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We derive the statistics of the number of photons emitted in the three lines of the fluorescence spectrum of a two-level
atom from an explicit expression for the generating function. Photons from opposite sidebands alternate when the excita-
tion is purely monochromatic and in the absence of collisions. For a driving field with a finite bandwidth or when colli-
sions are present, this is no longer true. Photons in the Rayleigh line are emitted independently of emissions in other lines
and have a Poisson probability distribution. We derive explicit expressions for the deviation from poissonian statistics for
emissions of photonsin the sidebands. In the limit of large counting times, the factorial moments of the distribution tend
to their poissonian value.Finally we show that collisions or a finite bandwidth can narrow the probability distribution of
photon emissions.

Photon statistics of a radiation field is determined by the hierarchy of joint probability densities /,,(t1,%,.-t,)
for the detection of a photon at time 71, a photon at time ¢, ..., and a photon at time 7,,. In the case of fluores-
cence radiation from a two-level atom in the steady state, these probability densities take the form [1-3]

Ity 15, ...tn)=f(tn = ln_l)...f(t3 - rz)f(t2 — II)S (1)

fort, > ...>1ty >1;. Here S is the integrated strength of the fluorescence spectrum and f(7) is the conditional
probability for detecting a photon at time ¢ = 7, when another photon was detected at time # = 0. In the limit 7 {
0, f(t) approaches zero, indicating that the atom needs a finite recovery time before a subsequent photon emis-
sion can occur. This phenomenon of antibunching has been observed experimentallly [4]. In the limit 7 -> o, the
memory of the initial emission is lost and f(7) approaches the steady-state strength S.

These results apply to the situation that the photons are detected without spectral resolution. On the other
hand, it is known that the fluorescence spectrum of a two-level atom contains three separated lines in the limit of
large Raby frequency 2 or large detuning A from resonance [5]. The central line, positioned at the frequency w
of the driving field is termed the Rayleigh line (R) and the two sidebands at w; — ' and w + Q' are the fluores-
cence line (F) and the three photon line (T), with

Q' = AQ + Q3/AY)1/2 ()

It has been demonstrated experimentally [6,7] that photons from the two sidebands tend to be emitted in a well-
defined order (T before F). The intensity correlation functions for each pair of lines in the triplet have been
studied by several authors [8—10]. The frequency resolution, needed for the spectral separation of the lines,
necessarily leads to a restricted time resolution so that rapid oscillations with frequency Q' are washed out. These
oscillations correspond to off-diagonal terms between the eigenstates of the dressed atom [9]. When the exciting
radiation has a finite bandwidth A, resulting from phase fluctuations, and when the atom suffers line-broadening
collisions with foreign gas particles, the steady-state populations 7} and n, of the eigenstates of the dressed atom
are parametrised as [11]
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=p/lp+q), n,=q/(ptq). A3)
Here p = Ag[?; + 2)\g}2{ +k(Q, A)and g = Ag% # 27\ng + k(2, A), with k(£2, A) the rate of optical collisions between
the dressed states, 4 the Einstein coefficient for spontaneous emission and
gp=(Q +8)2Q, gp=(Q' -8)29, gz =9/29". (4)
The strengths of the line lines are
= =l = Aed — A2
SR —AgR, SF—Aanz, ST—Ang1 . (5)
The intensity correlations between the lines a and § in the spectrum are found to be [8,10]
12(at1,ﬁt2)=SaSB fora=R,or =R 6)
indicating that an emission of a photon in the Rayleigh line is uncorrelated to previous or later emissions. The

other intensity correlation functions are

Iz(Ftl, Ft2)= SFf(FF, Ty — tl), [2(Ft1, Tt,) = SFf(FT, Iy = 1)

1, (Tt Tty) = Spf(TT, 1, - 1), I (Try, Fi,) =8 f(IF, by - ¢ ", (7)

forz, >1¢,. The functions f(o, 7) have the physical significance of the conditional probability of a photon emis-
sion at tlme ¢ = 7 in the line B, when a photon in the line a was detected at time ¢ = 0. Their explicit expressions
are

AFF, 1) =S,[1 —exp(~(p + )], ATT, 7)=Sp[1 —exp(~(p + 9)7)] ,

AFT, 7)=S_[1+(q/p) exp(—(p +@)D)],  ATF,7)=Sp[1 +(p/q) exp(~(p +)7)] . (®)

The properties fAFF, 0) = f(TT, 0) = 0 indicate antibunching for F photons and for T photons, whereas successive-
ly emitted photons from opposite sidebands tend to bunch. This is understandable in a dressed atom picture. In
eq. (5) we see that the probability of an F emission is proportional to the population of the dressed state [2), but
an emission in the F line corresponds to a |2) = |1) transition [9] and the other way around for a T emission. This
explains the bunching and antibunching properties of F and T photons. Emission of an R photon leaves the state
of the atom unchanged, which explains the factorisation (6).

