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An electric dipole near a surface is subject to the electromagnetic force by its own reflected field. We have derived
a closed-form expression for this force for the case of an epsilon-near-zero (ENZ) medium. This force is
perpendicular to the surface, and it is repulsive. We show that this force is due to the evanescent reflected field.
For a rotating dipole moment, there is also a lateral force, which, in the ENZ limit, is vanishing small. However,
when a small amount of damping is present in the material, this force becomes comparable with the force com-
ponent perpendicular to the surface. © 2019 Optical Society of America

https://doi.org/10.1364/JOSAB.36.000F18

1. INTRODUCTION

Epsilon-near-zero materials are impenetrable materials for radi-
ation in the usual sense. When a plane electromagnetic wave is
incident on an ENZ interface, it creates a wave in the medium
that travels along the surface and decays exponentially in
amplitude in the direction away from the surface. For close
to normal incidence, however, the electric component of the
field extends into the medium, but the corresponding magnetic
field is zero. This electric field oscillates with the frequency of
the incident wave, but it has no spatial dependence. This bi-
zarre phenomenon is referred to as “static optics.” There is no
energy flow into the material associated with this penetration of
the electric field (Poynting vector is zero). The polarization of
this electric field is the same as the polarization of the incident
field (assumed to be s or p). However, for p polarization, and
just off normal incidence, the polarization of the electric field
becomes circular [1].

When the relative permittivity εr of the medium vanishes,
so does the index of refraction n because n � ffiffiffiffi

εr
p

. The Green’s
function for wave propagation is g�r� � exp�inkor�∕r, with
ko � ω∕c the wavenumber in free space, and ω is the angular
frequency of the radiation. For an ENZ medium, this becomes
g�r� � 1∕r, which is the Green’s function of electrostatics. An
oscillating electric field may exist in the medium, but there is
no spatial dependence or retardation. As a result, an electric
field can be squeezed or funneled through such a material
[2–7] without loss of phase information. Due to the sharp, al-
most discontinuous, behavior near normal incidence, such ma-
terials can be used for angular filtering of radiation [8–11].
Enhancement of the magneto-optical effect [12] is another pre-
diction. Metamaterials are artificial, subwavelength structures,
designed in such a way that they effectively (macroscopically)
behave as continuous media. The goal is then to design struc-
tures that behave as continuous ENZ media. Early attempts

were restricted to low-frequency radiation [13–17], but, more
recently, ENZ materials have been fabricated for the optical
region of the spectrum [18–20].

Properties of atoms, molecules, and nanoparticles are modi-
fied when they are close to the interface with a medium. Early
experiments by Drexhage [21] showed that emission rates by
molecules are affected by the presence of a dielectric interface,
and their radiation patterns are drastically altered due to inter-
ference between directly emitted radiation and the reflected ra-
diation by the interface. Another direct consequence of the
medium is that the reflected light exerts a force on the particle.
For a common dielectric or metal, this is an attractive force,
which tends to make the particle stick to the surface. It has
been predicted [22,23] that, near an ENZ interface, this
force may be repulsive, leading to possible levitation of the
particle. It has been argued [24] that this is due to the expulsion
of the electromagnetic field by the material, in analogy to the
Meissner effect for superconductors. We shall consider this
force, and derive an explicit expression for it, for any state
of oscillation of the dipole. It will be shown that the force is
(almost) entirely due to reflected evanescent waves. We shall
also show that the force is due to the phase shift upon reflection
by the ENZ medium rather than due to expulsion of the radi-
ation by the material.

