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We investigate the photon correlations and statistics of the fluorescence radiation, emitted by a two-level atom in a strong
phase-fluctuating laser field and a perturber bath. The laser lineshape is assumed to be gaussian, in contrast with the generally
applied model of a lorentzian laser profile. It is shown that the stochastic process, which is responsible for the line broadening,
can be dealt with exactly, just as in the lorentzian limit. The photon correlation functions do not factorize any more, which
affects the photon statistics quite thoroughly. For long counting times, the variance in the number of detected photons
increases with 2, whereas in the lorentzian limit it was proportional to ¢. This implies that the variance will always exceed the
average for ¢ large, and hence the statistics is super-poissonian.

It has been recognized for quite a long time that
the conditional probability for a photon detection
from atomic fluorescence radiation at a time ¢ = 7 af-
ter a detection of a photon at ¢ = 0, reveals the time
evolution of the atom [1,2]. Hence the measurement
of temporal photon correlations provides an important
tool to investigate in detail the interaction of an atom
with a strong laser field. A related issue which has at-
tracted much attention in the last few years, pertains
to the question whether fluorescence radiation can be
represented by a stochastic classical electromagnetic
field, or if a quantum description is inevitable. It was
pointed out by Mandel [3] that this question is amen-
able to experimental investigation by means of a sim-
ple photon counting measurement. He showed that
the variance Uz(t) in the number of detected photons
in a time interval [0, ¢] should always exceed (or
equal) the average u(¢) for a classical stochastic field,
s0 02(¢) = u(?). A violation of this inequality would
confirm the quantum nature of light, and this has
been found recently [4]. The occurrence of sub-
poissonian statistics, defined as a distribution with
oz(t) < u(?), is closely related to the photon correla-
tions. For small counting times, we always have sub-
poissonian statistics as a consequence of the anti-
bunching of fluorescent photons. For long times, sub-
poissonian statistics arises only if an effective, average
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anti-bunching survives for long delay times between
two subsequently detected photons.

In contrast with the universal anti-bunching and
the implied sub-poissonian statistics for small times,
the long-time properties of the statistics will depend
on the detailed mechanisms involved and the values
of the various parameters. In a previous paper [5] we
derived the condition for sub-poissonian statistics in
the long-time limit, as a function of the detuning
from resonance A, the collisional width v and shift 3,
and the laser bandwidth \'. The criterion turned out
to be independent of the Rabi frequency . It ap-
peared that the statistics is sub-poissonian in general,
except for small bandwidths \', together with large
detunings. In this paper we will show that not only
the precise values of the parameters determine the
long-time behaviour, but that the statistics is extreme-
ly sensitive to the underlying dynamics. In [5] we
took the laser line to be a lorentzian with HWHM =
\', where the broadening was accomplished by sto-
chastic process, which gives rise to a gaussian laser
profile. It will turn out that this slight modification
affects the results in a dramatic way.

The electric component of the laser field at the
position of the atom is taken to be

E(t) =Ey Re g exp[—i(w t + o(2))], (1)
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with ¢() an arbitrary stochastic process. Then the
laser profile is given by

oo

I(w) =% Re f exp [i(w — wp)7]
0
X (exp [—i [T d(s) ds]>dr, (2)

where (... ) denotes a stochastic average. The equation
of motion for the atomic density operator in the ro-
tating frame attains the form [5]

ido/dt = (Lg +¢(t) Ly —iT — i®)o,

0T=o, Tro=1, 3)

and the Liouville operators L4, Lg, I' and ® can be
expressed in the Hilbert space operators Py = Ig)el,
P, = leXel, d = |e){g|. The dressed-atom dynamics is
represented by

Lgo=—1[AQ@, - P+ Qd+d"), dl, )

with A= wp — wg, A2 = Ejpe, * €1, as usual, and
the phase fluctuations, spontaneous decay and colli-
sions with perturbers are included as

Lga= [Pg, o], ©)
T'o=1A4(P,0+ 0P, —2d' 0d), ©)
®o=Ly(yLy —iB) 0, @)

with A4 the Einstein coefficient. The solution of eq.
(3) can be written as

7]
o(ty) = 0 exp (—i f Lq+ ¢§(s)Lg | id))ds) a(ty),
31

®

and the time-ordered exponential will be abbreviated
as Y(t,, t1).

The photon correlation functions, which are propor-
tional to the intensity correlations of the fluorescence
radiation, can be expressed in the stochastic evolution
operator Y{(#;41,t;) as [5]

Lty o 1) = (@A TR Y(ty, 13 1)

where o is the probability that an emitted photon is

=..=2t; 9
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detected. The photon emission operator ‘R is defined
by

Ro =d' od = Pyelole), (10)

and the property ®2 = 0 reflects anti-bunching.

