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A coated surface of a crystal is irradiated by intense infrared light. The optically active atomic
bonds absorb photons from the laser field, and the subsequent spontaneous decay goes together with
emissions of phonons into the crystal. This photon-to-phonon conversion results in an energy flux
into the crystal. An equation for this flux is derived from the master equation for the level popula-
tions of the dressed atomic states. The saturation limit is discussed, and the general theory is illus-
trated with two examples. Furthermore, it is outlined with qualitative arguments that the quantum
yield of photodesorption is not sensitive to the laser power.

I. INTRODUCTION

The thermal desorption rate of atoms, which are bound
to the surface of a crystal and occupy a series of vibra-
tional states, can be very low. Irradiation with resonant
infrared laser light can enhance the desorption consider-
ably,! ~° especially at low temperatures. Then the thermal
relaxation (coupling to the phonon field of the crystal)
will tend to confine the atoms to the low-lying nondesorp-
tive vibrational levels, but the laser will sustain a continu-
ous excitation of the system. The balance between the
thermal decay and the coherent excitation determines the
level populations. Since atoms in high-lying states can
more easily desorb into a continuum state through a
resonant one-phonon transition than atoms in low-lying
states, the driving laser will increase the desorption rate.
The effect will be most pronounced as the optical frequen-
cy wy is close to an atomic-bond transition. However, the
desorption rate as a function of w; is not tantamount to
the optical-absorption profile, due to the competing
thermal relaxation. Indeed, an excited bond might decay
to a lower state together with an emission of a phonon
into the crystal. This process can be considered as a
photon-to-phonon conversion, with a heat flow into the
crystal as a net result.”® Hence, the quantum yield of
photodesorption will be diminished strongly by thermal
relaxation. Experimental values acquire an order of mag-
nitude of at most 10~2, which implies that more than
99% of the absorbed energy ends up in the phonon field.?
Conversely, for a crystal which is transparent at frequen-
cy wy, a dye coating on the surface can provide a medium
for an efficient laser heating of the solid.

In this paper we derive a microscopic equation for the
energy flux into the crystal. It contains the laser power
and frequency, the temperature of the crystal, and the
transition matrix elements of the atomic potential well as
parameters. The results can be applied as the source
terms for the macroscopic diffusion equation, which de-
scribes the temperature distribution in the crystal.>!® Our
work extends earlier treatments”® in that we allow the ir-
radiance to be arbitrarily intense, which will enable us to
study, for instance, saturation effects.

II. POPULATIONS OF DRESSED STATES

The vibrational eigenstates of the atomic bond will be
denoted by | k), their populations by #n,(z), and the ener-
gy eigenvalues by #iw,. The strong incident radiation will
be assumed to couple only resonantly a ground state | g)
and an excited state | e ), with , —wg=w>0. We indi-
cate the detuning with the driving field by A=w; —w,,
and the coupling strength is expressed in the Rabi fre-
quency Q= | Eg'p | /. Here, Eq is the amplitude of the
electric component of the incident field, and p is the elec-
tric dipole moment of the transition. The parameter (2
will be referred to as the laser intensity, since it is propor-
tional to E§. The diagonalization of the Hamiltonian of
the driven atomic bond is easily accomplished, and it
amounts to a transformation of the bare states |e), | g)
(eigenstates for Q*=0) into the dressed states |+ ),
| —).!" This is illustrated in Fig. 1. The eigenvalues are

Br=7(0,+w,+or )T+ sgn(A)Q2+ A2 (2.1)

with sgn(A) representing the sign of A. We indicate by
#&d an eigenvalue of the dressed state | k).

The interaction with the phonon field of the crystal can
now be considered as a coupling between dressed states.'?
We suppose that the separations between adjacent levels
are smaller than the Debye frequency wp, which implies
that we can omit multiphonon processes. The coupling
strengths are governed by the matrix elements (k [.S |/)
of the atomic operator S =dV /dz, which is the derivative
of the potential well in the direction perpendicular to the
surface. In a previous paper!! we derived an equation for
the populations of the dressed states, as they are deter-
mined by the single-phonon relaxation constants ay;.
With ay; the inverse lifetime of the transition | k)—|1),
this master equation reads

an(t): E[nl(t)alk——nk(t)a,d] . (2.2)
!

