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Homogeneous recurrence relations exhibit a highly numerical unstable behaviour in step-by-step evaluation of succesive
terms. It is pointed out that this is a result of the presence of vanishing solutions, which are always added to initial values for
the recursion scheme, due to finite machine accuracy. Stabilization of the recursion is shown to be identical with resolving these
vanishing contributions with sufficient accuracy. To this end, explicit analytical expresions for these solutions, as products of
continued fractions, are given. Application of these vanishing solutions enables us to construct the self-consistent, numerical

stable general solution of the recursion relation.

1. Introduction

Quantum mechanical inelastic scattering prob-
lems involve an immense number of radial partial
wave function matrix elements, which differ only
by the quantum number of orbital angular
momentum. Especially in heavy ion collisions,
these matrix elements are very cumbersome and
even with present-day high-speed computers very
hard to calculate [1-5]. Fortunately, many of these
matrix elements are connected by recurrence rela-
tions, so only a few have to be found by explicit
numerical integration [6,7]. It has, however, been
taken for granted that the successive generation of
integrals from some initial ones is limited because
the relations are highly unstable. A similar prob-
lem appears in statistical mechanics on lattices,
where the values of microscopic thermodynamic
functions on the lattice points are connected by
similar relations. With very general arguments, it
can be shown that a recurrence relation has ex-
ponentially increasing solutions, except one. The
point at issue in statistical mechanics is to find this
unique decreasing solution, but due to the intrinsic
numerical instability of the recurrence relations,
only crude approximations can be found, which
match to an asymptotic vanishing solution.

In this paper I will point out how these two

problems are related. The instability of the recur-
rence relations is a reflection of the feature that
the vanishing solution is always eclipsed by the
exponentially increasing component of the general
solution. In order to solve this apparent problem, I
give an explicit analytical expression for the
vanishing solution as a product of continued frac-
tions, which can be evaluated numerically in a
stable fashion, and I show how adequate use of
this solution stabilizes recursion schemes. The
method described in this paper can be applied
very generally, and T will illustrate common fea-
tures with a specific example from heavy ion
scattering theory. The computer programs were
run on our CDC 175/100 and I used double
precision variables with a machine accuracy of 28
figures.

2. Instability caused by the vanishing solutions
Consider the homogeneous three-term recur-
rence relation

Prr1 Xk — Exr1 Xk ¥ 1 K™= 0,
E=0,1.2, ... (1)

with arbitrary coefficient functions p,, &, and y,.
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If we know two neighbouring initial values X,
X., 1, we can find every other X, with step-by-step
up- and downward recursion with (1). This solu-
tion involves the two arbitrary constants X, and
X, , but the general solution is a linear combina-
tion of two linearly independent solutions which
might be generated for instance with the initial
values X, =0, X; =1 and X,=1, X; =0, respec-
tively. Then any two given values X;, X, with i #
determine uniquely the linear combination.

This seems all straight forward, but in order to
find out what problems appear, suppose that eq.
(1) reduces approximately to

X —BXj1 + X 2=0, B>1 (2)

for large k values, as is the case in many practical
situations. If we start the recursion with arbitrary
X, and X, it is easy to see that X, ~ B*, so the
solutions will increase exponentially with &, but
since equations of type (2) are recurrence relations
for hypergeometric functions, we know that there
also exists a solution which tends to zero for
k — c0. Any linear combination of this vanishing
solution with an exponentially increasing solution
is again exponentially increasing, so there exists
only one vanishing solution for k£ — co. Instead of
searching for solutions, determined by initial val-
ues X; and X, we can also try to find this particu-
lar solution, which is now determined by for ins-
tance X, =1 and the requirement that X, — 0 for
k — co. If we have two linearly independent solu-
tions, we can try to find the linear combination,
which gives this special solution. I intend to ex-
plain that this procedure is numerically not feasi-
ble, at least if we want to find X, X7, ..., X, ...
also for large k values. Suppose we have the inde-
pendent solutions up to k = 50. Then B* is already
10" for B = 2, so if a linear combination of two of
these X,’s should yield a number which is smaller
than one, both terms must be equal to 15 figures.
Substracting these two numbers gives indeed a
small number, but with an accuracy that is at least
15 figures less than the accuracy of the X,’s and if
we increase k, no figure will be left so the X’s
become completely random. I will now point out
how this problem is related to the numerical insta-
bility of relation (1).

