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Abstract. We investigate collisional redistribution in a laser field with arbitrary lineshape. 
It is shown that the phase diffusion model cannot be correct in general due to its inherent 
assumption of zero correlation times. We give general expressions for the state of the 
atom, the dipole correlation function and the steady-state fluorescence spectrum in the 
presence of collisions and phase fluctuations with finite correlation times. It turns out that 
collisional effects decouple from the free-atom stochastic problem to a good approximation 
and that modifications due to the laser bandwidth can be quite different from collisional 
effects, although they are additive on a microscopic level. We evaluate the fluorescence 
spectrum explicitly in the limit where the three lines are well separated and we show that 
the spectrum is determined by simple field Correlation functions. 

The arbitrary phase fluctuations do not affect the line strengths but only the lineshapes. 
Collisions, on the other hand, can transfer intensity between the lines, due to the very 
small collision time. For free atoms and strong driving fields, the fluorescence spectrum 
becomes a convolution of the normalised laser spectrum with the fluorescence spectrum 
at monochromatic irradiation, but this does not hold anymore when collisions are present. 

1. Introduction 

The extensive use of intense laser beams in optical experiments made it necessary to 
develop the theory of the interaction of single atoms with strong radiation fields outside 
the perturbation expansion regime and to study the emitted fluorescence radiation in 
a similar fashion. For a two-level system, irradiated by monochromatic light, Mollow 
(1969), Carmichael and Walls (1976) and Kimble and Mandel (1976) calculated the 
state of the atom, the fluorescence intensity, the intensity correlation functions and 
the spectral distribution of the fluorescence. Hereafter, effort has been made to include 
the effects of the finite laser linewidth and most commonly this was done with the 
assumption that the phase of the field fluctuates randomly. If this stochastic phase is 
taken to be the Wiener-Ltvy process (phase diffusion model) the laser line becomes 
a Lorentzian and the problem can be solved exactly (Kimble and Mandel 1977, Agarwal 
1978, Zoller 1978), with a method due to Fox (1972). Although this phase diffusion 
model is attractive from a theoretical point of view, it turned out that it did not greatly 
improve the description of experimental results (Armstrong and Eberly 1979, Morellec 
et a1 1980). More advanced models for a single-mode laser, with a non-Lorentzian 
lineshape, were introduced and the theoretical predictions fitted the experimental data 
better (Dixit et a1 1980, Georges and Dixit 1981, Zoller er a1 1981, Yeh and Eberly 
1981, Jackson and Swain 1982). 

0022-3700/85/061109+ 16$02.25 0 1985 The Institute of Physics 1109 



1110 H F Arnoldus and G Nienhuis 

Another active field of research is the study of collisional redistribution of intense 
radiation. The characteristics of the fluorescence spectrum of an atom in a buffer gas, 
driven by an intense monochromatic field, contains information on the collisions in 
strong fields (Burnett et a1 1982, Nienhuis 1982). Since realistic laser fields have a 
finite bandwidth, it is important to study the combined effect of collisions and laser 
fluctuations on the emitted spectrum. Modifications for illumination with finite band- 
width radiation were made recently by Eberly (1983) for the phase diffusion model 
and in the impact limit, and by Arnoldus and Nienhuis (1983) with the independent 
increment process and in the binary collision approximation. In both references, the 
laser has again a Lorentz profile. It is the aim of this paper to show how more realistic 
non-Lorentzian laser models can be incorporated in the theory of collisional redistribu- 
tion and, conversely, how collisions change the free-atom results. 

2. Spectral distribution of the laser intensity 

The laser field, which is incident upon an active atom, is assumed to be non-mono- 
chromatic due to a fluctuating phase 4(  t ) ,  considered as a real stochastic process. The 
electric field at the position of the atom is given by 

E ( t ) = E , R e  ~ ~ e x p [ - i ( w ~ t + 4 ( t ) ) ]  (2.1) 

with Eo the amplitude, the normalised polarisation vector and w L  the central 
frequency. The spectrally resolved energy density of the corresponding electromagnetic 
field is the Fourier transform of the autocorrelation function of the positive frequency 
part of E (  t ) ,  so the laser spectrum is proportional to 

I L ( w )  =;&,E:  exp[i(w -wL).r](exp[-i(+(~)-4(O))]) d7 

provided that the resulting bandwidth is much smaller than wL. We denote a stochastic 
average over the phase fluctuations by { . . . I  and assume stationarity 
expectation values. Note that for instance the Wiener-Lhy process 
stationary. 

