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Abstract. In this paper we apply the recently developed theory of multiplicative stochastic 
correlation functions with Markovian random jumps to the problem of resonance fluores- 
cence from a two-level atom in a strong laser field. The finite bandwidth of a single-mode 
laser or the appearance of distinct lines in a multimode laser is considered to be brought 
about by a random mode-switching process. The two-time dipole correlation functions, 
which determine the spectral distribution of the fluorescence and the temporal correlations 
between the emitted photons, are averaged exactly over the stochastics of the driving field. 
Our explicit expressions only involve single-time averages, which can be easily evaluated 
for a given probability distribution. These results generalise and modify earlier results in 
that we obtain closed expressions, rather than implicit differential equations, we can handle 
the continuous case as well, and we take into account the initial correlations, which always 
arise when the laser coherence time is finite. We illustrate the dependence on the stochastics 
of the laser model by comparing the multimode description with the phase-diffusion process 
and the Lorentz wave, which all give rise to the same laser profile, but to a different 
fluorescence spectrum. 

1. Introduction 

The theory of resonance fluorescence from a two-level atom in a strong monochromatic 
laser field is well established (Mollow 1969, Carmichael and Walls 1976, Kimble and 
Mandel 1976). Both the frequency distribution and the temporal correlations of the 
emitted photons were obtained, and even the complete photon statistics was found by 
Lenstra (1982). Many authors stressed, however, that a reliable comparison with 
experimental data can only be achieved if the finite linewidth of the laser is taken into 
account. Phenomena like spectral asymmetry or the appearance of a fluorescence line 
near the atomic resonance hy excitation in the far wing, even in the low-intensity limit, 
can only be understood from a finite laser linewidth. Therefore, a proper compre- 
hension of atomic fluorescence requires that laser linewidth effects are taken into 
consideration. The first attempts have been made by Kimble and Mandel (1977), Avan 
and Cohen-Tannoudji (1977), Agarwal (1978) and Zoller (1978), who represented the 
laser field by a plane wave with a stochastically fluctuating diff wive phase, which was 
taken as the Gaussian Wiener-LCvy process. An extension to a non-Gaussian diffusive 
phase was given by Arnoldus and Nienhuis (1983). The diffusion model can be solved 
exactly, but it cannot be expected to provide very realistic answers. This is due to the 
inherent assumption of zero laser coherence time. The treatment of more sophisticated 
models for a single-mode laser is, however, hampered by the cumbersome stochastics 
of the field. This also obstructed the development of a reasonable multimode theory. 
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A finite coherence time of the single-mode field was included by Dixit et a1 (1980), 
Zoller et a1 (1981), Yeh and Eberly (1981), Jackson and Swain (1982) and Swain 
(1984). They generalised the Gaussian diffusion model, but at the expense of a 
factorisation assumption. This was shown to not be exact (Arnoldus and Nienhuis 
(1986a), since a stochastic initial state cannot in general be replaced by its average. 
Zoller (1979a, b) and George and Lambropoulos (1979) employed a stochastic rep- 
resentation of a multimode field, and W6dkiewicz et a1 (1984) introduced an alternative 
model for a two-mode laser. This idea was extended by Deng and Eberly (1984) and 
Shore (1984) to an N-mode laser field. Apart from the factorisations, which can only 
be assumed to be reasonable if the coherence time is not too large (van Kampen 1976), 
the solvability of the models depends strongly on the specific choice of the laser field 
stochastics. Therefore these models describe only a restricted class of laser profiles. 

In this paper we also start from a multimode description of the laser field. The 
mode distribution can be taken to be continuous or discrete, so that the model can 
represent a single-mode or a multimode laser. With a proper choice of the mode 
distribution, we can obtain any laser profile, and the coherence time can be chosen 
arbitrarily. The stochastics is dealt with exactly, without a decorrelation approximation 
and in a uniform way. Hence our treatment generalises and improves earlier results 
in a compact formalism. Furthermore, it will be shown that a Gaussian probability 
distribution yields field stochastics which greatly resembles the commonly applied 
Ornstein-Uhlenbeck process. 