Eq. (9) holds for an arbitrary stochastic phase ¢(z).
Let us now suppose that ¢3(t) is a gaussian process.
Then all moments can be expressed in the second mo-
ment [6]

(B(t1) . D(ty))

=m0t 25 11 ()b (11)
P (o8

forn=2m =2, 4, ... and the odd momenta vanish.
Commonly [7—-9], ¢(¢) is taken to be the Ornstein—
Uhlenbeck process, with

(B(2,) Btg)) = Nexp[—lt, — 1,A*/N],

A>0, \'>0, (12)

where \ and \' are two independent parameters. If we
expand the exponential in brackets in (2) and apply
(11), (12), we find for the laser profile

1

lpe—— 1
He) = Regs —i(w — wp)

N —i(w—wp)

13
TN (13)

s, +1,00002),

with M(a, b, z) the regular confluent hypergeometric
function, which is related to the incomplete gamma
function by M(1,a + 1, z) =ae ?z"%y(a, z) [10]. If
we would apply (12) to obtain the stochastic average
of I (t1, ..., ty), this would give rise to very awkward
and untransparent expressions. Therefore we consider
two limits of special importance, defined as

N oo \fixed gives (B(t,)B(t5)) = N2, (14)

Ao, X fixed gives (@ (t,)$(tg))=2N8(t, — ty),
1s)

and the corresponding laser profiles reduce to

Ig(w) = (1/0/2m) exp[—~(w — wp )2 [207],

I (w) = (1/mRe[1/(A" —i(w — wp )], (16)
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a gaussian with HWHM = A\\/2 log 2 and a lorentzian
with HWHM = X', respectively. We notice that the
confluent hypergeometric function in eq. (13) ac-
counts for the deviation from the lorentzian limit,
which is obscured in the common notation with the
incomplete gamma function. The Lorentz limit (15)
is the phase diffusion process, which is the favoured
choice for ¢(z) [17,18], since its stochastics can be
dealt with exactly [11] due to the §-correlations and
the resulting factorization of averages. It was shown
by Kus [12] however, that also the other extreme
case, where the correlation time in (12) becomes very
long, can be treated exactly. The photon statistics in
the limit (15) are well established [5,13], and here we
consider the opposite case (14). It can be proved that
the choices (14) and (15) are the only gaussian ¢(¢)
processes, which yield a gaussian and a lorentzian
laser profile, so these limits are not merely artificial
simplifications.

The moments in the gaussian limit become <¢'>(t1)

B(tym)) = (2m!) A2 [(m!2™) and the odd moments
are zero. This can be written as

(@) .. B(t,))= f x"p(x) dx

with
p(x) = (1/\/2m) exp(—x?[222) 17)

for all n. Notice that the laser profile is related to
p(x) as I (w) = p(w — wy ). If we now expand the
time-ordered exponential Y(¢,, ¢;) and take the sto-
chastic average with (17), we obtain

(a(t))= f dx p(x)

X exp[—i(Ld +ng —iI'— I(I))(t s to)] O(fo), (18)

where the initial atomic state o(z() is assumed to be
non-stochastic. The stationary state of the atom then
becomes

oo

7= lim(o(t)) = f a(x) p(x) dx, (19)

[—> oo
—o0

with 0(x) the unique solution of
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() =o(x),

Trox)=1, (20)

which can be found immediately. We notice that G is
independent of the arbitrary initial value o(z;).

A similar method applies to the intensity correla-
tions (9). Expanding all Y(¢,,, ¢;) and taking the
average yields

Ly txLg —il'— i®)o(x) =0,

(L (t15 o 1)) = (2A)F f dx p(x)

X Tr®R Z(x, tk = tk—l)(R R Z(x, t2 = tl)

X R 5(x), (21)

which contains the evolution operator Z(x, 7) =
exp[—i(Ly + xL, —il' - i®)¢] and the atomic state
o(x). If we introduce the function

f(x, 1) = ad Tt P,(Z(x, t)Pg), 22)

the intensity correlations take the form [15]

Dlty, )= [ dxp)

Xfx, ty — tp_1) .. f(x, 1y — t))adR(x), (23)
where the excited state population of o(x) is
71, (x) = (elo(x)le)
32G4+7)
Q24 ) +ALA+x B + G+ )]
(24)