The total intensity 
m 

I L ( w )  dw = ;E,E; 

in occurring 
itself is not 

(2.3) 

is seen to be independent of phase fluctuations. The stochastic process 4(  t )  distributes 
the intensity over a frequency range around wL, but does not change the overall 
intensity. It is convenient to introduce the normalised laser profile as 

iL(0) = I,(w)/;&,E:. (2.4) 

Now we can invert relation (2.2) to find the correlation function from this normalised 
spectrum 

03 

{exp[-i(4(7) - 4(0))11 = J’ exp[-i(w - w L ) T ~ ~ L ( w )  dw 7.30. (2.5) 
-m 

Since the $( t )  process can be assumed to be symmetric in time, this correlation function 
is real. This again implies that the phase fluctuations only broaden the laser line, 
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without shifting it and that the spectrum is symmetric around wL. In the special case 
of the phase diffusion model, the correlation function decays exponentially, so the 
laser profile 

1 1 
T A-i(w-wL) 

fL( w ) = Re - 

is a Lorentzian with halfwidth at half maximum equal to A. 

3. The equation of motion 

The laser field is incident upon a two-level system with internal Hamiltonian Ha, which 
has eigenstates le) (excited state) and Ig) (ground state) with eigenvalues hw, and hug 
respectively. The coupling strength with the external field is determined by the real 
Rabi frequency Cl, defined by 

= &EL * (elCclg> (3.1) 

with I.( the dipole moment operator. The coupling Hamiltonian in the dipole approxima- 
tion and the rotating-wave approximation is then 

Har(t) = -&Cl{d exp[-i(w.t+4(t))]+~c} (3.2) 

where d = (e)(gl is the atomic raising operator. Spontaneous emission into free space 
is accounted for by a relaxation operator r, which acts on a density operator p ,  
according to 

T p  = $A{ Pep + pP,  - 2d ' p d }  (3.3) 
with P, = ddt = le)(el, the projector on the excited state and A is the Einstein coefficient 
for spontaneous decay of this transition. 

This active atom is surrounded by a gas of N neutral perturbers, which collide 
elastically with the atom. When T, is the kinetic energy of the ith perturber and V,  its 
interaction with the atom, every perturber contributes H, = Ti + V,  to the Hamiltonian. 
The equation of motion for the N + 1 particle density operator p (  t )  then attains the form 

dt  i = l  
(3.4) 

which is a stochastic differential equation, due to the fluctuating phase 4(  t )  in Har( t ) .  
The time dependence of fiar( 1 )  with exp(+iw,t) and the occurrence of the stochastic 

phase in the form (3.2) is cumbersome. This can be simplified considerably with 
the unitary stochastic transformation 

(3.5) 

and Pg = 1 - P, = /g)(gl, the projector on the atomic ground state. If we introduce the 
dressed-atom Hamiltonian 

Hd = -$h{A(P,  - Pg) + R(d + dt)} (3.7) 



1112 H F Arnoldus and G Nienhuis 

with A = wL - we+ wg the detuning from resonance and the Liouville operators Ld and 
Li 

L d p  = h-'[Hd, p ]  - i r p  (3.8) 

Lip = h-'[Hi, p ]  (3.9) 

we can transform equation (3.4), which yields 

(3.10) 

This equation is equivalent with (3.4) since relation (3.5) can be inverted, but in (3.10) 
the oscillations with the optical frequency wL have disappeared and the phase fluctu- 
ations show up in a more handsome way. 

From (3.6), (3.7) and (3.8) we see that phase fluctuations in the U picture add up 
with the detuning A = wL - we + wg and hence d(  t )  can be regarded as a time-dependent 
shift of the laser frequency wL. In a semiclassical picture of perturber motion, the 
Liouvillian L, reduces to 

Lip = 4-' VY( t ) L , p  (3.1 1 )  

with V f ( t )  the difference of the interaction potential for the atom in the upper and 
lower state (Yeh and Berman 1979), which imposes a combined modification of the 
detuning from resonance due to the laser linewidth and collisions according to 

N 

A + A ( t ) = A + $ ( t ) - h - '  V y ( t )  
z = I  

(3.12) 

which shows that V!( t )  yields an effective shift of the atomic level separation w e -  w,. 
The substitution (3.12) exhibits clearly the additive nature of phase fluctuations and 
collisional perturbations on a stochastic and microscopic level, but it will turn out that 
this additivity vanishes after averaging over the stochastic process and the velocity 
distribution of perturber motion. 

We introduce the reduced density operator 

uo( t )  = Tr, U( t )  (3.13) 

and similar for po( t ) ,  where the trace is taken over the perturber states, which describes 
the state of the atom, regardless of the state of the perturbers. From transformation 
(3.5) it follows that uo( t )  and po( t )  have the same diagonal elements, but the U picture 
cannot be applied to predict the atomic coherences, averaged over the stochastic 
process, since the non-diagonal terms contain the stochastic factor exp[*i( wLt + +( t ) ) ] .  
It was shown by Agarwal (1978) that a different transformation allows one to find 
these coherences, but then the populations are affected by stochastic factors. 

