from an overall k&, [-
independent constant). The ag/’s gain in general contribu-

“tions from single-phonon and multiphonon processes. The
population n.(t) of level |k) follows from the master equa-
tion and the initial state at t = 0, whereas thermal relaxation
to a unique steady state is inherent in the structure of the
master equation.

Incorporation of the presence of a weak driving laser field
is easily done in a perturbative way.”12 Stimulated absorp-
tion and emission rates are included in the master equation
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as additional transitions between optically coupled levels.
The energy-absorption rate from the radiation field is then
simply the difference between the number of absorptions
and emissions per unit time multiplied by the photon energy
hwr. This approach does not apply any longer for an intense
laser field, since the appearance of multiphoton processes
prohibits such a simple interpretation of radiative transi-
tions.13-15 In two previous papers,'®17 we showed that
transparent mechanisms can be recovered, provided that we
diagonalize the laser—atom interaction first. This was ac-
complished by a transformation to the famous dressed-
states representation.!® With respect to these joint atomic
and laser states, including the interaction, the phonon relax-
ation processes were understood as transitions between
dressed states; then every transition |k) — |I), which occurs
at a rate ny(t)ay; (the subscripts k and | now refer to dressed
states), corresponds to a phonon absorption from or emis-
sion into the crystal, where the phonon energy equals the
level separation of the states |k) and |l). Summation over
all transitions then yields the net energy flux into the crystal.

The derivation of these energy-transport equations hinges
on the existence of a master equation for the level popula-
tions, both in the low-intensity limit and in the dressed-state
picture. This enables us to identify the -occurring transi-
tions, the rate constants, and the energies of the involved
phonons and photons. A simple balance then gives the
expression for the energy transport from the laser into the
atomic bond and finally into the crystal. It is not so obvious
that this procedure can be employed in general, because the
equations for the populations might couple to the time evo-
lution of the coherences, which obscures any direct interpre-
tation. We shall show that this problem already emerges
when a finite laser linewidth is taken into account. A more
sophisticated approach to the energy-transport problem, an
approach that does not rely on a specific structure of the
equation of motion, will be used to tackle this apparent
complication.
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2. DRIVEN ADBOND

An atom is bound to the surface of a harmonic-lattice crystal
by attractive electromagnetic forces. If we denote the non-
degenerate vibrational eigenstates by |k, we can write the
Hamiltonian of the adbond as

H, = Z hw, Py (2.1)
k

“in terms of the energy eigenvalues 4w and the projectors Py,

= |k) (k| onto the eigenstates. This system is irradiated by a

-laser field, with an electric component

E(t) = E,Re ¢ exp{—ilwt + ¢(t)]} (2.2)

at the position of the atom. Here Ej is the real amplitude, ¢,
is the normalized polarization vector (e.* - e, = 1), and ¢(2) is
a stochastically fluctuating phase, which broadens the laser
line around its central frequency w;. The coupling to the
atomic bond is established by a dipole interaction H,.(t) =
—u - E(t), with p the transition dipole-moment operator
between the eigenstates |£). Phonon absorption/emission is
considered a relaxation process, and hence it is most conve-
niently accounted for by a Liouville operator I', which acts
on the density operator p of the adbond according to'®

Tp="%> aw(P + pPy = 2Pi(klolk)).  (2.3)
kl

Every term k, [ pertains to a transition |EY — |1y, and ay; is
the inverse lifetime of level |k) because of its spontaneous
decay (wp > w;) or excitation (wp, < w;) to level [1y. The laser-
driven and thermally damped atomic bond is then repre-
sented by the density operator p(t), whose time evolution is
governed by the full equation of motion

., d 3
lh_p = [Ha’ p] + [Har(t)y P] - Lth, P? =p

Trp = 1.
at e

(2.4)

The laser field E(t) is a stochastic process because of its
randomly fluctuating phase, and this turns Eq. (2.4) into a
stochastic differential equation for p(t).