2. FORCE ON AN ELECTRIC DIPOLE

An electric dipole moment, oscillating at angular frequency ω,
can be represented as

d�t� � Re�d exp�−iωt��: (1)

Here, d is the complex amplitude of the dipole moment d�t�.
This dipole moment will usually be induced through irradia-
tion by a laser, oscillating at angular frequency ω. The magni-
tude of vector d depends on the laser power. For linear laser
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polarization, vector d is real, and d�t� oscillates linearly. For
circular or elliptic polarization, vector d is complex, and
d�t� traces out a circle or an ellipse in a plane. For a dipole
near an interface, as considered below, d can also have contri-
butions due to the presence of reflected light. Here, we shall
take d as given. The oscillating dipole emits electromagnetic
radiation, and the electric field must therefore have the form

E�r, t� � Re�E�r� exp�−iωt��, (2)

with E�r� the complex amplitude. The magnetic field B�r, t�
oscillates similarly. When the dipole is located at ro and is sub-
ject to an electric and magnetic field, the time-averaged force on
the dipole is given by [25]

F � 1

2
Re��d� · ∇�E�r� � iωd� × B�r��r�ro : (3)

The first term is the Coulomb force by the electric field. and the
second term is the Lorentz force by the magnetic field. For
time-harmonic fields, the magnetic field follows from the elec-
tric field according to Faraday’s law:

B�r� � −
i
ω
∇ × E�r�, (4)

and this allows for the elimination of the magnetic field from
Eq. (3). We then obtain

F � 1

2
Re�∇�d� · E�r���r�ro , (5)

which offers a great computational simplification, as compared
with Eq. (3).

3. DIPOLE NEAR AN INTERFACE

An electric dipole is located a distance H above an interface
with a medium, as illustrated in Fig. 1. We take the dipole
to be on the z axis, and the interface is the x–y plane. The
medium shown is a half-infinite dielectric, although that is
irrelevant at this stage.

The dipole emits radiation, and this radiation is reflected at
the surface. A most convenient representation of this reflected
radiation is by means of an angular spectrum. It can be shown
that [26]

Er�r� �
iko

8π2εo

X
σ

Z
d2kk

eihv1

v1
�d · eσ,i�Rσeσ,r eikr ·r, (6)

which holds without approximation. The spectrum is a super-
position of polarized (σ � s, p) plane reflected waves, and
the integration runs over the kk plane. The wave vector of

the reflected wave is kr � kk − kov1ez . The unit vector in
the kk direction is k̂k, and, for the magnitude of the vector, we
write kk � αko. We have introduced h � koH as the dimen-
sionless distance between the surface and the dipole. The unit
polarization vectors for the incident (i) and reflected (r) fields
are chosen as

es,i � es,r � ez × k̂k, (7)

ep,i � αez − v1k̂k, (8)

ep,r � αez � v1k̂k: (9)

Here,

v1 �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
, (10)

which has the significance of the dimensionless z component of
the wave vector of the incident wave. For 0 ≤ α < 1, v1 is pos-
itive, and both incident and reflected waves are traveling waves.
For 1 < α < ∞, v1 is positive imaginary, and both the incident
wave and the reflected wave are evanescent. They decay expo-
nentially in the directions away from the surface. The Rs and Rp
are the Fresnel reflection coefficients for s- and p-polarized
waves, respectively. They depend on the variable kk through
its magnitude parameter α, but they do not depend on the di-
rection of kk. Expressions for these coefficients can be obtained
from the appropriate boundary conditions at the interface.

For a single interface with a dielectric, as in Fig. 1, the
Fresnel coefficients are

Rs �
v1 − v3
v1 � v3

, (11)

Rp �
εrv1 − v3
εrv1 � v3

, (12)

with

v3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
εr − α

2
p

, (13)

as the dimensionless z component of the wave vector of the
transmitted wave.

4. EVALUATION OF THE FORCE

The force on the dipole is exerted by its own reflected field.
Expression (6) for Er�r� is substituted into Eq. (5) for the force.
The gradient brings down the reflected wave vector as ikr . We
adopt polar coordinates �kk, ϕ̃� in the kk plane. Then, we have
kk � αko�ex cos ϕ̃� ey sin ϕ̃�, and the polarization vectors
from Eqs. (7) to (9) can be expressed in terms of ϕ̃. The in-
tegrations over ϕ̃ in the numerous terms are elementary. For the
complex amplitude of the dipole moment, we set d � d oû,
with d o > 0, and vector û is normalized as û� · û � 1. After
regrouping, the expression for the force near an interface can
be written in the attractive form