4. Effect of phase fluctuations 

On some initial time to we choose the state of the atom and perturbers to have the 
non-stochastic value U( to). Equation (3.10) then determines U (  t )  for all later times. 
For 4 (  t )  = 0, the evolution operator is 

u ( t ) = e x p  -i Ld+ C Li ( t - t o )  , [ (  I (4.1) 
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We introduce the interaction picture by defining 

i,(t)= U-’ ( t )L ,U( t )  

and we find as the integral of (3.10) 

a( t )  = u(t)e exp( -i It: d(s)f,(s) ds)a( to)  
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(4.2) 

(4.3) 

with 0 the time-ordering operator. The time-ordered exponential is the additional 
factor due to phase fluctuations, which becomes unity for monochromatic irradiation. 
Since a( to)  is not stochastic, we have to average the time-ordered exponential to find 
{a(t)l.  Unfortunately this is a very complicated Liouville operator in the ( N +  
1)-particle space. In fact, even for free atoms this time-ordered exponential is very 
cumbersome. 

An exception is the phase diffusion model or the independent increment process, 
for which we can average (4.3) exactly. If we differentiate the result with respect to 
time, we find a differential equation for the average 

(4.4) 

The effective relaxation operator WO is given by (Arnoldus and Nienhuis 1983) 

w, = AL; (4.5) 

where A is the halfwidth of the laser line as in equation (2 .6) .  We firstly note that WO 
is a time-independent operator, acting only on atomic states. Hence it can be absorbed 
in L,,, whereafter we can treat equation (4.4) in the same way as in the monochromatic 
case (Nienhuis 1982). A similar way of averaging also applies to correlation functions 
and spectra, as we demonstrated in a previous paper (Arnoldus and Nienhuis 1983). 
We now present a treatment of arbitrary phase fluctuations, combined with collisional 
effects, without choosing a specific model. 

Note that WO in (4.4) is not proportional to L, itself, in contrast to the phase 
fluctuation contribution in the stochastic equation (3.10) and so, on the average, phase 
fluctuations can no longer be described as an additive modification of the detuning A. 

5. Finite correlation times 

If we expand the time-ordered exponential in the formal solution (4.3) and average 
over the $ ( t )  process, we find 

with a non-stochastic arbitrary initial value a( to). The first term in large brackets gives 
the solution for monochromatic driving fields and the second term vanishes due to 
[d( t ) )  = 0. The lowest-order correction which accounts for phase fluctuations is the 
third term. In the phase diffusion model we had 
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so this 6 function is situated precisely on the integration limit of the inner integral in 
(5.1). In order to find out how the t l  integration should be performed, we consider 
the d ( t )  process as a limit of the Ornstein-Uhlenbeck process, for which we have 

M 2 ) 4 ( f , J =  AY eXP(-Yb2- 41) y > o .  (5.3) 

The phase diffusion limit is obtained by taking y+03, which yields equation (5.2). 
The higher-order moments of d ( t )  are also S correlated (Fox 1972) and every term 

in (5.1) can be evaluated. The resulting expression in large brackets is again a 
time-ordered integral, and differentiating the result with respect to t yields (4.4) for 
the average. 

The phase diffusion model can be treated exactly, but it provides an approximate 
description of the field and the agreement with experiment is poor. We will now try 
to explain why this is understandable. The moments ( d ( t n ) .  . . d(tl)] occurring in 
(5.1) contain, according to (5.2), 6 functions which are positioned arbitrarily close to 
the limit of an integration interval. If there are other time scales in the integrand, for 
instance oscillations, the 6 functions are always narrower than every oscillation time 
irrespective of how small. In other words, the d ( t )  process is supposed to contain 
frequencies, which are larger than every other frequency in the problem under study. 
This is not realistic as we will show by the following example. 

If the parameter 

SZ’ = A( 1 + fi2/A2)’” (5.4) 
becomes much larger than other frequencies like the Einstein coefficient, the laser 
bandwidth and so on, the spectrum of fluorescence consists of three separated lines, 
the Mollow triplet (Mollow 1969). This justifies the secular approximation (Cohen- 
Tannoudji 1977), which treats the evolution of every line independently. The same 
approximation can be made in equation (4.4) for the average (a( t ) ] ,  but also in equation 
(3.10) for the stochastic a( t ) .  If we average the latter over the phase diffusion process, 
we do not find the secular limit of {a(t)].  Hence the secular limit and the stochastic 
average do not commute. This is due to the fact that in the phase diffusion limit, d(  t )  
always couples the three lines on the stochastic level, irrespective of how large SZ’, the 
distance between the lines, is. This is reflected in the time behaviour by the 6 functions, 
which are alwayj narrower than SZ’-’. On the other hand, SZ’ can become arbitrary 
large, independent of the d( t )  process. Nevertheless, phase fluctuations with frequency 
larger than SZ’ will always contribute. This is not realistic. We should leave open the 
possibility of finite correlation times, like 1/ y in (5.3), which are not necessarily small 
compared with SZ’-’ or the collision time. This is equivalent to the idea that the wings 
of the laser profile decay faster than a Lorentzian. 