2. The laser field 

The electric field of an intensity-stabilised laser at a given point in space can be 
represented by 

E ( t )  = Eo Re exp[-i(wLt+ 4 ( t ) ) ]  (2.1) 

with wL the central laser frequency and + ( t )  a real-valued stochastic process. The 
laser profile, assumed to be stationary, is then given by 

e x p ( i A ~ ) ( e x p [ - i ( 4 ( t + ~ ) - 4 ( t ) ) ] ) d ~  (2.2) 

with A = w - wL. The angular brackets denote an average over the stochastic laser 
phase. For a fixed value of the phase, e.g. r$ (  t )  = 40, this profile reduces to ZL(w) = 
S ( w  - wL), and hence a finite laser linewidth is due to the fluctuations in the phase 
r $ ( t ) .  The profile (2.2) is normalised according to 

m 

5-m 
IL(w)  dw = 1 

independent of the stochastics of r$ ( t ) .  This shows that the process r$ ( t )  distributes 
the power over a finite frequency range around wL, without affecting the overall strength. 

The laser profile is determined by the stochastics of r$ (  t ) .  A common choice is the 
independent-increment process, which is a diffusive Markov process (Doob 1953). 
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The Gaussian limit of this non-stationary process + ( t )  is the Wiener-LCvy process. 
The laser profile for a diffusive phase is 

1 1 ZL( w ) = - Re - 
7~ A-ih 

which is a Lorentzian with a width (HWHM) equal to A. A > 0 is an independent 
parameter of the process. An alternative choice for 4 ( t )  is a random-jump process, 
which is known as the Lorentz wave (Kubo 1954, Anderson 1954). This stationary 
process, which was introduced in quantum optics by Burshtein (1965, 1966), again 
yields the laser profile (2.4), where A has now the significance of the phase jump rate. 

A fluctuating phase 4 ( t )  gives essentially a single-mode model, and produces a 
laser profile that usually approaches a Lorentzian. This is not necessarily a good 
approximation of a laser field, especially when one describes effects arising from the 
overlap of the line wing with a resonance. As an example we mention the asymmetry 
between the three-photon line and the fluorescence line (Arnoldus and Nienhuis 1983). 

3. Multimode description 

If we introduce the stochastic process x ( t )  as 

then we can write for the electric field 

E (  t )  = Eo Re exp (4 lot (oL+x(s ) )  d s  

and the spectral distribution can be expressed in x ( t )  as 

I L ( w )  = 7T Re lom exp(iA7) [exp( -i I,' x(s) ds)) d7. 

(3.2) 

(3.3) 

Instead of prescribing the stochastics of ;b ( t ) ,  we can equivalently give the stochastics 
of x ( t ) .  However, since w L + x ( t )  can be looked upon as the instantaneous laser 
frequency, according to (3.2), this description is a convenient basis for a multimode 
model. Hence we effectively assume that the laser switches between many modes, and 
that at any instant only a single mode is occupied. This frequency-hopping model 
should be distinguished from a chaotic description where different modes are occupied 
simultaneously. For switching rates that are high compared with radiative transition 
rates, the results should be similar. Notice that x ( t )  must be stationary in order that 
the spectrum be stationary. We recall that for the Wiener-LCvy process + ( t ) ,  as 
mentioned above, the time derivative x ( t )  is Gaussian white noise (Fox 1972). 

The range of occurring x values can be considered as the occupied laser modes. 
In this fashion a distribution over a discrete set of x values can be regarded as a 
genuine multimode model, whereas a continuous distribution around x = 0 represents 
a single-mode profile. This notion can be made quite transparent as follows. Let us 
denote by P ( x )  the probability distribution of x( t ) .  In the static limit of the process 
x( t ) ,  the value of x( t )  is independent of t for each realisation of the process. Then 
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stochastic quantities can only depend parametrically on x, and averaging reduces to 
trivial weighing with the probability P(x) .  For instance the laser profile (3.3) becomes 

IL(w)=’Re IT /omexp(iAT)(/P(x)exp(-ixi)dx (3.4) 

and the spectral distribution around wL is identical to the distribution P(x)  of x over 
the laser modes u,+x. Since P(x)  is arbitrary, we can model any profile I L ( w ) .  

During a laser run the instantaneous frequency wL+x(t)  will switch between the 
possible modes. This turns x( t )  into a non-trivial stochastic process. We will denote 
by y the average mode-switching rate, so y-’ equals the average dwell time in a single 
mode, which equals the laser. coherence time. This frequency-hopping process will 
cause I L ( w )  to deviate from P(A). For instance, if P (x )  contains a discrete mode xo, 
this will give a delta peak in the static limit (3.4). However, if this mode is occupied 
for a time y-’ on the average, the peak will have a width of the order of y. 