F � f o��û�⊥ · û⊥�υ⊥�h� � �û�k · ûk�υk�h��ez
� f oυ×�h�Im��û� · ez�ûk�: (14)

Here, the overall constant

f o �
d 2
ok4o

8πεo
(15)

Fig. 1. Illustration of an electric dipole near a dielectric interface.
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is a measure for the strength of the force. The three functions of
h appearing in Eq. (14) are

υ⊥�h� � Re

Z
∞

0

dαα3e2ihv1Rp�α�, (16)

υk�h� �
1

2
Re

Z
∞

0

dααe2ihv1 �Rs�α� − �1 − α2�Rp�α��, (17)

υ×�h� � −Im

Z
∞

0

dαα3e2ihv1Rp�α�: (18)

Equation (14) holds for any state of oscillation of the dipole,
and no properties of the Fresnel coefficients have been used
(other than rotational symmetry around the surface normal).
For a perpendicular dipole, we have û � ez , and Eq. (14) re-
duces to F � f oυ⊥�h�ez . The force is along the surface normal,
either up or down, depending on the sign of υ⊥�h�. Similarly,
for a parallel dipole, the force is F � f oυk�h�ez . In general, a
dipole moment will have a perpendicular and parallel compo-
nent, and Eq. (14) shows how these mix. Interestingly, there
also appears a cross term containing the function υ×�h�. For
this term to contribute, the vector û must have both a
perpendicular and a parallel component, and it has to be
complex. For instance, for

û � −
1ffiffiffi
2

p �ey � iez�, (19)

we have a dipole moment rotating in the y–z plane, and such
that the dipole moment d�t� rotates counterclockwise when
viewed down the positive x axis. For the setup in Fig. 1, this
is clockwise. Then, Im��û� · ez�ûk� � −ey∕2. There is a lateral
force along the surface, along the y axis, which is in the plane of
rotation. The direction of the force depends on the sign of
υ×�h�. Such a lateral force on rotating dipoles has been pre-
dicted recently [27].

5. FORCE NEAR AN ENZ INTERFACE

For an ENZ material, we have εr � 0, and the Fresnel coef-
ficients from Eqs. (11) and (12) simplify to

Rs �
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2
p

− iα
�
2
, (20)

Rp � −1: (21)

For this case, the functions νi�h� become universal functions of
h in the sense that there is no dependence on any other param-
eters left. For an ENZ material, the integrals in Eqs. (16)–(18)
can be evaluated explicitly, as we shall now show.

In order to evaluate the integrals over α, we split them into
integrals over the range 0 ≤ α < 1 and over the range
1 < α < ∞. For the first range, the corresponding reflected
waves are traveling waves; for the second range, the reflected
waves are evanescent. The functions split accordingly, as for
instance υ⊥�h� � υ⊥�h�tr � υ⊥�h�ev. For 0 ≤ α < 1, we make
the substitution t � �1 − α2�1∕2; for 1 < α < ∞, we set
t � �α2 − 1�1∕2. For υ⊥�h�, we obtain

υ⊥�h� �
2

β2

��
1 −

3

β2

�
cos β −

3

β
sin β

�
, (22)

where we have set β � 2h. For the cross term, we obtain

υ×�h� � −
2

β2

�
3

β
cos β�

�
1 −

3

β2

�
sin β

�
: (23)

The result for υk�h� is somewhat more complicated. We find

υk�h� �
1

β2

�
4 −

9

β2

�
cos β� 1

β

�
1 −

9

β2

�
sin β� 1

15
β� L�β�

� π

2β2
�H2�β� − βH3�β��: (24)

Here, we introduced

L�β� �
Z

∞

0

dtt2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
e−βt , (25)

and this function is shown in Fig. 2 as a function of h. The
Struve functions are defined as [28]

Hn�β� �
�
β

2

�
n�1 X∞

k�0

�−1�k
Γ�k � 3∕2�Γ�k � n� 3∕2�

�
β

2

�
2k
:

(26)