6. Binary collisions 

The integral (4.3) for a( t )  is not easy to deal with, because it involves (NS 1)-particle 
operators. We go back to the differential equation (3.10) and consider Ld+ d ( t ) L ,  as 
a time-dependent atomic Liouvillian, whereafter we can make the binary collision 
approximation for time-dependent fields (Nienhuis 1983). The reduced atomic density 
operator ao(t) is defined in (3.13), and similarly we introduce the density matrix for 
the atom and a single perturber by 

f l , ( l ;  f ) = T r P 2 P 1 . , p s d f ) .  (6.1) 
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Then, a general equation for ao(t) is given by 

with Tr, the trace over the states of perturber 1, p,( 1) the density operator for perturber 
1 in thermal equilibrium and the evolution operator U, is defined by 

U2(t2,  t , )  = 0 exp( -i 1,; ( L d + $ ( s ) L g + L I )  ds). (6.3) 

Note that equation (6.2) only contains a,( 1 ; t )  at time to. For free atoms, e.g. in the 
absence of collisions, the last three terms in equation (6.2) vanish and the solution, 
written as u,(t), is formally 

r a ( t ) =  U,( t ,  to )aa( to )  (6.4) 

where U,(  t2, t , )  follows from U,( t2 ,  t , )  by putting L ,  = 0. We will call a,( t )  from (6.4) 
the free-atom result if the initial condition is chosen as a,( to)  = go( to). It obviously 
obeys the differential equation 

dc+a i - = ( Ld + d(  t ) Lg ) Ua, 
d t  

The collision time T ~ -  s is very small and we can safely assume that $( t )  
does not change considerably during a collision. The collision integral in (6.2) contains 
only $ ( t )  in the evolution operator. During the small collision time T ~ ,  we can write 
$(s) ds -- 4(s + 7,) - +(s), if the collision occurs at t = s, but this is the phase change 
in the course of the collision, which is negligible. This implies that we can make the 
substitution 

U,( t, t’) + exp[-i(Ld+ L , ) (  t - t’)] (6.6) 

in the integral in (6.2). Introduction of the Laplace transform 

(6.7) 

with f i2 (w,  to) the Laplace transform of the operator given by equation (6.3) and the 
collision operator is defined as usual by 

(6.9) 
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In equation (6.7) we used that & , ( w ) ,  the Laplace transform of (6.4), obeys the relation 

&,( w )  = - 1 go(  to)  + - L ~ ~ ~ e x p [ i w ( t - t o ) ~ $ ( t ) a ~ ( t ) d f  
w - Ld w-Ld to 

(6.10) 

which follows from (6.5). 
Solution (6.8) is still stochastic. If we take al(l; to) =p,(l)ao(to) as the initial 

condition, the last term disappears. The second term on the right-hand side vanishes 
if there are no collisions or if C$( t )  = 0. In general this term will be small on the average 
if $ ( t )  is sufficiently random. 

More precisely, the atomic density operator a,( t )  deviates from a,( t )  due to the 
cumulative effect of all collisions in the time interval [ t o ,  t ] .  The difference can always 
be written as 

(6.1 1) 

just as in (5.1 ), where the corrections are time-ordered integrals, containing products 
of $( t ’ )  at times in [ to ,  t ] .  If we multiply (6.1 1) with C$( t )  and take the average, the 
first term vanishes, because {$( t ) ]  = 0 and the corrections will only contribute sig- 
nificantly if $ ( t )  correlations survive over the time delay between two collisions. If 
we indicate this characteristic correlation time by y - ’ ,  just as in the specific case (5.3), 
we must require that y is large compared with the collisional linewidth, since this is 
of the order of the inverse time between two collisions. The parameter y has also a 
direct interpretation as can be seen from (5.3). If I t2-  t i l  < y- ’  we have {d(tl)d(_t2)}- 
constant, and a constant correlation function yields a Gaussian laser profile IL( w ) .  
From (2.2) we see that the short-time behaviour of the correlations determines the 
wings of the spectrum, so if lo - wL] > y, the profile becomes Gaussian. This shows 
that {$( t)(ao( t )  - a,( t ) ) )  can be assumed to be small if the collisional width of spectral 
lines is smaller than the non-Gaussian width of fL( o) and, of course only if t - to > y- l .  