The process x(t)  will be taken as a stationary Markov process with zero average. 
The complete statistics of x( t )  can then be determined by the additional requirement 
that x(t)  is Gaussian, and according to the theorem of Doob this is the Ornstein- 
Uhlenbeck process (Wax 1954). Then P (x )  is the Gaussian 

with the variance a’ arbitrary. The mode correlation becomes 

b( t l )x( t2)1= u2exp(-yltl- t21) (3.6) 
and the higher-order correlation functions follow from the Gaussian property (van 
Kampen 1981). For this process the laser profile (3.3) is found to be (Dixit et a1 1980) 

1 1 A - iA 
I,( U )  = - Re - M (  1,  -+ 1,  A /  y ) 

IT A - I A  Y 
(3.7) 

with A = a’/ y and M (  a, b, z )  the regular confluent hypergeometric function. We 
already found that for y-’+03 and a2 fixed, this profile becomes P(A). If we take 
the limit y-‘ + 0, with A finite, then equation (3 .7)  reduces to the Lorentzian (2.4) since 
M(1, 1 , O )  = 1. This is the white-noise limit, and 4 ( t )  is identical to the Wiener-Lkvy 
process. For a finite value of y, x(  t )  is the Ornstein-Uhlenbeck process, which gives 
(3.7) for the spectrum. 

The requirement that x (  t )  should be Gaussian in all higher-order statistics is rather 
artificial, and will not be satisfied in general. We therefore drop the Gaussian property. 
We will simply assume that the field can make random transitions between the modes 
at random instants. This determines the full statistics in terms of the probability 
distribution P( x) and the coherence time y-’ .  The conditional probability distribution 
for x = x2 at a time T after an initial value x = x1 is then given by 

pT(x21x1) = S(x2-x1) ~ X P ( - - Y ~ ) + P ( X ~ ) [ ~  - e x p ( - - ~ ~ ) I  730. 
(3.8) 

This process is called the Kubo-Anderson process (Kubo 1954, Anderson 1954), or 
the random-jump process. It is easy to check that the mode correlation is again given 
by (3.6). Furthermore it can be shown that in the limit {x’) + 03, y+m, A ={x’}/ y fixed, 
this random-jump process reduces to Gaussian white noise for every P(x)  (Amoldus 
and Nienhuis 1985). In this sense the phase-diffusion model is a special case of the 
random-jump process. 
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If we take P ( x )  as the Gaussian (3.9,  then we have a model which resembles the 
Ornstein-Uhlenbeck process. The stochastics in the static limit y + 0 is again completely 
determined by the Gaussian P ( x ) .  For very fast but finite fluctuations ( y +  00, a 
fixed), the atomic response is determined by {x( t ) )  = 0, and the laser profile becomes 
I L ( w )  = S(A). Finally the limit y + 03, d+ 00, A =a2/ y fixed, again produces Gaussian 
white noise. In these three limits the random-jump process with a Gaussian P ( x )  is 
identical to the Ornstein-Uhlenbeck process. Only for a finite y will the higher-order 
statistics deviate slightly from their Gaussian limit. The random-jump process is, 
however, much more general, since P ( x )  is arbitrary. A relationship between the 
Ornstein-Uhlenbeck process and a different jump process was established by W6d- 
kiewicz (1981). 

2 

4. The laser spectrum 

The stochastic laser phase turns the equations for the state of the atom and the 
fluorescence signal into multiplicative stochastic differential equations. With the 
assumption of a given initial state, these equations have been averaged over the 
random-jump process by Brissaud and Frisch (1971, 1974) and Shapiro and Loginov 
(1978). The quantum correlation functions, which depend stochastically on two time 
arguments, have been obtained by Arnoldus and Nienhuis (1986a). The simplest 
example of a multiplicative stochastic process is the laser field correlation, which 
determines the laser profile. The stochastic function 

g ( 7 )  = exp( -i 1: x(s) ds) 

obeys the equation 

g ( 0 )  = 1. (4.2) 
d 

i-&T) = x ( 7 ) g ( 7 )  