Here the summation runs over the dressed states
| +), | —) and the bare states | k), with k=%e,g, since
for k+e,g a dressed state is identical to a bare state. In
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FIG. 1. The laser field couples the atomic levels |e) and
| g). Bare-state transitions occur as radiationless or laser-
assisted single-phonon excitations or decays. Diagonalization of
the dipole interaction transforms the set | e), |g) into a ladder
of dressed states | + ), | — ), where the doublets are separated
by the photon energy #iw,. The distance between | +) and
| —) in a single doublet equals (A>+Q?)'”, and the absolute
position of the upper set of states is @+ from Eq. (2.1). The
occurring single-phonon transitions are indicated. The state
| m) couples in four ways with the ladder of dressed states,
where each transition has a different phonon energy. There are
four couplings between the two doublets, but | +) to | —) and
| —) to | +) transitions in a single doublet are not present.
The unperturbed states | m) and | n) couple only through a
resonant one-phonon process. The transitions of | n) to the
ladder of dressed states are suppressed in this picture.

the derivation of Eq. (2.2) we adopted the secular approxi-
mation, which asserts that the level separations, and espe-
cially (Q2+ A2)!/2, are sufficiently larger than the damp-
ing constants. Hence our approach applies to situations
where the detuning or the laser power Q2 is large. This
case can be considered to be complementary to the weak-
field limit of Refs. 7 and 8.

In the expressions for the relaxation constants ay;, we
can separate the dependence on the optical parameters
and A from the pure thermal part. It appears that ) and
A only enter the expressions for the lifetimes in the com-
bination g ., defined by

g+==[1F(14+02/80%)~12] . (2.3)

Hence, the distribution of population over the dressed
states is governed by the single dimensionless optical pa-
rameter Q2/A%. In the strong-field limit Q2/A%— oo,
both g, and g_ tend to the finite asymptotic value of I,
which indicates saturation.

The temperature-dependent part of the relaxation con-
stants can be expressed in the field-free inverse lifetimes
for transitions between bare states. In a simple Debye
model the rate constants attain the form

v’ w
Y (kS| |2
a= s RS D o Tk T
xOlop— o), 2.4)

where v’ is the volume of a unit cell, M is the mass of a
crystal atom, c is the speed of sound, kp is Boltsmann’s
constant, T is the temperature of the solid, © is the Heav-
iside step function, and @ =w; —w; is the level separation
whose absolute value equals the phonon energy in a transi-
tion. The genuine impact of Eq. (2.4) on the thermal
redistribution of level populations originates from its
dependence on the sign of w. A positive value of @ im-
plies @y > @;, and hence the transition | k)— [/) is a de-
cay of the system, whereas o <O reflects a thermal excita-
tion of the same transition. For any two levels | k), |I),
with @y > w;, both phonon absorption (excitation, ay) and
phonon emission into the crystal (decay, ay) occurs, and
it follows from Eq. (2.4) that ag; >>ay.

With these preliminary remarks, we can now write
down the inverse lifetimes. If both levels | k) and |[)
are each unequal to | +) or | —), the rate constant is
simply ay; from Eq. (2.4). For laser-assisted transitions
we have

A+x =850k +8+0gk > (2.5)
A+ =87k T8+ kg > (2.6)

for |k)s=| +),| —). The pure dressed-state transitions
are governed by the four rate constants

as+x :g%_*age +g2$aeg ’ 2.7
a++=8,8 (ag +ag) . (2.8)
A transition | +)— | +) or | —)— | — ) obviously does

not alter the population of a dressed state. In the master
equation (2.2), the ay contributions vanish indeed, but we
will see in the next section that the | +)— | +) and
| —)—| —) transitions do contribute to the energy
transportation, as can be anticipated from Fig. 1. There-
fore, we cannot discard these transitions in general.
Furthermore, we note that a rate constant gains a contri-
bution from two distinct processes, whenever a | + ) or
| — ) state is involved. This is again clear from Fig. 1.