With this assumption, the explicit solution for the atomic density operator is given 

ao( t )  - a,( t )  = (ao( t )  - a,( 1 +corrections} 

by 

(6.12) 

expressed in the free-atom solution ( & a ( w ) l .  The two factors on the right-hand side 
account for collisions and are independent of phase fluctuations. If d(  t )  = 0, we have 
UI ( t ,  to)  = exp[ -iLd( t - to)] and equation (6.12) reduces to 

which is the correct monochromatic limit (Nienhuis 1982). It can easily be shown that 
(6.12) also has the correct phase diffusion solution, however with a slightly modified 
collision operator, due to the neglect of large phase jumps during a collision. We 
conclude that (6.12) is the correct generalisation of (6.13) for laser fields with arbitrary 
lineshape. 

The long-time limit 

{ao) = {ao( t = CO)) = lim - iw{Go(w)) (6.14) 
W + O  
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follows from (6.1 1 )  and obeys the equation 

(Ld - i@( o))( 5.01 = L,-J(@aa). 

For monochromafic irradiation, the right-hand side of (6.15) is zero. 

1117 

(6.15) 

7. Dipole correlation function and fluorescence spectrum 

The spectral distribution of the emitted fluorescence radiation is related to the dipole 
correlation function 

( d (  t ) d  ’( t ’ ) )  = Tr d tX(  t ’ ,  t ) ( p (  t ) d )  t’a t (7.1) 

since d t (  t )  E‘+’(  t ) ,  the positive-frequency part of the electric-field component. The 
time dependence of the Heisenberg operators is governed by the time evolution operator 
for the density operator p ( t ) ,  as it follows from (3.4) 

d t ’ )  = X ( t ‘ ,  t ) P ( t ) .  (7.2) 

With (3.5) we transform to the U representation. 

( d ( t ) d t ( t ’ ) )  = exp{-i[w,( t ‘ -  t ) +  +( t ’ )  - c$(t)]} Tr d t  Y( t ’ ,  t ) ( u ( t ) d )  t’a t .  
(7.3) 

Here Y(t’, t )  is the propagator of U ( [ ) ,  as given in (4.3). Now we can introduce a 
Liouville vector in ( N  + 1)-particle space by 

W t ‘ ,  t )  =exp[-i(c$(t‘)-+(t))IY(t‘, t ) ( c + ( t ) d )  t ‘ 2  t (7.4) 

which obeys the differential equation 

and the initial condition 

D(t ,  t )  = U ( t ) d .  (7.6) 

Equation (7.5) is very similar to equation (3.10) for a( t ) ,  but an important difference 
is that the initial condition is also stochastic. Even in the long-time limit D(t‘ ,  t )  
remains a stochastic function of t ‘  and t, but it will become independent of the initial 
value c+(to). In the same fashion as in (3.13), we can define the atomic operator Do( t ’ ,  t )  
by taking the trace over the perturber states. The correlation function can be written 
as 

(d(t)dt(t’))=exp[-iw,(t’-  t)]Tr, dtDo(t’ ,  t )  f a t  (7.7) 

and Do( t ’ ,  t )  can be found by applying the binary-collision approximation, just as in 
(6.7). With 

6 0 ( ~ ,  t )  = JOm exp(iw7)Do( t + 7, t )  d7 

we then find 

(7.9) 
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where we neglected the last two terms of (6.8), which can be shown to be small, and 
U3(t2,  t l )  follows from U,( tZ, t l )  by the substitution L,+ L,+ 1. Relation (7.9) also 
holds without brackets and is t dependent because the correlation function (7.7) 
depends on two times. In the phase-diffusion limit, the stochastic average in (7.9) 
factorises according to 

and for {ao(t))  we could use the Laplace inverse of (6.12) or the steady-state solution 
of (6.15). In the case of phase fluctuations with finite correlation times, this factorisation 
does not hold anymore, but most authors use it as an approximation. In our opinion, 
this is not correct. 