Let me first show by an example how severe the

problem of instability actually can be. In the next
sections a closed relation for the vanishing solu-
tion is obtained, which can be evaluated with
almost machine accuracy. For a specific example,
some X,’s are given in the first column of table 1.
To see what happens in step-by-step recursion,
take X, and X, from this solution and calculate
X5, X3, ... with eq. (2). These results are printed
in the third column of table 1 upto k =1000. As
far as k = 100, the results are reasonable but for
k > 150 the X,’s start to increase and for k = 1000,
there is a factor 10°% discrepancy with the desired
result and even the sign is wrong. Note that both
in column 1 and column 3, every set of three
subsequent X,’s obeys within machine accuracy
relation (1), so to 28 figures. The only approxima-
tion that has been made is that the initial X, and
X, are given within machine accuracy. This devia-
tion from the exact value gives effectively that an
originally very small amount of an increasing com-
ponent of the solution is added. After many steps,
this small contribution has grown exponentially
with 8% and so it overwhelmes completely the
vanishing solution. If we had started the up-recur-
sion with values for X, and X, truncated after for
instance 25 figures, a completely different column
3 would have resulted. That is, the result after
k = 140 is random or the up-recursion is unstable.

It is illuminating to make these considerations
more explicit. To this end we introduce a second
vanishing solution, defined by X, =0 and just as
the former one, this solution is determined up to
an arbitrary overall constant. Let us denote these
solutions by F, and G, with

F,—0 ifk— oo,

G,=0. %)

If we exclude the trivial solution X, = 0 for all k, it
can be shown that F, # 0 (see later on) so F, and
G, are independent solutions and we can write the
linear combination as

X, =aF, +bG, (4)

with @ and b independent of k. Since there is only
one decreasing solution for k — o0, G, is exponen-
tially increasing. Now we can return to the prob-
lem of instability. If we take X, = F; and X, = I}
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Table 1
Instability in finding the vanishing solutions of a three-term homogeneous recurrence relation
k F, Gy
0 0.1000000000D + 001 0.0000000000D + 000
1 0.1058578352D + 001 0.9327299328D — 116
2 0.1114502599D + 001 0.1859872539D — 115
3 0.1166787826D + 001 0.2776458694D — 115
4 0.1214436295D + 001 0.3676438919D — 115
S 0.1256469935D + 001 0.4552884248D — 115
6 0.1291965748D + 001 0.5398240714D — 115
i 0.1320092264D + 001 0.6204630081D — 115
8 0.1340144862D + 001 0.6964184595D — 115
153 0.4845757450D — 013 0.1696611305D — 103
154 0.3674514560D — 013 0.2208379507D — 103
155 0.2785935542D - 013 0.2875207872D —103
156 0.2111913907D —-013 0.3744270628D — 103
157 0.1600724690D — 013 0.4877148154D — 103
158 0.1213091527D —013 0.6354241733D — 103
159 0.9191960753D - 014 0.8280545597D — 103
160 0.6964044986D — 014 0.1079319480D — 102
995 0.7649855340D — 118 0.2395165191D + 000
996 0.5468918175D —118 0.3187619340D + 000
997 0.3744912865D —118 0.4242270912D + 000
998 0.2334258592D — 118 0.5645875630D + 000
999 0.1119591533D—118 0.7513895915D + 000
1000 0.0000000000D + 000 0.1000000000D + 001

0.1000000000D + 001
0.1058578352D + 001
0.1114502599D + 001
0.1166787826D + 001
0.1214436295D + 001
0.1256469935D + 001
0.1291965748D + 001
0.1320092264D + 001
0.1340144862D + 001

0.4275051473D — 013
0.2931550035D —013
0.1818773344D—013
0.8524164474D — 014
—0.3985002197D — 015
—0.9243478078D — 014
—0.1866213201D — 013
—0.2934209520D - 013

—0.8056854786D + 089
—0.1072251143D + 090
—0.1427014756D + 090
—0.1899159200D + 090
—0.2527523717D + 090

we obviously have b =0, but due to the finite
machine accuracy, we effectively have b = 0. Since
this b is multiplied by the increasing G, in (4), we
will always find that the second term on the right
hand side of (4) dominates over aF, for k suffi-
ciently large. In other words, the instability results
from the fact that the vanishing solution G, can-
not be resolved properly for small k, which is the
inverse problem of resolving the F, from an in-
creasing solution as indicated in the first part of
this section. The impossibility of finding F; for k
large is identical to the instability problem, i.e. the
impossibility of finding G, in X, for k small with
sufficient accuracy.