With Egs. (2.3)—(2.8) the explicit dependence of the
coefficients aj; on the laser parameters, the temperature,
and the properties of the potential well is tracked down
completely. For any configuration of states, the master
equation (2.2), accompanied by the normalization

>m(=1, (2.9
k
can be solved immediately.

III. ENERGY FLUX

From the master equation it follows that a transition
| k)— |1) occurs at a rate ng(t)ay (number of transi-
tions per unit of time). Every decay or excitation corre-
sponds to an absorption or emission of a phonon by the
crystal, with an energy equal to the level distance
(& — ;). If we write #i(&d, — &) for the gain of energy
of the crystal in a single | k)— |/} transition, then the
distinction between absorption and emission is included in
the sign of &, —®;. Care should be exercized in the tran-
sitions to and from the dressed states |+ ), | —) since
these transitions involve two diagrams with different pho-
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non energy. Therefore, these rates should be divided ac-
cordingly, and for the gain of energy the contributions
from the two doublets in Fig. 1 should be distinguished.
It is immediately clear which part of the rate constant
corresponds to a specific transition, since the argument
oy —w; in ay; equals the phonon frequency. These no-
tions yield the formal expression for the energy flux into
the crystal (absorbed energy per unit of time)

aw

dr (3.1)

= > #d, —&))ng(Day, ,
kl

where the summation runs over all diagrams of Fig. 1,
and #(&y — &) is the appropriate phonon energy.

The double sum is easily evaluated after substitution of
the explicit expressions (2.4)—(2.8) for the relaxation con-
stants, Eq. (2.1) for the energies of the dressed states, and
after application of the master equation. We obtain

dW Eﬁwk~nk )
+Hhw; >, {aggni(t) —aglg n  (1)+g_n_(D)]}
kst
+Hwp {alg_n, ()+g, n_(1)]
—ag[gin ()+g_n_()]}. (3.2)
Here the summations run over the bare states

|k)#|e),|g), and over | + ), | — ), but no longer over
diagrams. The right-hand side of Eq. (3.2) contains the
bare-states inverse lifetimes ay;, the optical parameters
g+, and the populations n;(z) of the dressed states. This
implies that dW /dt is expressed entirely in known param-
eters and in the solution n,(z) of the master equation.
The expressions in curly brackets are combinations of
gain and loss terms pertaining to the same transition,
which is reminiscent of the structure of the master equa-
tion.

IV. STEADY STATE
After a transient time of the order of ak_ll, the system

will approach a steady state, due to the phonon relaxation.
The populations tend to their long-time limit

= lim n. (1), (4.1)
t— o
and the master equation reduces to
(4.2)

> map =, fixaiy -
7 1

In the energy equation (3.2), the first term on the right-
hand side disappears, and the energy flux dW /dt acquires
a time-independent value in this limit.

In order to reveal more clearly the structure of the
steady-state energy flux, we transform Eq. (3.2) to its
bare-state equivalent. Due to the fact that the coherences
with respect to the dressed states vanish in the long-time
limit, the populations of the excited state and the ground
state can be expressed in 7, and 7 _ according to
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flo=g. A,+g . A_, (4.3)
Ag=g A, +g_n_ . (4.4)

Then Eq. (3.2) for t— oo assumes the transparent form

aw
=fw; >

4.5)
dt k =(bare states)

(r_zkakg —ﬁgagk) .

Notice that the optical parameters g, have vanished com-
pletely in this representation. They only enter the energy
flux through the populations 7, of the states, which are
affected by the laser field. The summation in Eq. (4.5) is
a gain-loss balance for the population of the ground state
|g). The first term (gain) reflects that a photon-
absorption rate is maintained by a permanent driving of
the transition | g)— |e) by the laser. The subsequent
thermal relaxation to the ground state is accompanied
with phonon emissions into the crystal, which yields the
net energy flux. Conversely, the second term (loss) corre-
sponds to stimulated photon emissions in |[e)—|g)
transitions. Then the crystal should provide the energy
for the subsequent thermal redistribution.

