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Itisargued that the phenomenon of sub-poissonian statistics can be regarded as experimental evidence for the contextual
character of quantum theory. To this end, it is shown that the statistics predicted by non-contextual hidden-variable theories
must satisfy certain inequalities which are a kind of local counterparts of the famous Bell inequalities and which exclude

sub-poissonian statistics.

1. Introduction. Most recent work on the interpre-
tation of quantum mechanics hinges on the question
whether local hidden-variable theories are possible
which reproduce the statistical predictions of quantum
mechanics. The issue is amenable to experimental in-
vestigation since such local hidden variable theories
must statisfy inequalities of the Bell-type, whereas it
can be shown that the quantum mechanical formalism
leads to predictions which, in certain circumstances,
violate those inequalities. The experimental results [1]
thus far strongly favour quantum mechanics; i.e. it
seems that experiment excludes the validity of any
local hidden-variable theory.

The common emphasis on the importance of the
notion of locality tends to obscure the fact that a
more general point is at issue here. In a number of so-
called no-hidden-variable-proofs by Gleason [2],
Kochen and Specker [3], and others [4], it has been
demonstrated that the predictions of quantum me-
chanics are incompatible with non-contextual hidden
variable theories, i.e. theories in which the result of
an individual measurement of a physical quantity is in-
dependent of which other physical quantities are mea-
sured along with it. The proofs by Gleason and by
Kochen and Specker show that it is already impossible
to fulfil the requirement that the measurement results
do not depend on which other physical quantities are
also measured if these other quantities correspond to
quantum mechanical observables commuting with the
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observable representing the original measurement. It
remains essential for the proof, however, that not all
these observables commuting with the first one com-
mute among each other. In fact, the Bell inequalities
can be regarded as an illustration of the same basic
point. This follows from the circumstance that the dis-
tance between the positions where measurements are
performed does not enter explicitly into the inequali-
ties or their derivation. This means that the inequali-
ties are also valid for the correlations between physical
quantities measured at the same position; but now
the “locality condition”, according to which a mea-
surement outcome depends only on the state of the
object and the state of the measurement apparatus
which is used for that particular measurement, be-
comes a “non-contextuality condition’’. Quantum
mechanics furnishes predictions which can violate such
“local Bell inequalities’ if the physical quantities
which are involved are represented by operators 4,
A,, Bq, B, such that

[4;,8,1 =0, /=12,

[4,,4,] #0, [B],B,] #0.

Of course, the physical significance of these results is
particularly clear if there is a space-like separation be-
tween the measurements, because then the non-con-

textuality cannot be accounted for by some physical
disturbance which propagates from one measurement
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to another. This explains the care which has been
taken in the most recent experiments to exclude any
physical interaction between the two pieces of mea-
surement apparatus. But, given that these experiments
verify the quantum mechanical predictions while vir-
tually excluding any mutual influence between the
measurement set-ups, and furthermore given that there
is no theoretical basis for assuming such interactions,
it seems worth-while to point out that the conflict be-
tween quantum theoretical predictions and the assump-
tion of non-contextual hidden variables can also be
demonstrated experimentally in the context of local
experiments.

In thisletter we propose a method for bringing out,
in an experimental way, the difference between quan-
tum theory and non-contextual hidden variable theo-
ries of the field type. It turns out that it is only neces-
sary to consider one single dynamical variable (albeit
at different times) so that the experimental test is —
at least conceptually — very simple. In fact, experi-
mental results are already available in the literature.
These results confirm the quantum mechanical predic-
tions and contradict non-contextual hidden variable
models from a certain class of field theories to be
specified below. The principle of the test can readily
be generalized to the case of two observables that are
measured at different positions.

2. Inequalities for non-contex tual hidden variable
theories. Consider a physical system which is described,
according to some non-contextual hidden variable
theory, by a set of hidden parameters Ay, A, ..., A4.

For convenience we shall indicate this set by a single A.

During a time interval [0, 7] a measuring device is
operating in such a way that the result of the measure-
ment consists in a number of discrete detection events.
In other words, the output of the detector can be de-
scribed as a so-called “dot process” [5]. A prime ex-
ample is a photodetector that records photo-electric
pulses with a probability proportional to the intensity
of the incident field. In general, the device may be a
counter which has an activation probability that is a
function of the incoming signal. This probability will
depend on A;, but not on the outcomes at other times
t' # t. The latter follows from the assumption of non-
contextuality and the supposed ideality of the measur-
ing device (which does not disturb the passing signal).
We shall now suppose that there is a continuous prob-
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ability density p(¢) such that p(f)At is the probability
that the device produces a ““dot” on the time axis
within a time interval of length At around ¢ (for At
— 0). In view of the above assumptions we have that
p(?) is a function of A;:

p(D)=11(Ay) (1)
whereas repetitions of the experiment correspond with
some distribution p(\) over A. Let N denote the num-
ber of detected pulses during the counting interval.
Repetition of the experiment leads to a statistical dis-
tribution of M. The theory of random events [5] gives
the factorial moments of this distribution as multiple
integrals of the joint probability distribution functions:

T
W= [ dx p(n) [ 1o ar, (2a)
0

T T
N = 1= [a o) [ [ oty 05) dry diy,
0 0 (2b)

etc. The function f5(#,, t,) has the following physical
meaning: f,(¢;, t,) dt;dt, is the probability that in
both the intervals (¢, t; + dtq) and (¢,, t, + d7) a
random event is recorded, regardless of what happens
outside these intervals. In view of the assumption of
non-contextuality the function f,(z,, t,) factorizes
according to

f2(t15[2)=f1()\t1)f1(>\t2)‘ 3)

This illustrates that N obeys a Poisson distribution if
a single A, is reproduced in repetitions of the experi-
ment. In the more general case of a distribution p(A),
we find from

T 2
Joo( [ 1100 o @) >0, @
0

that the following inequality holds:
(N(N = 1)) — (N2 >0. )

Inequality (5) pertains to the counting statistics of one
single detector. However, it is easy to obtain generali-
zations for the case of two (or more) counters. For in-
stance, for two counters with response functions f7 (N),
g1 (1) and with Af(A, w) = f1(N) — &1(w), we find from



Volume 103A, number 1,2
T 2

Jovason( [1ar-@n) >0, ©
0

the inequality
(N] =Ny —(Ny +Np)y =Ny —Np2=20. (7)

For the case of photodetection signals produced by
classical electromagnetic fields this inequality can also
be found in ref. [6].

3. Predictions of quantum theory and experimental
results. The above inequalities are not derivable, in
general, from the quantum formalism. This is due to
the fact that probabilities can no longer be represented
by functions of an external field. Instead, we encounter
expressions like [7,8]

Fo(ty,t9) = TH{WF (e DF~(t)F (1)F " ()}, (®)

for the joint probability distribution that a detector
which operates by absorptionis activated at #; and ;.
Here F— and F* are the negative and positive frequen-
cy parts of the operator representing the quantized
field (in the Heisenberg picture) and W is the density
operator of the system. Since the field operators F'*
do not commute, we cannot write this probability
density in the form fl()\,1 )fl()\t2) unless W possesses
special properties. A quite analogous situation occurs
in the case of the Bell inequalities. For instance, in
the correlated spin experiment (the thought experi-
ment of Einstein, Podolsky and Rosen in Bohm’s ver-
sion) classical relations obtain if the quantum system
is described by a diagonal mixture of the form

fd3x p()IxPIxy) x31x7 1,

p(x) =0, with x adirection in space and |x*), |x ™)
eigenstates of the spin operator in the direction x of
the two spin 3 particles. Similarly, we retrieve the class-
ical expression from eq. (8) if W is a mixture of eigen-
states of the operator F*. For the case of electromag-
netism, this corresponds to the well-.known Glauber
representation [8] f d2aP(a)|a) {a| in terms of co-
herent states (« € C, P(a) = 0).

In general, however, quantum mechanical predic-
tions will violate inequalities (5) and (7). A case in
point is the fluorescence radiation field emitted by a
two-state atom in a laser field. This case has been stud-
ied extensively by Mandel [9], Lenstra [10] and by

PHYSICS LETTERS

18 June 1984

Arnoldus and Nienhuis [11].If N stands for the num-
berof photons detected by a photon absorption count-
er (like a photomultiplier) during the interval [0, T
and if the following definition is introduced:

= _ (N2
QE(N(N <ji/))) (N“), )

these workers find that Q can assume negative values;
the predicted minimum value of Q in the steady state
is —% (of course, Q has an absolute lower bound —1).
For the classical case it follows from inequality (5)
that Q = 0; note that for Poisson statistics 0 = 0. Sta-
tistics with Q < 0 are called sub-poissonian. Arnoldus
and Nienhuis [12] have also investigated the correla-
tions between photons from the two sidebands in the
three-line fluorescence spectrum. Introducing

ANy —Np)2 — (V] +Np)Y =Ny —N,p)»?
c~ (N; +Ny)

(10)

as a measure for the correlation between the photon
detections in two of the three lines, they find that O
can approach the absolute minimum value —1 arbitrar-
ily close when T = oo, Here also, we have Q. = 0 for
classical fields [inequality (7)] and Q. = O for Poisson
statistics.

Experimental observation of sub-poissonian statis-
tics in fluorescence radiation has recently been re-
ported by Short and Mandel [13]. They find a value
of 0 = —0.00252 £ 0.00040, which provides statisti-
cally significant evidence for a sub-poissonian distribu-
tion and which is in agreement with the theoretically
expected value of Q for the case in question, Q ~
—0.0023.