The functions υ⊥�h�, υk�h�, and υ×�h� are shown in Fig. 3.
These functions, together with the dipole orientation vector
û, determine the force on the dipole near the ENZ interface,
apart from the overall constant f o. The functions υ⊥�h� and
υk�h� are seen to be negative, except for small wiggles at large
distances. This means that the force is repelling and upward in
Fig. 1. Because gravity is down, this force by the reflected field
can give rise to levitation of the particle, holding it in suspen-
sion at a certain distance above the interface, as predicted in
[24]. This will be a stable equilibrium. When the particle
would move up a little, the electromagnetic force gets weaker,

Fig. 2. Shown is the function L�β� (solid line) as a function of h and
its approximation by two terms (dashed line).

Fig. 3. Figure shows the three functions that determine the force on
the dipole near an ENZ medium, as a function of h.
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and gravity will pull it back to equilibrium. If the particle would
move down a little, the electromagnetic repulsive force increases
and will push the particle back up to equilibrium. Because
h � 2π corresponds to an optical wavelength in free space,
we see that the repulsive force only extends outside the material
over a fraction of a wavelength. This limits the particles to be
suspended to atoms, molecules, and subwavelength nanopar-
ticles. If the particle is a dielectric sphere, with a dipole moment
induced by a moderate 50 mWCW laser, we can estimate f o to
be about 10−18 N. The force by gravity on this particle is also
about 10−18 N, and levitation can be expected if the particle is
close enough to the surface. We also see from the figure that the
cross term is as good as negligible at short distances.

6. ROLE OF EVANESCENT WAVES

The results shown in Eqs. (22)–(24) represent the exact solu-
tion for the force on a dipole near an ENZ material. We shall
now consider the contributions from the evanescent waves to
these functions. These parts come from the integration range
1 < α < ∞ in Eqs. (16)–(18). We find, without approxima-
tion, that the evanescent parts are

υ⊥�h�ev � −
6

β4
−
1

β2
, (27)

υk�h�ev � −
9

β4
−

1

2β2
� L�β�, (28)

υ×�h�ev � 0: (29)

We see from Fig. 4 that the curve for υ⊥�h�ev is almost identical
to the curve for υ⊥�h�. Therefore, the corresponding force is as
good as determined by evanescent waves only. A similar con-
clusion holds for υk�h�, as illustrated in Fig. 5.

The appearance of the function L�β� on the right-hand side
of Eq. (28) contributes significantly to the evanescent part of
υk�h�ev. To see this, we make the substitution u � βt in
Eq. (25). Then, we expand the square root in a binomial series
and integrate term by term. We then find

L�β� � 6

β4
� 1

2β2
�…: (30)

When we substitute this in the right-hand side of Eq. (28), the
terms with β−2 cancel, and the terms with β−4 combine as

υk�h�ev � −
3

β4
�…: (31)

When graphing −3∕β4, the result is identical to the dashed
curve in Fig. 5. Interestingly, the evanescent waves do not con-
tribute to the cross term, as seen in Eq. (29).

7. CONTRIBUTIONS FROM TRAVELING WAVES

The traveling part of υ⊥�h� is
υ⊥�h�tr � υ⊥�h� − υ⊥�h�ev, (32)

and we find with Eqs. (22) and (27)

υ⊥�h�tr �
6

β4
� 1

β2
� 2

β2

��
1 −

3

β2

�
cos β −

3

β
sin β

�
: (33)

It seems that there are many negative powers of β, suggesting
that υ⊥�h�tr diverges for small β, just as υ⊥�h�ev. However,
when we expand cos β and sin β in series around β � 0
and keep a large number of terms, we find that all terms with
negative powers cancel exactly, and we are left with

υ⊥�h�tr � −
1

4
�O�β2�: (34)

Apparently, the traveling contribution is finite for β small, and
υ⊥�h� is determined by the diverging contribution from evan-
escent reflected waves.