The correlation function ( d ( t ) d t (  t ’ ) )  depends on both t and t’ but intrinsically also 
on to, the initial time for the equation of motion for ao(t). In the long-time limit t ,  
t’ >> to, this to dependence disappears, but the t and t’ dependence survives, due to the 
phase fluctuations. The stochastic average { ( d (  t ) d t (  t’))) however, will depend only 
on T in this limit and the spectrum of fluorescence, averaged over phase fluctuations 
will be stationary. Normalised to the number of emitted photons per second, it is 
given by 

I (w)= l im A exp(iwT)((d(t)d+(t+T))]dT. 
r+m 

With (7.7) and (7.8) this becomes 

1 
I ( @ )  = lim A Re-Tr, dt{6, (w,  t ) )  

r-m 7T 

(7.1 1 )  

(7.12) 

which can be evaluated directly with the result (7.9). Note that the explicit limit t + CO 

is not trivial because of the breakdown of the factorisation (7.10). 
The total fluorescence intensity follows from (7.8) and (7.6) 

ra: 

J I ( o )  dw = A lim Tr, dt{ao(  t ) )d  = Aii, 
t-m --oo 

(7.13) 

with rie = { ( e [ C 0 \ e ) ) ,  the averaged steady-state population of the excited level, as given 
by the solution of (6.15). This 8, does depend on phase fluctuations in general, so the 
emitted fluorescence intensity is affected by the laser lineshape. 

8. Separated spectral lines 

In the previous sections we showed explicitly how the state of the atom and the 
fluorescence spectrum are modified by the combined effect of collisions and arbitrary 
phase fluctuations. In the last part of this paper we consider the limit where Cl’ from 
(5.6) is large compared with every other frequency in the problem, except wL. In this 
limit of strong fields or large detunings, the fluorescence spectrum consists of three 
lines: the fluorescence line F at wL - Cl’, the Rayleigh line R at wL and the three-photon 
line T at wL+f l ’ .  Photon emissions can be seen as transitions between eigenstates of 
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the dressed-atom Hamiltonian (3.7) (Cohen-Tannoudji 1977), which are 

11) = / g )  cos fe - le) sin f~ 
12) = lg) sin f8 + le) cos $8 (8.1) 

tan 8 = f l / A  - l r / 2 <  8 <  T / 2 .  (8.2) 

Hd( 1) = fhfl'l 1) Hd12) = -4hfl'12). (8.3) 

with 8 defined by 

The eigenvalue equations are then 

For large Cl', the dominant frequencies in the equation of motion for ~ ( t )  are the 
eigenvalues of h-'[&, a ]  which are -Cl', Cl' and zero (two-fold degenerate) and the 
same holds for equations (7.5) for the dipole correlation function D(t ' ,  t ) .  The 
fluorescence spectrum with its three lines follows from the independent evolution in 
the three subspaces of eigenvectors of h-'[Hd, .] which are 12)(11 ( F  space), 11)(21 ( T  
space) and the two-dimensional R space, spanned by 12)(21 and Il)( 11. In this secular 
limit, the coupling between these three subspaces is neglected if the coupling is 
established by frequencies which are small compared with Cl'. 

Another time scale in equation (3.10) results from phase fluctuations $( t ) .  Consider 
first the phase diffusion model for which we found the exact average (4.4). It is again 
easy to check that taking the average does not commute with passing to the secular 
limit. In other words, if we make the secular approximation in the stochastic equation 
(3.10) and then average over the $( t )  process, we do not find the secular limit of (4.4). 
It was pointed out in P 4 that this is a consequence of the 6 correlations of the $ ( t )  
process. The 6 functions are always smaller in time than l/Cl' and they give a 
non-vanishing coupling in the limit of arbitrary large Cl'. For realistic fluctuating 
phases, this will not be correct, so we assume further on that & ( t )  correlation times 
are larger than l/il ', which allows us to apply the secular approximation before 
averaging over the $( t )  process. This requires that the sidebands of the spectrum are 
situated in the Gaussian wings of the laser profile, whereas the approximation that led 
to equation (6.12) imposes the constraint that the collisional widths of the lines are 
smaller than the spectral region where the laser profile is well described by a Lorentzian. 
Therefore, the next results will be complementary to previous ones (Arnoldus and 
Nienhuis 1983). 

The correspondence between phase fluctuations and collisions was already shown 
in equation (3.12). We now make the distinction that collisional fluctuations might be 
arbitrary fast but phase fluctations should have finite time scales. In the phase diffusion 
model, this time scale is zero and corresponds to the impact limit of the collision 
process. The bandwidth A of the laser is additive to the collisional width in the equation 
of motion for the density matrix a( t ) .  For correlation functions, this is no longer true 
since then phase fluctuations are proportional to L,+ 1 and collisions to L,, so even 
in the impact limit and the phase diffusion limit, $ ( t )  fluctuations and collisions are 
not additive in general. 