4. Discussion of the significance of the results. The
interpretation of violations of the inequalities (5) and
(7) is not so simple as might seem the case on the basis
of the foregoing exposition. The reason is that an im-
portant assumption has been made in the derivation
of eq. (2b). This equation is only valid [5] if the func-
tion f,(#;, t,) does not possess the characteristics of
the data function (¢, — ¢,) for £; = #,. The assumption
in question has been made through the stipulation that
p(?) ineq. (1) be a continuous probability distribution.
Physically speaking, the supposition is that the proba-
bility density that two counts are recorded within the
time interval At vanishes as At = 0. This assumption
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is natural (and commonly made) if the measuring de-
vice responds to a continuous incoming field (for in-
stance, and electromagnetic field). In the case that dis-

tinct particles are coming in, however, the assumption

clearly is unwarranted. Localized particles can follow
each -other within arbitrarily small time intervals; as a
consequence, there is a positive contribution to the
integral in eq. (2b) from the values #{, z, such that
ty ~ t,. To see what happens, let us suppose that the
counter responds to an incoming field with particle-
like properties in such a way that

M
i) =a lz‘:)l 8(t — ;) + b(\,) , (11)

with b(\;) a continuous function of z. We then find:

Folty, 1= [Nty 12) = 8511, 1)
M

where g,(27, ;) is continuous for #; = 7,. Integration
over f; and ¢, gives:

T T
[ [ dty dey(fyey, 10 = V(N — 1) + a2
0 0 (13)

This equation takes the place of eq. (2b), so that in-
equality (5) is no longer derivable. In the extreme case
where @ = 1 and b(\,) = 0, we find instead of inequal-
ity (5) the trivial inequality

(N2)y — (N2 >0. (14)

This result is intuitively obvious, as it corresponds to
an ideally efficient counter which detects incoming
particles. An arbitrary statistical distribution of detec-
tion times can evidently be obtained by judicious
choice of the emission times of the particles that are
to be detected.

The situation can be viewed from a slightly differ-
ent angle by a consideration of what happens if the
counter possesses a dead time 7. The counting inter-
val [0, T] can be divided into K intervals of length 7,
T = K. For simplicity, consider the schematic case in
which interval / possesses a probability p; of showing
up a count. We then have for the variance and mean
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value of V:
K K

2=2ip(l-p), w=2p, (15)
=1 =1

so that

(N(N — 1)) = (N2 =02 —pu=—2up}. (16)

Ve

We see from this that the presence of a dead time of
the counter tends to make g2 — u negative; in experi-
mental tests of the inequalities (5) and (7) this effect
must be taken into account. To pass to the ideal case
discussed before, we should take the limit for 7= 0,
K — oo T constant, u = Ef:l p; constant. A necessary
condition that 02 — u vanishes in this limit is that
lim p; = 0. This excludes the case of localized particles;
for such particles the probability to be detected may -
remain positive in an arbitrary narrow time interval.
On the basis of the above remarks the significance
of violations of inequalities (5) and (7) can be assessed
as follows. If it is assumed that a theoretical model of
the situation should be couched in terms of continu-
ous fields and continuous probability densities, viola-
tion of the inequalities demonstrates that a non-con-
textual hidden variable model which predicts the cor-
rect counting statistics is not possible. In this case the
inequalities (5) and (7) are on a par with the Bell in-
equalities. The crucial point of the Bell inequalities is
that they express the limits set to the correlation be-
tween two series of measurement outcomes if this cor-
relation is ““transported” by a classical signal. In exact-
ly the same way inequalities (5) and (7) set a bound
to the correlation between successive measurement
outcomes if these outcomes (and their correlations)
all depend on an external classical signal. Quantum
mechanics is able to predict stronger correlations than
classical theory because of the mechanism of “‘wave
packet reduction” by which the state description is
changed depending on a measurement result.
However, violation of inequalities (5) and (7) could
also be taken as merely a reflection of the particle-
like character of the incoming beam. One could argue
that the verification of sub-poissonian statistics is also
relevant in this case: although it is well known that
classically continuous fields take on particle-like prop-
erties in a quantum description, it is rather difficult
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to find clear-cut experimental evidence for this.

But this second interpretation of violations of the
inequalities is by no means always the natural one in
the context of quantum mechanics. For instance, in
the case of photon statistics, for which the sub-pois-
sonian character of the statistics has been verified ex-
perimentally, it seems rather dubious whether the sec-
ond interpretation can be reconciled with quantum
theory. Indeed, it is denied in the quantum theoretical
description that photons can be localized. It therefore
appears more natural to regard the pertinent experi-
mental results as a reflection of the contextual charac-
ter of quantum mechanics.
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