According to (3.3) the Laplace transform of g ( 7 )  determines I L ( w ) .  Applying the 
results of our previous paper (Arnoldus and Nienhuis 1986a), we obtain directly the 
spectrum 

1 
IL(w)=-Re ( 1-  y 1 dxP(x) A - x + i y  )-' 1 dx P ( x )  A-x+iy  (4.3) 

1 

7T 

in terms of P ( x )  and y. 

occupied with equal probability. Then P ( x )  should be taken as 

and this process x ( t )  is known as the random telegraph. Substitution of (4.4) into 
(4.3) yields 

As an example we consider a two-mode laser with frequencies o L * a  which are 

P ( x )  = &S(x + a )  + S(x - a ) ]  (4.4) 

(4.5) 
T ( a n 2  IL(@) =- 
7r (A T ) 4  + [ 1 - 2( U T ) ~ ] (  A T)'+ ( U T ) ~  

with T = y-* .  This result was also found by W6dkiewicz et a1 (1984). If 2'"u > y the 
spectrum has two maxima at 

1 / 2  

0 = WL * a ( 1 - $) (4.6) 
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and a minimum at w = wL. For 21'2a < y the two lines overlap and we find a single 
line at w = wL. The widths of the lines are of the order of y, and for y-'+ CO the 
spectrum (4.5) reduces to two 6 peaks at w = wLf a. We notice that the wings of the 
lines vanish as A-4 for A +  *a, whereas for a Lorentzian we have a dependence. 
If we take the limit y + m ,  $+a with A=a2/y  finite, then (4.5) reduces to the 
Lorentzian (2.4). An example of the spectrum (4.5) is plotted in figure 1. 

\ 

A 

Figure 1. Plot of the laser spectrum I L ( w )  from equation (4.3) for the case P ( x ) =  
i [S(x + a )  + S(x - a)] with a = 3 and y = 1. The broken lines indicate the two distinct laser 
modes at w = w L f  a. The widths of the lines are of the order of y, as a result of the finite 
dwell time y-' in each mode. 

We can also take P ( x )  to be a continuous distribution. Consider for example a 
Lorentzian 

(4.7) 
1 1 

P(x) = - Re - 
7~ A-ix 

A >O. 

Then we find 

and I L ( w )  again becomes the Lorentzian (2.4) for every y. In this particular situation 
the finite dwell time y-' does not affect the laser profile, and we find I L ( w )  = P ( A )  
for every y-', rather than for y-' = CO only. 

As a third case we take P ( x )  as the Gaussian (3.5). As pointed out above, the laser 
profile is then intermediate between a Gaussian and a Lorentzian. If we take v2 fixed 
and let y approach zero, then I L ( w )  reduces to P(A) .  Conversely, in the limit y-,CO, 
I L ( w )  becomes the delta function S(A).  Thus for v2 constant, the laser profile varies 
between the Gaussian P ( A )  and a delta function, if we vary the magnitude of y. 
Alternatively we can keep A = v 2 / y  constant, while varying y. In the limit y +  cc 
process x(t)  becomes Gaussian white noise and IL (w)  is the Lorentzian (2.4). For a 
small y the laser profile approaches a Gaussian, but for A fixed this implies (+' small. 
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A 

Figure 2. Plot of the laser spectrum I L ( w )  from equation (4.3) for the case when P ( x )  is 
the Gaussian (3.5). In both curves the parameter A = u2/ y is fixed and equal to 1. The 
broken curve corresponds to y = 100, which is nearly the Lorentzian limit. For the full 
curve we took y = 1. The profile then tends to a Gaussian, which can be seen from the 
disappearance of the line wings. The intensity of the wings is transferred to the line centre, 
because the profile is normalised according to equation (2.3). In the limit y + 0 this spectrum 
becomes a delta function. 

Hence in the limit y +  0 we again find I L ( w )  = 8(A). This behaviour is illustrated in 
figure 2. 

5. Atomic fluorescence 

In this section we formulate the equation of motion for an atom in the stochastic laser 
field (2.1) and we give expressions for the spectral distribution of the emitted fluores- 
cence and the temporal photon correlations. This general formulation is independent 
of the stochastics of +( t ) .  