There is another correspondence between the
two vanishing solutions. The F} is the solution of
(1) which tends to zero for k — oo if we start the
upward recursion with X,=F, and X, =F. In
precisely the same way, G, is a solution of (1) in
downward recursion if we start with some X, = G,
and X,,, =G, . Since G, =0 and F, # 0, this is

the only solution that vanishes for kK — 0 in down-
ward recursion. The G, decreases as B*~" for
k — 0, just as F, decreases with B~ for k = 0, so
the behaviour is similar. Just as F, for k large,
cannot be found from upward recursion, the G,
for k — 0 cannot be found from downward recur-
sion. Furthermore, the mixture of a small amount
of G, in X,, X, can make an upward recursion
unstable and the mixture of a small amount of F}
might destroy downward recursion.

3. The self-consistent solution

Suppose we are interested in X, with k=0, 1,
2,..., koo With k. large, then it will be clear
that we have to abandon the step-by-step method.
In this section I will show that explicit application
of the vanshing solutions offers a possibility to
stabilize the recursion. To achieve these special
solutions, write the homogeneous eq. (1) as the
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inhomogeneous tridiagonal matrix equation

—&; R4
Py —§; B 0
P & Yk
0 .
R
4 —P Xy
X, 0
gl = = 5
E ; (5)
‘X.' _Ynka“

n

where n=k_, —1. Now we can introduce solu-
tions of this set which vanish at the boundaries
k=0 and k = k,,, and are normalized by

R=1, £ =0

Go=0; G, =1 (6)
Note that, due to the truncation, F, is an ap-
proximation of the solution that vanishes exactly
for k — oo, but the introduction of k,, is not an
approximation of the equations.

The matrix equation (5) with boundary condi-
tions (6) can be solved explicitly, with result

B e B
Ee={-1)t__t21
- (-
mekt1 Yk Yne1¥n (7)
= i1 Y In—ilu
i ( ) Vg "t V0,0,
k=12 w1

where the u, and v, follow from

YiPrk+1
u,=—§, wu=-§———,
Up+1
YiPi+1 8
U= <% Bag= _$k+1—_v—’ (8
k

k=1,2,...,n—1,

as can be checked by inspection. Every set F,
F.,1, Fiipr and G, G, G, fulfils the recur-
sion relation with machine accuracy, if evaluated

with (7) and (8), and at the upper and lower
bounds of k, the solutions are exact. So these are
self-consistent vanishing solutions, which means
that for k — k_,, and k — 0, respectively, these
solutions are forced to become zero. A blow up,
due to instabilities, is excluded.

Numerical evaluation of (7) and (8) is trivial. In
table 1 we printed some F, and G, where we have
chosen an example from nuclear scattering theory.
In that case, the X,’s are Coulomb integrals and
the coefficient functions are defined by [7]

2y 1/2
Dk(n)={1+(7(%) } , 9)
phor = g Dyr(m) Dy (1), (10)
£k+1=%%l)ﬁ](n)

2P () (1)
vk+1=%%l)k+z(n)Dk+1(n'), (12)

with 1 > 0, 7 > 0. The factor B from eq. (2), which
implies the increasing behaviour, is obviously

3=1+%>2. (13)

For the results in table 1 we used n = 30, 7" = 40,
so B =2.08, and we took k., = 1000. We see that
F, indeed tends to zero very smoothly and since
Fyyo is already 107, it can be assumed that this
F, is an excellent approximation for the exact
vanishing solution, with k_,, = co. Furthermore,
we find that, with the normalisation G4, = 1, the
G, for small k is very small indeed (=10~ ''®),
compared with the machine accuracy in F; which
is about 10~ %%, so this G, component could never
be resolved in anyway if added to F). If we use Fy,
F,, found in this way, for upward recursion, as has
been done in column 3 of table 1, this implies that
after 998 recursions a G, deviation of 10~ ''® in F},
gives rise to a contribution Ggee =1, which is a
factor of 10! larger than the desired component
Fyoe. This illustrates explicitly that F, for k large
can never be found by upward recursion.
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The general solution can now be represented by
the linear combination

X,=aF, +bG,, k=0,1,2,..., kpa, (14)

where a and b can be matched with two initial
values X; and X,. From (6) we have the obvious
possibility

a=Xy, b=X,__ (15)

and I will argue that this choice stabilizes the
recursion for every possible X, and X, . If we
determine a and b in this way with some initial
value routine, we have by the same reasoning as
previously, a self-consistent solution, i.e. the
boundary values are exact and every triple X,
X, .1 X, ., obeys the recurrence relation with the
same accuracy as X, and X, , so no figures are
lost due to the recursion. There is however a more
profound reason why the matching should be per-
formed with (15). It might seem that also, for
instance