We will assume that only two levels le) (excited) and lg)
(ground) of the bond are significantly coupled by the inci-
dent radiation. The detuning between the optical frequen-
cy wy, and the level separation wp = w, — wg > 0.0f the driven
transition will be indicated by

A= wp — wy, (2.5)
and the coupling strength is expressed in the Rabi frequency
Q= Ejl(elu-elg)l /h. (2.6)

The interaction Hamiltonian with the radiation field then
attains the form

H,(t) = — Y,hle) (glexpi—ilwt + ¢(t)]}

+ Hermitian conjugate. (2.7)

3. TRANSFORMATION AND AVERAGE

The interaction Hamiltonian H,,(t) oscillates with frequen-
cy wy and is stochastic through the phase ¢(t). With a
stochastic transformation to the rotating frame, we can elim-
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inate the exp(+iwrt) dependence and facilitate the appear-
ance of ¢(t).221 We define the density operator o(t) as

o(t) = expl—ilwyt + ¢()|Pp(t)explilwt + o(t)]Pg, (3.1)

which has the equation of motion

i% = h"[Hy, o] + ¢(t)[P,, o] — iT0, (3.2)
where the time-independent dressed-atom Hamiltonian is
explicitly

Hy= Y hoP;+'hhiw, + oy + @) (P, + Py

i*eg

— hAP, — P, — YohQ(le) (gl + lg) (el). (3.3)

Now the time derivative ¢(t) of the phase enters the equa-
tion, and in a multiplicative way [e.g., as ¢(t)a(t)]. Notice
that no information is lost in the transformation, since Eq.
(3.1) can be inverted.

The solution of the equation of motion [Eq. (3.2)] for o(t)
refers to a single realization of the process ¢(t), but only the
average over the stochastics of the phase have a significance.
In general, this average would depend on the details of the
stochastics of ¢(¢), but it can be shown?2 that for Eq. (3.2) the
average is quite insensitive to the precise specification of the
process as long as the phase fluctuations represent the
broadening of a single-mode laser line. For any Markoffian
diffusion process ¢(t) and for the uniform random-jump
process, the average of Eq. (3.2) acquires the simple form

. dII

l E = h_l[Hd, H] = iWH = er, (3-4)

where we have introduced the abbreviation
II(t) = <o(t)*, (3.5)

with the slashed angle brackets denoting a stochastic aver-
age (in order to distinguish from a quantum-mechanical
average (...)). The operator W, which accounts for the
laser linewidth, equals

WII = >‘[Pg: [Pg7 H]], (36)

where \ is the half-width at half-maximum of the Lorentzian
laser line. Alternatively, we can write W as

WIIL = \(P,II + 1P, — 2P (glTllg)), (3.7)

which is reminiscent of the structure of the phonon-relax-
ation operator I' from Eq. (2.3). Just as ay; can be consid-
ered a contribution to the width of level |k ), we can interpret
92X as the additional width of the ground state, which is due
to phase fluctuations. This can also be inferred from Eq.
(2.2) if we rewrite it as

E(t) = EjReg, exp{—i jt ds[w; + (b(s)]}- (3.8)
0

The laser frequency wy, can be regarded to be shifted instan-
taneously by the amount #(t), which diminishes or increases
the detuning A = w;, — wo by ¢(t). Effectively, this gives rise
to a width 2\,
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4. MATRIX ELEMENTS

Equation (3.4) is an operator equation for the density matrix
II(t) of the driven adbond. This determines the popula-
tions, abbreviated as

I0,(t) = (kII(t)Ik), (4.1)

and the coherences (k|IL(t)|l), B = [, with respect to the
eigenstates |k) of the unperturbed bond. After taking the
- diagonal part of Eq. (3.4), we find for the time evolution of
the populations

d

3 = —Ad,+ z Ma,, ez, (4.2)
k

411, = 0 Im(elmlg) - A1, + Z I,a4,, (4.3)

dt e (4 e - e

d

3 e =~ Im¢elTile) — A,TT, + ; 0,0y, (4.4)

where we have introduced the total-decay constant of level
|k) as

A, = Z By (4.5)
1
and we have used the Hermiticity of II(¢). The set [Egs.
(4.2)—(4.4)] resembles a master equation, but it contains the
inhomogeneous term © Im(ellllg), and hence it is not a
closed set. The equation for the coherence between the
excited state and the ground state is readily found to be

. d
i (ellllg) = %Q(II, — I1,)

= [A + (A, + Ay + 2V)](elTlg).
(4.6)

Equations (4.2)-(4.4) and (4.6), accompanied by the normal-
ization

2 () =1, (4.7)
k

which is Tr II(¢) = 1, determine the populations II;(t) and
the coherence (el|II(t)lg). This generalizes the master equa-
tion for the case of an arbitrarily strong incident field with a
finite bandwidth. These are simple linear first-order differ-
ential equations, and they can be solved immediately for-any
configuration of levels. Notice that the laser linewidth A
enters only in the last term on the right-hand side of Eq.
(4.6) and that the coupling of Eq. (4.6) with the set [Egs.
(4.2)-(4.4)] is brought about by the inversion II, — II, rather
than by the separate populations.