We consider an atom with ground state Ig), excited state le) and level separation 
Amo in the laser field and in a perturber bath. The equation of motion for the atomic 
density operator u( t )  in the rotating frame is given by (Agarwal 1978) 

d u  
i- = ( L d ( W L )  + x( t ) L ,  - iT - i@)u. d t  (5.1) 

In terms of the bare-state basis operators P, = le)(el ,  P, = lg)(gl,  d = / e ) ( g (  and d '=  
(g ) ( e l  in the atomic Hilbert space, the atom-field Liouvillian L d ( f d L )  is defined as the 
commutator 

L d ( W L ) u = - 3 [ ( W L - w o ) ( P , - P g ) + . n ( d +  d ' ) ,  U ]  ( 5 . 2 )  

which contains the Rabi frequency Cl = EO/peg eLI/ A of the dipole coupling. The 
stochastic part of the evolution is expressed in terms of 

Lgu = [P,, a].  (5.3) 
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The operators 

TU =$A( Pea + UP, - 2d 'ad)  

Cpo = ( yc+ ip)PeaPg + ( yc- ip)P,aP, 
(5.4) 

(5.5) 
describe spontaneous decay and collisional damping, with A the Einstein coefficient 
and yc and /3 the collisional width and shift respectively. Equation (5.1) is a multiplica- 
tive process and its stochastic solution can be written as 

4 t )  = u t ,  t 0 ) 4 f O )  tato (5.6) 
which defines the evolution operator Y(t,  to). We will always assume that the atom 
has been in the field for a long time in comparison with A-', y-l, y;', IRI-'. Then 
the stochastic average of (5.6) will have reached a steady state, which will be denoted 
by 

6 = lim {a( t ) ) .  (5.7) 
t+m 

Notice, however, that a( t )  itself will never rea& a constant value, because of the 
persisting fluctuations in the driving field. 

The spectral distribution of the emitted dipole radiation can be written as (Arnoldus 
and Nienhuis 1985) 

I( w )  = - lim Re exp(iwT){(d ( t ) d + (  t + T))) d7 A qi- I-w Jow 
with the intensity taken as the number of emitted photons per unit time. The dipole 
correlation (d( t )d t ( t+T))  is a stochastic quantity of two times, and just as for a(t) ,  
the limit t + a3 only exists for the average. The number of emitted photons per second 
becomes 

m 

I=[-w I ( w )  dw =A(eI@le) (5.9) 

which equals A times the population of the excited state, as usual. The time correlation 
between two emitted photons can be written as (George 1981) 

(5.10) 12( T)  = A' lim I( d (t)d( t + T)d t(  t + T)dt( t ) ) )  7 2 0 .  
f+cO 

12( T)  equals the twofold probability density for a photon emission at time 0, followed 
by an emission at time T. 

Notice that both I and I2 are evaluated n the steady-state limit t + CO, whereas the 
interaction with the stochastic field has been turned on at some finite time. The density 
matrix at the initial time t is a stochastic quantity that is correlated with the atomic 
evolution between t and t + T. It is this correlation that has been neglected in previous 
work, as mentioned in 9 1. 

The stochastic dipole correlations can be transformed to the Schrodinger picture, 
which yields 

(d(t)dt(t'))=exp[-iw,(t'-t)]Tr d'D(t', t )  (5.11) 

( d  ( t )d  ( t')d '( t ' )d  '( t ) )  = Tr RC( t ' ,  t )  (5.12) 

for t'z t. Here we introduced the Liouville operator R, defined as 

Ra = d'ud (5.13) 
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and the stochastic vectors in Liouville space 

D( t ’ ,  t )  = exp[ -i( $J( t ’ )  - $J( t ) ) ]  Y(  t ’ ,  t )Sa(  t )  

C( t’ ,  t )  = Y (  t’, t)Ra( t ) .  

The Liouville operator S is defined as 

(5.14) 

(5.15) 

Sa = ud. (5.16) 

The dipole correlations are now expressed entirely in the evolution operator Y(  t ’ ,  t )  
for a( t )  and in a( t )  itself. Hence the equation of motion (5.1) also determines the 
dipole correlations. 