In order to see that traveling contributions must be finite,
we consider the representation

υ⊥�h� � −Re

Z
∞

0

dαα3e2ihv1 (35)

from Eq. (16), and with Rp�α� � −1 for an ENZmedium. The
traveling part comes from the integration range 0 ≤ α < 1.
Here, we make the substitution t � �1 − α2�1∕2. This yields
the representation

υ⊥�h�tr � −

Z
1

0

dtt�1 − t2� cos�βt�: (36)

Then, we expand cos�βt� in a series and integrate term by term.
We then find the representation

υ⊥�h�tr � −
1

2

X∞
n�0

1

�2n�!�n� 1��n� 2� �−β
2�n: (37)

The first few terms are

υ⊥�h�tr � −
1

4
� 1

24
β2 −

1

576
β4 �…: (38)

Along the same lines, we find
Fig. 4. Figure shows υ⊥�h� (solid line) and its contribution from
evanescent waves (dashed line), as a function of h.

Fig. 5. Figure shows υk�h� (solid line) and its contribution from
evanescent waves (dashed line), as a function of h.
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υk�h�tr �
1

8
� 2

15
β −

3

48
β2 −

4

315
β3…, (39)

and for the cross term, we obtain

υ×�h�tr �
2

15
β −

1

105
β3 �…: (40)

For the cross term, the evanescent waves do not contribute, so
the terms shown here are the dominant terms for υ×�h� at small
distances. For υ⊥�h� and υk�h�, the traveling contributions only
produce slight wiggles in the curves for large distances.

8. EPSILON NEAR ZERO

The above results hold without approximation for the force on
a dipole near an ENZ medium. For such a medium, εr � 0
(and μr � 1). In practice, such a perfect ENZ material does
not exist. The value of Re�εr� should be close to zero, and
so should the value of Im�εr�, in order to be considered
ENZ material. We shall now consider the possible effects of
small deviations from the perfect ENZ limit. We use the
Fresnel coefficients from Eqs. (11) and (12), and the integra-
tions in Eqs. (16)–(18) are performed numerically.

First, we consider the result for υ⊥�h�. Figure 6 shows υ⊥�h�
in the ENZ limit (solid line), which is the same curve as in
Fig. 3. The dashed line is υ⊥�h� for εr � 0.5. We see that
the curve is somewhat shifted to the left, but the main features
are the same. The corresponding force is still repulsive, but the
magnitude of the force is slightly smaller for a given distance.
When we set εr � −0.5, the curve shifts somewhat to the right,
thereby increasing the force. When we set εr � 0.5 � i, repre-
senting damping in the material, there is hardly any change, as
compared with the ENZ limit. The same conclusions hold
for υk�h�.

For υ×�h�, the force vanishes when the dipole gets close to
the surface, as shown in Fig. 3. It also follows from Eq. (40)
with β → 0. Figure 7 shows the effect of a small positive value
of εr . The lateral force no longer goes to zero for h → 0, and the
h dependence is significantly different than in the ENZ limit.

When we set εr � −0.5, the curve ends at a negative value
for h → 0.

More interesting is the effect of damping, as is illustrated in
Fig. 8. Here, we took εr � 0.01 � i, and the change is dra-
matic. Even with this minuscule value of Im�εr�, the value
of υ×�h� diverges for h → 0, just as it always does for υ⊥�h�
and υk�h�. The lateral force is f oυ×�h�Im��û� · ez�ûk�, so, given
û, its direction is determined by the sign of υ×�h�. When we

take û as in Eq. (19), we have Im��û� · ez�ûk� � −ey∕2, and
because υ×�h� is negative, the force is in the positive y direction.
Referring to the view in Fig. 1, the dipole moment rotates
clockwise, and the lateral force is to the right.

It was shown above that υ×�h� has only a contribution from
traveling waves in the ENZ limit. For Im�εr� > 0, the evanes-
cent waves kick in, such that the lateral force becomes large
when the dipole is close to the interface. Practically, there will
always be small damping in the material. Then, the lateral force
becomes comparable with the perpendicular force, produced by
the perpendicular and parallel parts of the dipole moment ori-
entation vector û. In addition, there is lateral force by the laser
beam, which illuminates the particle to induce the dipole mo-
ment. With û from Eq. (19), this radiation must be circularly
polarized and propagate along the x axis, as shown in Fig. 1.
This radiation pressure force is in the propagation direction of
the beam.