5. ABSORPTION RATE

Since the coherence (e|Illg) enters the equations for the

populations II;, it is not so obvious which transitions occur

and at which rates. Therefore we have to start from more
elementary principles. The absorbed energy by the atomic
bond from the external field equals the work that is done on
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the dipole by the field. Hence we can write for the absorp-
tion rate (energy per unit time)23

dz d
T E(t) oy (u(t)), (5.1)
where u(t) is the dipole moment of the system in the Heisen-
berg picture. This expression accounts for absorptions and
stimulated emissions of photons from and-into the field, and
the balance between these gain and loss terms is the net
energy absorption rate dZ/d¢ from the radiation field into
the adbond. In the steady state, there can be no accumula-
tion of energy in the bond, so then dZ/dt equals the balance
between the emission and absorption rates of phonon energy
into the crystal. Effectively, this is a conversion of radiation
energy into the thermal energy, or a photon-phonon conver-
sion reaction, mediated by the optically active atomic bond.

Transformation of Eq. (5.1) to the Schrodinger picture
gives

dz

daz _ L1 92,
o= TrE®) -] (5.2)

and with the equation of motion (2.4) for p(t), the stochastic
transformation (3.1) to the o representation and with ¢ = o,
we obtain

dZ d

£2 = po

it i Re(elo(t)lg) + AQw, + d(8)]Im(elo(t)lg).

(5.3)

This relation reveals that the absorption rate is basically
determined by the coherence (elslg) rather than by the
populations of the levels. From a slightly different point of
view, we can interpret this as the fact that the occurrence of
coherent transitions between states is reflected in the pres-
ence of off-diagonal matrix elements. This is in contrast to
the incoherent thermal decay, which is governed by a master
equation for the populations only.

The appearance of ¢(t) in the second term on the right-
hand side of Eq. (5.3) is not very convenient. With the aid of
the equation of motion [Eq. (3.2)] for ¢(t), we can eliminate
the ¢(t) term and the time derivative in the first term simul-
taneously. We find

dz

3 = " hR(A, + A)Re(elolg) + hwgIm(elolg). (5.4)

Comparison with Eq. (5.3) shows that the time differentia-
tion of the real part of the coherence is replaced by —»(A. +
Ag), and the instantaneous laser frequency wy, + &(t), which
multiplies the imaginary part, is altered into the atomic
resonance frequency wo. This indicates that the contribu-
tion to dZ/dt from the real part originates from the coopera-
tion of thermal decay and coherent excitation, whereas the
imaginary part is pure optical, since it persists even in the
absence of the crystal. The stochastic average of dZ/d¢ is
now easily found. We simply replace o(t) by II(¢) in Eq.
(5.4).

6. STEADY STATE

Because of the thermal relaxation, the density matrix II(t)

will reach a steady state after a time of the order of a1,

elapsed from the instant of preparation (for instance, the
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switching on of the laser). The long-time solution will be
indicated by

II = lim II(2). (6.1)

t—o
This IT then obeys the set of Egs. (4.2)—(4.4) and (4.6) with
the left-hand sides set equal to zero. By taking the imagi-
nary part of Eq. (4.6), we obtain

Re(ellllg) = Im(e|IT|N). (6.2)

. - S
YA, + A+

This relation between the real and imaginary parts of the
coherence holds only in the steady state. Subsequently, we
consider the real part of Eq. (4.6). Application of Eq. (6.2)
then yields

(A, + A) + -

n,-1,). (6.3
[1/2(A6+Ag)+)\]2+A2( ¢~ 1) (6.3)

Im(ellllg) =% @

The results [Egs. (6.2) and (6.3)] show that the coherence
can be expressed entirely in terms of the population inver-
sion I, — I, in this limit.

With Eqgs. (6.2) and (6.3) we can rewrite Egs. (4.2)-(4.4) in
the steady state as

Z ﬁkakl = Alﬁl’ I = e 8, (6.4)
3
z M, (ay + ag) = AL, + AL, (6.5)
3
Zﬁk(ahe —ay) = A, — AL, — @
k

Up(A, + A + A
(A4, + A) + N> + A®

(11, - II,),
(6.6)

where the coherence (e|lllg) has disappeared. This set of
equations contains only populations, and it can be regarded
as a masterlike equation for a coherently driven system.
Notice that the optical parameter Q enters only as @2, which
is proportional to the laser intensity. The coherence [Egs.
(6.2) and (6.3)], however, also depends on the field ampli-
tude Q.