With (5.1) we find that D(t’ ,  t )  and C(t ’ ,  t )  obey the multiplicative equations 

d 
i-C(t’, t )  = (Ld(wL)+x(t’)Lg-iJ?-i@)C(t’, t )  
dt’ 

d 
i y D ( t ‘ ,  t )  =[Ld(wL)+x(r‘)(Lg+1)- ir- i@]D(t’ ,  t )  
d t  

(5.17) 

(5.18) 

and the initial conditions 

C( t ,  t )  = Ra( t )  

D( t, t )  = Sa( t ) .  

(5.19) 

(5.20) 

We note that equation (5.17) is identical to the equation for u( t ) ,  but that (5.18) is 
different, due to the appearance of L, + 1. We have to average the solutions of equations 
(5.17) and 5.18) over the stochastic process x ( t ) .  We emphasise that the initial values 
(5.19) and (5.20) are also stochastic. Therefore the average of C(t ’ ,  t )  is in general 
not simply the average of Y (  t ’ ,  t ) ,  acting on the average of the initial condition, which 
is Re. This would be the commonly applied factorisation assumption, which cannot 
be justified if the coherence time y-’ is not small in comparison with the other time 
scales in the problem. 

6. The stochastic averages 

Stochastic equations of the form (5.17), (5.18) with x( t )  the random-jump process, 
have been dealt with in a previous paper (Arnoldus and Nienhuis 1986a). We can 
therefore skip the mathematics and turn directly to the results. In general the distinct 
equations (5.17) and (5.18) require distinct resolvents for the averages. In our specific 
case, however, we can express all solutions in only one resolvent. This is due to the 
fact that x ( t )  shifts the laser frequency wL instantaneously, and that the resolvents 
depend only parametrically on x. It is therefore sufficient to introduce the inverse 
operator 

1 

w ,  + i 7 - Ld ( wL + w 2 )  + iT + i@ U(@,,  w2) = 

where w ,  is a Laplace parameter and w2 acts as a shift of wL. 
The steady-state density operator is the unique solution of 

= e Tre.1. (6.2) 
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The Liouville operator 1 - y d x  P ( x )  U(0,  x)  is a simple 4 x 4 matrix with respect to 
the basis vectors P,, Pg, d and dt, and can be evaluated immediately for any prescribed 
P(x) .  Then 6 is the eigenvector with eigenvalue zero. 

The averages of equations (5.17) and (5.18) can also be found. If we substitute 
the results in (5.11), (5.12), and subsequently in ( 5 . 8 ) ,  (5.10), we obtain the fluorescence 
spectrum and the (Laplace-transformed) two-photon correlation. The results involve 
the solution for U, and are given explicitly by 

A 
dx P( x)  U(A - x, x)  

x J dx P ( x )  U(A - x, x)SU(O,  x)@ A = w - w ,  

f J w )  = Iow exp(iwr)12(r) d r  

)-' I dxP(x)U(w,  x)RU(O, x)6. (6.4) 

The integrals over x, the matrix products and the matrix inversions are analytically 
very cumbersome. A numerical evaluation of (6.3) and (6.4) is, however, straight- 
forward. 

7. The fluorescence spectrum 

The most simple example of a multimode laser with discrete modes is a two-mode 
laser with modes at w = wL* a and P ( x )  from (4.4). The laser profile is then given by 
equation (4.5) and plotted in figure 1. In figure 3 we plot the fluorescence spectrum 
I ( w )  for this case, as determined by equation (6.3). The two peaks at A / A  = 1 3  = * a / A  
correspond to elastically scattered photons from the laser modes wL* a. In this example 

0 0 4 1  

h i A  

Figure 3. Plot of the fluorescence spectrum I ( o )  from equation ( 6 . 3 )  for the case of a 
symmetric two-mode excitation. The laser modes are situated at U = w,*3A and the 
inverse coherence time is taken as y = A .  The atomic resonance equals w,, = wL - A and 
the Rabi frequency is 0 = 2A. We neglected collisions. 
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we took the atomic resonance wo equal to w L - A ,  which corresponds to A/A = -1 in 
the picture. Therefore the laser mode wL-  a is closer to resonance than the mode 
w L +  a. This explains why the left peak in the spectrum is stronger than the right peak. 
The maximum in the middle is situated at wo. This is the phase-fluctuations-induced 
fluorescence, which may be viewed as resulting from the overlap of the laser line wings 
with the resonance wo. Figure 3 illustrates the significant features of the fluorescence 
spectrum, as they arise in excitation of the atom with a discrete multimode laser. 