Phase fluctuations in the solution (6.12) for the density operator are contained in 
the atomic propagator Ul(t, to)  and are proportional to L,. In the secular limit, L, 
becomes -cos 8 in F' space, cos 8 in T space and zero in R space, so it commutes 
with L d  and (6.3) reduces to 

Ul(t2, tl) = exp[-iLd(t2- t l ) l  exp[-i(d4t2) - d(tl))L,l (8.4) 
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and the same holds for U3(t2,  t , ) ,  since L,+ 1 also commutes with Ld. The operator 
-iLd is in this limit (Nienhuis 1982) 

T space 

with the positive parameters 

a = A cos4 b = A sin4 $0 = A - f ( a  + b ) .  (8.6) 

We will now show that the long-time limit of the density matrix go( t )  is not stochastic 
anymore. In order to do so, we start with the solution (6.12), but without brackets. 
In R space, L, = 0, and we simply have 

( w - L d )  I,:exp[iw(t- to)lU,(t, to)uo(co) d t  =iao(to)  in R space (8.7) 

and (6.12) reduces to the monochromatic result (6.13). The long-time limit should be 
independent of vo(tO), so on to we can choose the coherences of U,, to be zero (the F 
and T components). From (6.12) it then follows that they are zero for all times, just 
as in the monochromatic case. If the coherences are not zero on to, they damp out 
because of a in (8 .5 ) ,  which gives a decay with exp[-a( t - to) ] .  So the density operator 
in the long-time limit is simply the monchromatic solution 

P 4 
P + 4  P+4 

eo= 11) - (11 + 12) - (21 

with 
p = a+k(SZ, A )  q = b + k(SZ, A) (8.9) 

and k(R, A )  > 0 the rate of optical collisions (Nienhuis 1982). 

fluorescence intensity to be 
If we transform (8.8) to the bare states le) ,  Ig), we find with (7.13) the total 

AA2 
Afi,=A -- (i AA2+(A+4k(R,  A))SZ” 

(8.10) 

I t  has its maximum for A = 0. In the secular approximation SZ must be dominant over 
A and k(n, A )  when A = 0, which implies the saturation limit. We notice that collisions 
enhance the fluorescence but that phase fluctuations have no effect. This was not the 
case for the phase diffusion field. 

9. The line strengths and lineshapes 

The fluorescence spectrum follows from (7.12), (7.9), the analogy for U3(t2,  t , )  of (8.4) 
and the result that the density operator is independent of time in the steady <:ate. 
After a slight rearrangement of (7.9) we find explicitly 



Efects of laser lineshape on jluorescence radiation 1121 

In order to find the line strengths, we have to integrate this expression over w in every 
subspace separately. If we close the contour in the upper part of the complex w plane 
with half a circle, it can easily be shown that the second term in the large round 
brackets gives no contribution. The first term gives 2‘rrS(r) in the integrand, so we 
finally find for the strengths 

S, = A  Tr, dtYP(6,d) /3 = R, F, T (9.2) 

with 9, the projector on the subspace /3. In this derivation we used that the collision 
operator does not vary much over the width of a spectral line. To be specific, projections 
of @(U) are given by (Nienhuis 1982) 

T space. 
Evaluation of (9.2) with a, from (8.8) gives 

which obey the identity SR + SF + ST = Afi,, the total fluorescence. We see that the line 
strengths do not depend on phase fluctuations, in contrast to the phase diffusion model, 
but they do depend on collisions. 

More interesting are the spectral lineshapes. Partial integration of (9.1) gives the 
alternative expression 

1 

‘rr w - L,+i@(w) 

1 1  X (  l + l f f e x p [ i ( o - L , ) r l - { e x p [ - i ( f $ ~ r ) - ~ ( O ) ) ( ~ ~ +  d 1)1]dr (ao4 
d r  

(9.5) 
and it can again be shown that the second term in large round brackets, which now 
contains all phase fluctuations, does not contribute to the line strengths. If we expand 
every operator in (9.5) in the eigenstates of i (w  - Ld), use the explicit form of e,, and 
the line strengths and perform another partial integration, we find explicitly 

1 a- iR‘- iA JOm 

v a+@f-iR’- iA 
I ( o )  = SF Re - exp[(iA + iR’ - a )  T ]  

x(exp[-i(1 -cos O ) ( + ( r ) - f $ ( o ) ) ] ]  d r  

1 a+iR’- iA lom 
v a + @ t + i R ‘ - i A  

+S, Re- exp[(iA-io’-a)r]  

x{exp[-i( 1 +cos O)(f$(r) - f$(O))]] d r  

X ( a  - b)* exp(iAr){exp[-i(+(~) - 4(0))]] dT ( lom 
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with A = w - wL. We notice that only very simple field correlation functions are required 
to evaluate this expression for a specific laser model. Furthermore we see that the 
three complicated expressions Re X - ’  . . . have strength unity, since the total strength 
of one line is SF, ST and S,, respectively. The lines are not Lorentzians as in the phase 
diffusion case. Expression (9.6) does not reduce to the phase diffusion limit if we take 
for 4 ( t )  the Wiener-LCvy process. This could be expected, since we imposed the 
condition y < R’, but in the Lorentzian limit we have y = CO. 