9. MIRROR

An ENZ material is as good as impenetrable for electromag-
netic radiation. Only just below the surface, waves can travel
along the surface as evanescent waves. No energy is transported
into the material in the direction normal to the surface. It is
tempting to speculate that this would lead to levitation [24].
The emitted radiation by the dipole in the downward direction
has nowhere to go and produces a cushion for the particle. We
shall now show that the mechanism for levitation is subtler.

Fig. 6. Shown is υ⊥�h� in the ENZ limit (solid line) and for
εr � 0.5 (dashed curve).

Fig. 7. Shown is υ×�h� in the ENZ limit (solid line) and for
εr � 0.5 (dashed curve).

Fig. 8. Shown is υ×�h� in the ENZ limit (solid line) and for
εr � 0.01 � i (dashed curve).

F22 Vol. 36, No. 8 / August 2019 / Journal of the Optical Society of America B Research Article



The ultimate impenetrable material is a perfect conductor
(mirror). Not even evanescent waves can move below the sur-
face through the material. In this mirror limit, the Fresnel co-
efficients are Rs � −1, Rp � 1. There is no dependence on the
integration variable α, and the integrals in Eqs. (16)–(18) can
be computed easily. We obtain

υ⊥�h� � −
2

β2

��
1 −

3

β2

�
cos β −

3

β
sin β

�
, (41)

υk�h� � −
sin β

β
� 1

β2

��
3

β2
− 2

�
cos β� 3

β
sin β

�
, (42)

υ×�h� �
2

β2

�
3

β
cos β�

�
1 −

3

β2

�
sin β

�
, (43)

and Fig. 9 shows the corresponding curves. There is a striking
resemblance between the curves in Fig. 9 for a mirror and the
curves in Fig. 3 for an ENZ material. The graphs are almost
identical but inverted with respect to the h axis. For υ⊥�h� and
υ×�h�, this follows immediately from Eqs. (16) and (18). Only
the Fresnel coefficient Rp appears in the expressions, and they
are of opposite sign for a mirror and an ENZ material. For
υk�h�, there is a slight difference between the ENZ result
and the mirror result, although this can barely be seen in the
figures. Clearly, when we have levitation for an ENZ medium,
we must have attraction for a perfect conductor. The forces are
as good as identical but of opposite signs. This shows that the
difference between repulsion and attraction is determined by
the phase shift upon reflection and not by expulsion of the
radiation by the interface.

10. CONCLUSIONS

An electric dipole near an interface experiences a force by its
own reflected radiation. We have derived a closed-form expres-
sion for this force for the case where the medium is an ENZ
material. The result holds for any state of oscillation or rotation
of the dipole moment. The force is (mainly) perpendicular to
the surface, and it is shown that, for close (subwavelength) dis-
tances between the dipole and the interface, this force is repul-
sive. It is shown that the force is exerted on the dipole by the
reflected evanescent waves of the angular spectrum of the ra-
diation. The traveling waves only contribute minimally to some
small wiggles for large distances. The force at close distances is
proportional to h−4, where h is the dimensionless distance

between the dipole and the surface (on such a scale, 2π corre-
sponds to one optical wavelength). A cross term between the
perpendicular and parallel components of the dipole moment
appears in the expression for the force. For this term to con-
tribute, the dipole moment needs to rotate (circle or ellipse) and
have both a perpendicular and parallel component with respect
to the surface. The resulting force is lateral (parallel to the sur-
face), no matter the state or plane of rotation of the dipole mo-
ment. In the ENZ limit, this force only comes from the
traveling waves in the angular spectrum and is, consequently,
very small compared with the force perpendicular to the sur-
face. However, when the slightest amount of damping in the
material is present, this lateral force acquires a contribution
from evanescent waves and becomes comparable with the
normal force.
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