In the low-intensity limit SZ + 0 the fluorescence spectrum is completely determined 
by the laser profile. In this limit every laser photon is scattered independently of other 
photons, since each photon sees the atom in its ground state. The probability for the 
appearance of a photon with frequency w equals IL(w) ,  and the fluorescence spectrum 
becomes a convolution of the laser profile and I ( w )  evaluated for P ( x )  = S(x). This 
does not hold anymore for high intensities, as can now easily be shown. We already 
found that a Lorentzian P ( x )  gives IL(w) = P(A) ,  independent of the laser coherence 
time y- ' .  In figure 4 we plotted the fluorescence spectrum I ( w )  for two values of y, 
and it appears that there is a distinction. This illustrates explicitly that the fluorescence 
spectrum is no longer determined by the laser profile alone for high intensities. 

0 0 4 1  

/ \ / A  

Figure 4. The fluorescence spectrum for = 5A, wL - wo = 3A, yc = fA and p = 0. The 
mode distribution P ( x )  is taken as a Lorentzian with A = A the half width at half maximum. 
This picture illustrates the dependence of I ( w )  on the laser coherence time y- ' .  The full 
curve corresponds to y = 5A and the broken curve to y = 0.1A. 

The line at the optical frequency wL in figure 4 is termed the Rayleigh line, and it 
corresponds to elastically scattered laser photons. The line at the left-hand side, near 
the atomic resonance wo, is the fluorescence line. Its shift from wo reflects the dynamical 
Stark effect, which is a result of the high laser power (Cohen-Tannoudji 1977). We 
notice that increasing y enhances the strength of the fluorescence line and diminishes 
the strength of the Rayleigh line. The limit y + CO, which is the Gaussian white-noise 
limit, is given by the broken curve in figure 5. It can be shown in general that the line 
strengths are independent of y, provided that yis much smaller than the line separation 
(Arnoldus and Nienhuis 1985). If y becomes comparable with the line distance or 
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Figure 5. The fluorescence spectrum I ( w )  with the same atomic parameters as in figure 4. 
The broken curve is the limit y + CO, which is the phase-diffusion limit. The full curve 
represents I ( w ) ,  when the laser field is taken as the Lorentz wave. 

larger, then the strength of the fluorescence line will always be enhanced by an increasing 
y. This general idea is now explicitly verified. 

We will now show that a given laser profile and coherence time do not fully 
determine the fluorescence spectrum. The broken curve in figure 5 gives I ( o )  in the 
white-noise limit, where the laser spectrum is a Lorentzian and the coherence time is 
zero. In a previous paper (Arnoldus and Nienhuis 1986b) we employed a different 
stochastic model for the laser phase. The phase +( t )  was assumed to perform random 
jumps at random instants. This laser field, which is known as the Lorentz wave, also 
has a Lorentzian spectral distribution and a zero coherence time. The full curve in 
figure 5 gives the fluorescence spectrum for excitation with the Lorentz wave. The 
total fluorescence (the integrated spectrum) is the same for both cases, but the spectral 
distribution is still slightly different. 

8. Conclusions 

The finite bandwidth of a single-mode laser and the presence of discrete modes in a 
multimode laser are described by a stationary mode distribution P ( x ) .  The finite dwell 
time y-' of the field in a single mode gives rise to a broadening of a discrete mode of 
a multimode field and affects the spectral distribution of a single-mode field. The 
stochastics of the instantaneous laser frequency uL+ x( t )  is taken as a random-jump 
process. This is the commonly employed model for a multimode field with distinct 
modes, and if we take P ( x )  as a Gaussian then we recover the general model of a 
single-mode laser. Hence our treatment unifies various models for single-mode and 
multimode fields. At the same time it is more general since we can prescribe P ( x )  
arbitrarily. 

The equation of motion for the atom and the equations for the regressions of 
correlation functions of the emitted fluorescence attain the form of stochastic differential 
equations, which we average exactly, including the effect of the initial correlations. 
This improves earlier treatments of specific cases, where P ( x )  was taken as the 
random-telegraph distribution or as a Gaussian, because we do not impose a factorisa- 
tion assumption for two-time averages. The theory is exemplified with plots of the 
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fluorescence spectrum for various cases, and the significance of a finite coherence time 
y is discussed. - 1  
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