=X1_X0F1=aX1/X0_F1

b G, G (16)

is suitable. It is indeed analytically correct, but it
does not stabilize the recursion, because if a and b
are of the same order of magnitude, the numerator
X,/ X, — F, should be of the order of G, which is
very small in comparison with F;. This implies
that F, should equal X,/X, to many figures and
the substraction yields again random results. This
is an equivalent formulation of the explanation of
the instability caused by the vanishing solution
G,, so the choice (16) should consequently be
rejected. That combination of the application of
the vanishing solutions and the matching (15)
stabilizes the recursion, can also be seen from a
different point of view. If we take k =1 in (14), we
see that bG, is negligible with respect to the first
term aF), so the b cannot be resolved from X;.
Similarly, we cannot find a from X, with k large.
Now it becomes clear why the use of the two
vanishing solutions, in combination with (15), ac-
tually solves the problem. The coefficients a and b
can be found very precisely due to the disap-
pearance of one of the components at the match-
ing points k=0 and k=k,,. These a and b,
however, also determine with the same precision

the contribution of F, at large k values and the
contribution of G, for small k values, so the F} is
even very accurately resolved, with respect to G,
for k large and, vice versa, we have the G, contri-
bution for small-k with the same accuracy as the
F, component, which is many orders of magnitude
larger. This is not possible for any other set of
independent solutions or with step-by-step recur-
sion. A special case is b=0, which yields the
vanishing solution F, up to arbitrary large k val-
ues. The distinction with upward recurrence is that
now b is identically zero, and not zero within
machine accuracy.

The choice k=0 and k = k,,,, as limiting val-
ues is arbitrary. We could equally well take k, and
k;, but then (15) gives a = X, , b= X, . With (14)
we then find X, =0 for all k if these two initial
values are zero. This proves that either all X, ’s are
zero or not more than one, as mentioned earlier.

4. Influence of the truncation at k.,

The vanishing solutions F, and G, are products
of continued fractions, as follows from (7) and (8).

I J
/A Uy
= =P (17)
= YiPr+1
_£k+1_ Yi+1Pk+2
—£k+2_ a
—£,
Ok o =%
Grin Uy
- Yk (18)
=5 Yi—1Pk
=Eeei—. Ve sPe_i
—gk—Z_ :

The solution F, is important in its own right in the
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Table 2

Example of truncation at k.,

kmax Fl
10 0.9066631950D + 00
20 0.9774900333D + 00
30 0.1027226473D + 01
40 0.1054550649D + 01
50 0.1058408539D + 01
60 0.1058574684D + 01
70 0.1058578300D + 01
80 0.1058578351D + 01
90 0.1058578352D + 01

100 0.1058578352D + 01
1000 0.1058578352D + 01
limit k,, — oo, whereas the G, then vanishes for

all k. Note that k,, _, ., in (17) simply means that
the continued fraction is not terminated anymore
after n steps. The values of F, for small k are not
expected to depend on k., any more if k_,, is
sufficiently large. This is shown by an example in
table 2, where the continued fraction F; = —p;/u,
is printed for different truncations k_,, and we
observe that the convergence is very fast. At k..
=90, we already have an accuracy of ten figures
in F,. I recall once more that the truncation is no
approximation at all in the case where we solve the
recursion for given X, and X, .

5. Conclusions

In this paper I pointed out that the problem of
finding the vanishing solution of a three-term ho-
mogeneous recurrence relation is related to the
intrinsic numerical instability of that relation. Ex-
ponentially increasing components will always ob-
scure the vanishing solution and after a number of
upward recursion steps, this solution cannot be
resolved any more. The connection with the insta-
bility of the system is that in downward recursion
this initially eclipsed component can become much
larger than any wanted solution. Since finite mac-

hine accuracy is always present, giving rise to
random mixing of increasing components, step-
by-step recursion is limited to a small number of
steps (20-50) and an explicit construction of the
vanishing solution, which might by physically im-
portant, terminates rather fast. In sections 3 and 4,
I presented explicit expressions for the two vanish-
ing solutions as products of continued fractions.
These expressions were proven to be self-con-
sistent, which means that any mixing with increas-
ing components is automatically avoided. Numeri-
cal evaluation of the continued fractions is almost
trivial and numerically stable. It was furthermore
pointed out how proper use of these vanishing
solutions stabilizes the general solution of the re-
currence relation, where the number of steps k.,
is allowed to be arbitrary large. This was il-
lustrated with a numerical example from a DWBA
scattering problem, where we took k., = 1000.
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