In the monochromatic limit #( t )  = # ( O ) ,  equation (9.6) reduces to 
1 1 1 + ST Re - 1 

I ( w ) = S F  Re- 
x a+O,--iiZ’-iA T a+O,+ iR‘ - iA  

The 6 function appears because A is not a principle value. In (9.6) and (9.7) the 
Rayleigh line is subdivided in two parts, but the first part of the R line in (9.6) does 
not correspond to the first part in (9.7). If we, however, neglect collisions in (9.6) and 
(9.7), we find that the coherent and incoherent strengths are independent of phase 
fluctuations. This shows that the collisions couple both parts of the line, but that the 
amount of intensity transfer depends on phase fluctuations as well. Or, in other words, 
phase fluctuations couple the two lines only if collisions are present. 

10. The strong-field limit 

In the secular limit we required R’ large, so 0 or A large. A special case is R >>A,  
which is the strong-field limit. The total fluorescence is equal to $A, as follows from 
(8.10) which corresponds to the saturation limit. The three-line fluorescence spectrum 
follows from (9.6) in the limit R > > A .  We then have a = b, p = q, SF = S, = fS, = QA, 
but more important cos 0 =A/R’+O, so all field correlation functions reduce to 
(exp[-i(4(7) - 4(0))]]. As shown in equation (2.5) this quantity can be found from 
the normalised laser spectrum fL(w) .  With this result, all integrals in (9.6) reduce to 
the form 

lom exp{[i(w - wL-  w I )  -x17)bp[- i (4(7)  - d40))l) d7 

1 
x - i( w -- w1 - w ’) 

f L ( w r )  dw’ (10.1) 

a convolution of [x - i (w - wL - w,) ] - ’  with the normalised and shifted laser profile. 
With ( lO. l ) ,  we can express the fluorescence spectrum in the strong-field limit entirely 
in the laser profile and terms which are independent of phase fluctuations. 

1 
dw‘ f L (  0’) - I a - i ( w  - w’+R’)  

A 1 a -i(A+R’) 
8 x a + O f - i ( A + n ’ )  

I (  w ) = - Re - 

1 
dw ’ fL( w r )  I a - i ( w  - w ‘ - R ’ )  

A 1 a-i(A-n’) 
8 7~ a+O‘,- i (A-R’)  

+-Re- 

I I -  2a - 1( w - U’) ’  

A 1 2a- iA 
4 x Zp-lA 

+- Re - 7 dw’ I L ( w r )  --- (10.2) 
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Note that cy reduces to 3A/4. Furthermore we see that the coherent part of the Rayleigh 
line disappears in the strong-field limit, as usual. For free atoms, equation (10.2) 
reduces to 

A 114 + 114 + I( w ) = - Re dw ’ fL( w ’) ( 
2 7 1 .  cy -i(o - w ’ + a ’ )  cy -i(w -”-a’) 2a -i(w - U ’ )  

(10.3) 

since f L ( w )  is real. 

11. Conclusions 

In this paper we investigated the effect of an arbitrary laser profile as compared with 
collisional redistribution of fluorescence radiation, emitted by a single two-level atom. 
Phase fluctuations and collisions are competing effects on a stochastic level, but after 
averaging over the stochastic process $( t )  and over many collisions, the influence of 
both effects is quite different. In § 5 it was shown why the commonly used phase 
diffusion model for the laser field cannot be expected to give the correct results, 
especially for strong driving fields or far from resonance. It was pointed out that we 
should allow the d ( t )  fluctuations to have a finite correlation time, which makes the 
calculation much more difficult because of the breakdown of the factorisation of the 
average for the expectation value of a product of two propagators for non-overlapping 
time intervals. 

Subsequently we showed how arbitrary phase fluctuations can be incorporated in 
the theory of redistribution by collisions in the binary-collision approximation. Explicit 
expressions for the atomic density operator, averaged over the $( t )  process were given 
and it was shown (equation (6.10)) how collisional effects decouple from the stochastic 
problem for one atom. In a similar fashion we derived general expressions for the 
dipole correlation function and the steady-state fluorescence spectrum. In the limit of 
separated spectral lines, we showed that the density operator ao(t) in the long-time 
limit is independent of phase fluctuations and the same holds for the line strengths. In 
this limit, it was shown how the fluorescence spectrum can be expressed in simple 
field correlation functions. For strong driving fields, the spectrum can be expressed 
entirely in the normalised laser spectrum f,( w )  and bandwidth-independent factors. 
For free atoms the strong-field spectrum is a convolution of the laser spectrum with 
the fluorescence spectrum at monochromatic irradiance. 
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