The summation over all bare states in Eq. (4.5) can be
eliminated with the master equation (4.2) and the relations
(4.3) and (4.4) between bare-state and dressed-state popula-
tions. Recall that Eq. (4.2) pertains to dressed states,
whereas the summation in Eq. (4.5) runs over bare states.
The result can be cast in the remarkably simple form

aw o’ o
7 Lm(Ag+Ae)(ng—ne) . (4.6)
The optical prefactor arises from the combination
2
8-8+ Q7 4.7

(g_—g,)? 4a*’
and the total inverse lifetime A4; of a state | k) is defined
as

A= > ag -
I =(bare states)

(4.8)

The photon-absorption (-emission) rate is proportional to
7ig(7,), and it appears that just the difference 7, —7,
enters the expression for dW /dt. This is reminiscent of
the standard result for the low-intensity absorption pro-
filze, but the expression (4.6) holds for arbitrary intensity
Q-

V. SATURATION

It might appear from Eq. (4.6) that the energy flux is
proportional to Q2 and therefore can increase unlimited
with the laser intensity. Such is, however, not the case,
since for Q2/A? large, the population inversion R, —ng
tends to zero. In this section we shall derive an upper
limit for dW /dt.

To this end, we first write Eq. (4.5) in the form

aw
=ty gfg + 2

(5.1)
dt k =(bare states)

Apagg

From the master equation and Egs. (4.3) and (4.4), it is
easy to derive the identity
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2 ﬁk(akg+ake)=Agh‘g—+—Aeﬁe . (5.2)
k =bare
Expression (5.1) for dW /dt refers to transitions from and
to the ground state, but with Eq. (5.2) we can convert the
reference level to the excited state. This yields
aw

¥ o, | A7, —

dar , (5.3)

ﬁkake
k =(bare state)

and we note the complementary nature of Egs. (5.1) and
(5.3). Since 7igay, >0, we obtain from Eq. (5.3) the upper
limit to the energy flux

dd_VtV <fiw; A7, . (5.4
With 7, <1, this reduces to dW /dt < #iw; A,, where the
right-hand side is independent of the optical parameters.
Hence, the inequality (5.4) implies that for strong fields
the e,g transition saturates, and thus the energy flux is
bounded. The limit (5.4), however, is an upper bound and
not the saturation limit in general. The behavior of
dW/dt for Q?/A>— «» will depend on the phonon-
relaxation parameters ay; and the level configuration.

The inequality (5.4) with 7, =1 expresses the upper
bound in the loss coefficient 4, of level |e). The com-
plementary relation follows from Eq. (5.1) and becomes

aw

WS%L %akg , (5.5)

which pertains to the gain coefficient of the ground state.

VI. TWO LEVELS

Already the most simple case, the two-level system, ex-
hibits an interesting feature. We discard the explicit tran-
sient solutions, since they only display the trivial exponen-
tial decay. The steady-state master equation (4.2) is readi-
ly solved for 7i, and 7i_. Then 7, follows from Eq.
(4.3), which gives

(1-2g,8 lag+8,8_(ag —ag)
(1—2g,8_Nag +ag)

i, = 6.1)

and ng=1—n,. With 4,=a
becomes
dw Q?
2 ey, —————
dt Loa2i4a?

where we used the expression (2.3) for g+. From the defi-
nition of the rate constants a;;, Eq. (2.4), we deduce the
properties

a(T)—ay(T)=ay(T =0), (6.3)
ap(T =0)=0, (6.4)

egs Ag =ag., the energy flux

(Gog —ge) » 6.2)

both for w; > ®;. Combining everything yields the alter-
native formulation of Eq. (6.2) as

%tzzﬁwLﬁe(Tzo)aeg(sz . (6.5)
This reveals that the energy flux is independent of the
temperature of the crystal, which is rather remarkable.
From Eq. (6.5) we find the saturation limit to be

dw
dt

which is smaller than the upper-bound #w 7, (T)a.q(T)
from Eq. (5.4). Furthermore, we notice that for 77=0
(age =0), the dependence of 7, on the damping constant
a.; vanishes, so that the steady-state level populations are
completely determined by the optical parameters () and A.
This peculiar feature is a consequence of the assumed sec-
ular limit [(Q24A%)'?>>a,,].