In the lorentzian limit, the correlation functions (23)
factorize, but this does not hold any more in the
gaussian limit. The function f(x, #) behaves as

fex, =04 Q)? + 03 (t-0),

f(x, ) = adn (x), (25)
and especially f(x, 0) = 0, which is again the anti-
bunching for small time-delays. The photon counting
rate (I; (#)) follows from (23) and becomes

oL =)= f I; (%) p(x) dx = a7,
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with P I (x)
) Po(s)=%—l2 f dx plx) ————
I, (x) = aATi(x), (26) 1+7(x, S)
and after substitution of the explicit result (24), the - (%) f(x )" -1
integral can be evaluated in terms of error functions. n(s f dx p(x)———— : (n>0)
The statistics can be obtained from the correla- Yo (1 +7(x,5)"*1 (2)

tion functions by standard methods [14]. If we de-
note by P, (¢) the probability to detect » photons in
[0, #], we can introduce the factorial moments by

So(®) =1,

S (=27 n(n —1) ... (n— k+ 1)P, (D),
n=k (27)

which are determined by the intensity correlations

4
S =k [ dg
0

t)), k=1

(28)

With (23) we find Sj(¢) and with the inverse of (27)

ok G

k 2
Xf dtz_q f dty (I (2q, ..
0 0

,,,,k(r), n=0,1,2,.. (29)

we obtain the probabilities. The results can be cast in
a simple form in the Laplace domain [16]. With

T, s)=0f e % f(x, H)dt =°;—A

102G A+y+s)

QG A+yrs)HA+)[(A+x—F +GA+7+5)’]
(30)

X

we find explicitly for the statistics

3:0(3) =1/s,

§k(s)=k—2! [ &P 9 (k>0) (1)
§7 T

98

k=1,2,..,

in terms of ? (x, 5). This determines the full statistics.
Let us now discuss some implications of these re-
sults, in order to establish the significance of the cal-
culations. Statistical quantities, which are amenable
to experiment, are for instance the average and the
variance of the photon number distribution. They can
be expressed in the factorial moments as u(?) = S; (?),
2 (£) = S,(£) + S1(£) — S, (£)*. With (31) for k =
1, 2, transformed to the time domain,

51 =1,0,

oo t

$,0=2 [ &xp@ () [ (- Dfex,dr, (33)
-0 0
we obtain for the difference

o2(£) — u(t) = =2I; f dxp(x)Il(x)f (t—7nk(x,7)dr
° (34)

in terms of the normalized correlation function k(x, 7),
defined by the relation f(x, 7) =1; (1 — k(x, 7). It

was already indicated in the beginning of this paper
that it is interesting to investigate whether o (t) u(®)
might become negative, a feature called sub-poisson-
ian statistics. This situation appears as the normalized
quantity

Q(t)=az(t)—u(t)=52(t)—s1(f)22_1 35)
u(ey? S1(0°

is smaller than zero. For classical radiation fields, we
have Q(#) = 0, but for arbitrary quantum fields we
have Q(¢) = —1. For small times we find

0 =-1+0(2), (t-0) (36)

and the extreme limit Q(0) = —1 is a direct conse-
quence of the anti-bunching, just as in the lorentzian
limit. If we now consider the limit ¢ - oo, we obtain
from (34)
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L) -4 )2

0= [ a5 ) 20 (37)

so for a gaussian laser field we can never have sub-
poissonian statistics, whereas for a lorentzian laser
line, we found sub-poissonian statistics for almost
every set of parameters. This reveals the crucial de-
pendence of the statistics on the mechanism of laser-
line broadening. The sign of Q(°) does not depend
only on the bandwidth of the laser, but also on the
stochastics of ¢(7). From (35) and (37) we also notice
that Uz(t) = O(tz) for t - o=, but for a lorentzian laser
field we had 02(7) = O (), so the nature of the vari-
ance of the distribution has dramatically changed. It
can be shown in general, that this is a consequence of
the fact that the averaged intensity correlation
{I,(t;, t5)) does not factorize in (I,(t, 1)) = I% for
1, > 1.

The definition of a normalized measure for o%(z)
— u(t), the Q-factor (35), is not the same as in our
previous paper, where we took Q_ (f)
= [02(1‘) — ()] /u(?). For a lorentzian laser line we
found that Q,, (¢ = °°) remains finite, because o2(f)
= O (¢), but for the gaussian laser line we have Q(¢)
finite. Because of the relation Q() = Qp,,(£)/u(?), this
Q-factor will approach zero in the lorentzian case in
the limit ¢ = 0. In the transient region ¢ < oo, the defi-
nition (35) is more natural. This Q(¢) is independent
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of a, the detector parameter, so it can be considered
as a field quantity. Furthermore, the ultimate value
0(0) = —1 is a reflection of the anti-bunching for
small time delays in the photon statistics, a feature
which is hidden in the property QpI(O) =—1.
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