In this paper we intend to study the correlated statistics of the photons emitted in the three lines. This statis-
tics is fully contained in the joint probability densities / IR TN SH Y 4 ) for detection of a photon in
line o) at time # .,and a photon in line a at time 7, [10] These probablllty densities are found as direct
generalisations of egs. (6) and (7). Each photon o, = R contrlbutes a simple factor Sp to ] ,so it is sufficient to
restrict ourselves to the case that ;= For T for all i. Then the probability density 1 is glven by

I(al,zl;...;an,tn)=f(an 1B by — 1y _p)flagon, 1 ‘tl)Sal )

fora,=ForTandz >z, ;| >..>1;. This determines the probability density /, for arbitrary time ordering,
since by defmmon[ must be invariant for an exchange of (e, 7, ) and (a, t.).

We denote as P(K, L, M; t) the probability of detecting premsely K photons in the R line, L photons in the F
line and M photons in the T line during the counting interval [0, 7]. It is convenient to introduce the generating
function [12], which in the present case of three types of photons is a function of three variables. We define

G(x,y,z;t)—:—(xKyLzM)(t)=K§/IP(K,L,M; 1)K LM (10)

Expanding this function in a Taylor series around x =y =z = 1 gives
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W ~ Dy -1y z-1)"
G(x,y,Z,f)—gn (-x k' ) (yl' ) ( m') S(k,l,m;l‘), (11)
with
K! L! M

the factorial moments. Knowledge of the generating function or of the complete set of all factorial moments is
equivalent to the knowledge of the photon number probabilities P. On the other hand, the factorial moments
s(k, 1, m; t) can be expressed as multiple integrals over a joint probability density /, withn =k +1+m [12]

t
stk,l,m;t)= fdrl...dtn I (o , By 50 E sl 05 tn) , (13)
0

where the set of labels «, contains k times R, [ times F and m times 7. The R photons contribute a factor (SRt)k
and we have the explicit expression (9) for the remaining probability density of F and T photons. If we substitute
(13)into (11), transform the multiple integral in a time-ordered integral and perform the summation over &, we
obtain

G(x,y,z;t) = exp[Spt(x — 1)]

- t In 1§
X [1+E 2 (yfl)l(zfnm fdznf dtn_l...f de, [n(al’tl;a2’t2;"';an’tnj| . (14)
n=1 {oz} 0 0 0

The summation over {a;} runs over all ordered series oy, 0, .0 with O = F or T, and [ is the number of F’s and
m the number of T’s in the series. After substituting (9) into (14), we directly obtain an expression for the Laplace
transform of G,

Ce.yzw)= [ VGG, y, 20y dt (15)
0

with the result (for x = 1)

el L)) = l i i E 1y m7 o

G(l,y,z;v) " 3 = 0-1DC-1D)"f(o,_q9,V0)..f (@ a,, U)Sm1 s (16)
where f(v) is the Laplace transform of f{(¢). The x dependence of G is given by the property

5(x,y,z;u)=5(l,y,z;v—SR(x-1)). (17)

The summation in (16) can be performed and the resulting expression reads
ptqtuv+Sp(y - 1) +Sp(z—1)
Wp+q+v) =P +@)Sp(y — 1) +Sp(z - D] - +@)2S S (v — 1z — 1)/pq

and can be simplified by noting that (p + q)zSFST/pq = S}%.

Eq. (18) is the main result of this paper. Together with (17) it contains the full information on the statistics of
the photons in the three lines, including all correlations between them. The derivatives with respect to x, y and z
at the arguments x =y =z = 0 determine the probabilities P (K, L, M;v) whereas the derivatives at the arguments
x =y =z =1 determine the factorial moments 5 (k, /, m;v). In the remaining part of this paper we will give some
explicit results, which are all extracted from the general result (17), (18).

If we set our spectrometer on a line of the fluorescence triplet, only one kind of photons is detected. In view of
(10), the generating function for photon detections in one line can be found from the general expression by
setting two of the variables x, y, z equal to one, In this way, the statistics of Rayleigh photons is described by

G(l,y,z;v)= (18)
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G(x, 1,1;t)=exp [SRt(x — 1)] which corresponds to a Poisson distribution. From (14) we see that this x de-
pendence of G(x, y, z; t) factorizes from the y, z dependence, so R photons are emitted randomly and indepen-
dent of emissions in other lines. This can be understood from the fact that an emission of an R photon does not
affect the state of the atom. The average number of emitted photons in [0, 7] equals S, and the factorial mo-
ments of this distribution are simply S(k, 0, 0;¢) = (SRt)k.