:%ﬁa’Laeg(T=O) l} (6.6)

VII. THREE LEVELS

Let us now consider the configuration with a third level
| £) present. We then find

aw Q?
dr =fiwL 4A2 (Ao +Ag)[(aeg —ag ) A +a,a —ageag,]
0?2 -
X aegA§+ag§Ae+a§eAg+ae§a§g+age“eg+a§gage+m(Ae+Ag)(ae§+ag§+2A§) ’ (7.1)

which becomes in the saturation limit Q%/A2— «

iui:ﬁmL (Gog —age) Ap +aec@g—dgede ‘ (7.2)
dt Qep+age+24,

In the limit A7 ' —0, Eq. (7.1) reduces to the two-level re-
sult from the preceding section, as it should.

In the limit T—O0, the rates for upward transitions van-
ish. This implies that we have to distinguish three cases.
First, for w;>w, >w, we find again the results for the
two-level case, since the population of |£) becomes zero.
For the situation o, > wg > ws we obtain dW /dt =0, as a
result of the fact that all population resides in | §). This

f

prohibits any excitation by the laser field. The interesting
case is w, > @¢ > wg, for which we obtain

aw _. Q?
dt FC AN 20t aysag)

(7.3)

This exhibits clearly that a nonzero value of the ratio
@.¢/agy diminishes the energy transfer to the crystal.
More generally, this idea can be inferred from Eq. (5.3).
Any appearance of additional levels with a finite popula-
tion tends to reduce the energy flux. The population of
the excited state for 7 =0 and w, > w¢ > w, is found to be
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92
Ay=—s— : (7.4)
4A°+Q (2+ae§/a§g)
Comparison with Eq. (7.3) then yields
i;tzzﬁcoLAeﬁe : (7.5)

which is reminiscent of the result (6.5) for the two-level
case and of the saturation constraint (5.4).

VIII. CONCLUSIONS

We have studied the surface-adbond mediated conver-
sion of laser photons into phonons of a harmonic crystal.
A net energy flux dW /dt into the crystal emerges from
the different laser-assisted single-phonon transitions. We
have derived a variety of expressions for dW /dt, which
include the explicit dependence on the laser power, the de-
tuning, the temperature, and the properties of the vibra-
tional bond. This was achieved by a proper interpretation
of the thermal transition rates, as they appear in the mas-
ter equation with respect to the dressed states. Our ap-
proach applies to arbitrarily strong incident fields and to
any configuration of atomic levels, but is restricted to
one-phonon processes. We digressed on saturation effects
to derive an upper limit for dW /dt. The general treat-
ment was exemplified by an explicit evaluation of dW /dt
for the cases of a two-level and a three-level system. We
find that for the two-level system the energy flux is in-
dependent of the temperature of the crystal. For three
levels and T—0, we find the relation dW /dt =%w; A.7,,
which can readily be understood. The only process which
gives rise to energy transportation is an optical excitation
| g)— | e) and a successive thermal decay |e)— |g) or

|e)— |£)— | g). The rate for this process equals A4,7,,
and the energy gain per transition is fiw;. The effect of
the laser is reflected in 7,540, since for Q%>—0 the system
is bound to be in the ground state | g ).

Another interesting feature can be deduced immediately
from our results. If the laser is used for photodesorption
of the atoms, then the desorption rate will roughly be pro-
portional to the sum of the populations of the high-lying
states. For the case of a three-level system with
w, > ¢ > w,, the number of desorbed atoms per unit of
time will be 7,.a,., where a,, is the rate constant for a
transition to the continuum. On the other hand, the num-
ber of absorbed photons per unit of time equals
(dW /dt)/fiw; . If we define the quantum yield as the ra-
tio of these two numbers, then we find from Eq. (7.5) that
it becomes a,. /A, for low temperatures and in the three-
level case, and in general for a two-level system. This ra-
tio is independent of Q2/A?, so the efficiency of photo-
desorption cannot be enhanced by tuning the laser or in-
creasing the power. The absolute rate is, however, propor-
tional to 7,, which depends on the intensity. For not too
strong fields we have 7, « Q2% which is not surprising.
Resonance effects appear if we tune w; into the line
center of the absorption profile (~wy). Then 7, ap-
proaches its saturation limit (< +), which provides the
maximum photodesorption yield.
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