With the use of Eq. (6.2), the stochastic average of the
absorption rate, Eq. (5.4), can be written as

z  _ _ 2\
¢E>—h(‘% AATA T

)Q Im(elTlg). (6.7)
If the laser linewidth A is small in comparison with the
relaxation constant A, + Ag, the second term in parentheses
vanishes, and the absorption rate reduces to the hw,Q
Im(ellllg). Since Awy is the energy of a laser photon, this
implies that © Im(el|lllg) equals the number of photons per
unit time, which is converted into thermal energy. For A >>
A, + A, the term in parentheses becomes w;, — A = wo. This
is consistent with the fact that for a large bandwidth the
energy of a photon is no longer well defined. Now the
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radiation excites the system from |g) to |e), and subsequent

thermal decay corresponds to an effective gain of phonon

energy hwy. This process occurs again at a rate Q Im (elTllg).
Substitution of Eq. (6.3) into Eq. (6.7) finally yields

dz 2\
—_— = - A—
Ta T h(wL A+ A+ 2>\>

1
LA, + A) + A L
x1. g2 ¢ £ I, —1,).
b [1/2(Ae+Ag)+)\]2+A2( « 1

(6.8)

The masterlike set of equations [Egs. (6.4)-(6.6)], together
with the normalization [Eq. (4.7)], constitutes a simple set of
linear algebraic equations that are easily solved for a partic-
ular case. This determines I, — 11, and, thereby, the ener-
gy-absorption rate [Eq. (6.8)].

For A < A, + A, the laser linewidth has no significance at
all, since it disappears from Egs. (6.4)-(6.6) and Eq. (6.8). If
we then take |A| > A, + A,, we recover our previous re-
sults.1617 In the situation A > A, + A, the energy-absorp-
tion rate reduces to

dz

4:7‘7}:’1{.00'1/292

A
A\ + A2

@, -1d). (69

If the system is driven close to resonance (A =~ 0), the
prefactor is proportional to wy/A, and hence the absorption is
diminished by an increasing linewidth. This can be under-
stood from the representation [Eq. (3.8)] of the laser field.
The probability for a photon absorption is the largest if wy ~
wo, but because of ¢(t) > 0, the optical frequency is tempo-
rarily shifted out of resonance. This reduces the absorption.
Conversely, for |Al large, the phase fluctuations can shift wf,
into resonance and thereby enhance the absorption. From
Eq. (6.9) we see that this is indeed the case, since «dZ/dt+
becomes proportional to woA/AZ.

7. CONCLUSIONS

We have considered the irradiation of an atom, bound to a
crystal, by intense nonmonochromatic laser light. The sin-
gle-mode laser line is broadened by stochastic phase fluctua-
tions, which turns the equation of motion for the density
operator o(t) of the atomic bond into a stochastic differen-
tial equation. The average over the stochastics of ¢(t) was
performed in a rotating-frame representation, yielding the
equation of motion [Eq. (3.4)] for II(¢) = <o(¢)+. Itappears
that the laser linewidth gives rise to an additional width 2\
of the ground state. This is a consequence of the specific
form of our transformation [Eq. (3.1)] to the rotating frame.
We remark that other kinds of transformation?* that also
eliminate the exp(+iw;t) time dependence in the interaction
|Hamiltonian would result in effective widths of both |e) and
g).

The combination of laser-linewidth damping and thermal
relaxation with coherent excitation by an arbitrarily strong
radiation field prohibits the derivation of a master equation
for the populations of the vibrational levels. It becomes
necessary to take the coherences between the optically cou-
pled states into consideration. This gives the set of Eqgs.
(4.2)-(4.4) and (4.6), which can be regarded as a generalized
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master equation. Only in the long-time limit can we express
the coherence (e||lg) in the population difference IT, — 11,
which implies the emergence of a genuine master equation.

The energy absorption from the laser field by the adbond
is evaluated by calculating the work done on the dipole
moment of the bond. In general, the absorption rate is
determined by the coherence (elll(t)lg) [Eq. (5.4)], and in
the steady state it can be expressed in the inversion IT, — I,
which follows from the solution of the master equation. The
transport of energy from the bond to the phonon field is
brought about by thermal relaxation. This can be inferred
directly from Egs. (6.6) and (6.8). For ay = 0 for all k, [, we
find I, = I, in the steady state, and hence «dZ/dt+ = 0.
We have shown how the overall factor changes from Awy, to
hwo with increasing linewidth, and we see that a finite A
enhances (diminishes) the energy flux if the detuning is large
(small).
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