Since we know that photon emissions in a sideband are correlated, we expect a deviation from poissonian sta-
tistics. If we write the factorial moments for emissions in the F line as

50,1,0;0) = WL DY = S0 {1+ V(@ + )1)} (19)
then we find from (18) withx =z =1
[
WDy = 1) (I+k-2)! -1 k.- "
cBmy==2 +kZ):2 T T (k(k_ D (-1 ) 1=2,3, .. (20)

and C(I)(T) =0 for /=0, 1. The same result holds for T photons if we replace S by S. The function C(l)('r) is
the same in both cases and is approximately —/(I — 1)/ for 7 large. Hence for long counting times the factorial
moments will approach their poissonian limit (Sat)l with a = F or T. The behaviour of C(l)('r) for small times is
found by an expansion in 7, which is obtained directly after expanding s(0, Z, 0; v) in v—L. The result is

Orye 1410 1) 2 (1) EH =D g1 51
CRm=-1+I0-D A CD ey 7 o
for /= 2. Hence C(l)(O) = —1 and the approach to zero for increasing 7 is very smooth.

As an application of these results we evaluate Mandel’s Q-factor [2], which is a measure for the deviation from
poissonian statistics. With u(z) = S_¢ the mean and az(t) the variance of the number of photons emitted in the
line = F or T, we find

0,1 = [0*(1)— u(®)] /u(@) = WP (P +q)1)

=25 {1 - [l —exp(-@ + D]/ +@)1}/(p +q), «=F,T. (22)

Hence Q is negative fora=For T and ¢ >0, and the probability distribution is narrower than the correspond-
ing Poisson distribution with the same mean. This reflects the net anti-bunching property of the photons from
either one of the sidebands.

Another instructive example is the correlated statistics of F and T photons. If we consider the case of a free
atom in a monochromatic driving field (k(£2, A) = 0, A = 0), we can simplify the generating function (18) by using
the explicit expressions (5) for S, and S, (which are equal in this case). The result is

G(lL,y,z;v)=[p+q+v+S(y +z - 2)]/[vlp +q tv) - pa(yz —1)] , (23)

with S, =81 = pq/(p + q). One notices that the numerator in (23) is linear in y and z, whereas the denominator
depends only on the product yz. If we make the expansion (10) to find the probabilities P (K, L, M; v), we only
obtain terms with |L — M| = 0 or 1. Hence the probability for L photons in the F line and M photons in the T line
vanishes whenever L and M differ by more than one. Since this is true for an arbitrary time interval, we may con-
clude that F and T photons are emitted in an alternating fashion: after emission of an F photon, a subsequent
emission of an F photon is only possible when it is preceded by emission of a T photon. This result is directly
understood in a dressed-atom picture, as was pointed out before by Cohen—Tannoudji [13]. Emission of an F
photon corresponds to a spontaneous emission from the state |[2) to the state |1) of the dressed atom, whereas

a T photon is emitted during a spontaneous transition from [1) to |2). For a free atom in a monochromatic field
these sideband emissions are the only mechanism for transitions between the dressed states, since emission of a
Rayleigh photon leaves the state of the atom unchanged. On the other hand, when collisions are present, transi-
tions between the dressed states are possible without emission of a photon. In a non-monochromatic field, the
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dressed states are possible without emission of a photon. In a non-monochromatic field, the dressed states are ef-
fectively coupled by the field fluctuations. As is obvious from eq. (18), a non-zero rate of optical collisions k or a
non-zero bandwidth A introduces linear terms in y and z in the denominator. This causes the probabilities PK, L,
M; t) to be non-zero, even if L and M differ by more than one, indicating that the purely alternating character of
sideband photon emissions is destroyed.

When we set x, y and z equal in the generating function, we obtain a generating function of only one variable.
This function signifies the average (xNy with N = K + L + M, which generates the statistics of all photon emissions,
irrespective of their frequency. In the present limit of separated lines, we have assumed ' to be large, and an
average over rapid oscillations with this frequency is made implicitly by the detection method of resolving the
lines. If we calculate the Q-factor from G(x, x, x; r), we obtain in the limit of a large detection interval

A A2 2\ — 3A)gE +K(Q, A)

Q2 [A+4(N—FA)gE +2k(2, M)
For a free atom in a monochromatic field (\ = k = 0), this Q -factor is positive, indicating that the statistics of the
total number of emitted photons is super-poissonian. However, due to collisions or a finite bandwidth, Q can
become negative, which reflects sub-poissonian statistics. Hence collisions or field fluctuations can make the

probability distribution narrower. The same results can also be obtained from a previous paper [14] in the ap-
propriate limit of separated lines.

0 =g(=)=— (24)
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