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Abstract: We have studied the reflection and transmission of traveling and evanescent plane
waves, incident upon an ENZ material. The Fresnel reflection and transmission coefficients were
obtained in the ENZ limit. For a p polarized incident wave, the transmission coefficient vanishes,
except very close to normal incidence. The reflection coefficient is -1 for both traveling and
evanescent waves. It is shown, however, that there is a finite electric field in the ENZ material,
even though the transmission coefficient is zero. This field is either linearly polarized or circularly
polarized. The magnetic field in the medium for p polarized illumination is zero, and therefore
there can be no energy flow through the material. For s polarization, the magnetic field in the
medium is circularly polarized, and energy can flow through the material, parallel to the interface.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The electromagnetic properties of a linear isotropic homogeneous material are determined by the
relative permittivity ε and the relative permeability µ. We shall suppress the common subscript r.
These parameters of the (non-gain) medium are in general complex with a non-negative imaginary
part. They depend on the angular frequency ω of the radiation under consideration. We shall
assume monochromatic irradiation, so that this frequency dependence becomes irrelevant. The
index of refraction n is a solution of

n2 = εµ , Im n ≥ 0 . (1)

This leaves an ambiguity when ε and µ are both real and have the same sign. By including
small positive imaginary parts in the parameters, we then find that n should be taken as having
the same sign as ε and µ [1]. For natural occurring dielectrics, ε and µ are positive, and so is
n. Metamaterials are artificial media that can have, in principle, any values of ε and µ, with
the restriction that their imaginary parts are non-negative. Ingenious sub-wavelength structures
have been proposed theoretically and tested experimentally in order to construct materials with
parameters ε and µ that do not occur in nature.
In the past decades, a great deal of effort has been devoted to the development of so-called

double negative metamaterials. For these materials ε and µ are both negative (with inevitable
small positive imaginary parts), and therefore the index of refraction is approximately real and
negative. These negative index of refraction materials (NIM’s) have been predicted to have
peculiar properties by Vesalago [2]. A plane wave that refracts into the medium at an interface
appears at the opposite side of the surface normal as compared to refraction into a regular
dielectric with positive n. Later, Pendry [3] showed that incident evanescent waves could possibly
be amplified by a slab of NIM, leaving a possible path to the construction of a superlens that can
resolve images below the diffraction limit. Some controversies regarding the Fresnel reflection
and transmission coefficients for such a layer were resolved in [4].
The Green’s function for the emission of radiation by a localized source, embedded in a

medium with index of refraction n, is given by

g(r) = exp(inkor)/r , (2)
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where ko = ω/c is the wave number in free space. Here, r is the distance between the field
point and a point inside the source. For a point source, like a dipole, located at the origin of
coordinates, this is just the spherical coordinate r of the field point. For a NIM with the real
part of n negative and the imaginary part of n positive, this is an incoming spherical wave which
damps out in amplitude in the outgoing direction. Obviously, the energy propagates outward, but
the spherical wave carrying the energy travels inward. Similarly, the energy in a traveling plane
wave propagates against the wave vector.

More recently, materials with epsilon-near-zero (ENZ) have attracted a great deal of attention.
We shall assume that µ = 1, so that n =

√
ε is the correct solution of Eq. (1). We then have n ≈ 0,

and we see from Eq. (2) that the Green’s function for wave propagation in an ENZ material
becomes g(r) ≈ 1/r. The time dependence for a monochromatic field is taken as exp(−iω t). The
expected spherical wave becomes exp(−iω t)/r. The field oscillates with angular frequency ω,
but the spatial oscillations have disappeared. This phenomenon is referred to as ‘static optics’.
The field still oscillates with time t, but the spatial part becomes g(r) ≈ 1/r, which is the Green’s
function of electrostatics. One may then wonder whether any energy transport is possible through
such a material.

ENZ materials exist in nature. Most notably, if ω of the source is close to the plasma frequency
of a metal, the ε of the metal is close to zero. Below the plasma frequency the metal is opaque
and above the plasma frequency it is transparent. However, these plasma frequencies are in the
UV (wavelength ∼130 nm for gold). Metamaterial ENZ media have been demonstrated in the
microwave region [5–7], for terahertz radiation [8,9] and for the visible range of the spectrum
[10,11], and have been studied theoretically [12–18]. An interesting application of ENZ media is
the possibility of squeezing, funneling or tunneling electromagnetic radiation through narrow
channels or bends [19–24]. Also waveform shaping and angular filtering has been proposed
[25–28], and levitation of small particles near the surface of an ENZ interface has been predicted
[29]. Other applications include perfect optical absorbers [30,31] and enhancement of the
magneto-optical effect [32].

The electric and magnetic fields emitted by a localized source can be represented in terms of
the scalar Green’s function of Eq. (2) [33,34]. When this function is represented by an angular
spectrum [35], the fields become superpositions (integrals) over plane waves. These waves are
either traveling or evanescent, with respect to the surface of the material, and they are either s or
p polarized. The reflected and transmitted plane waves can then be constructed with the help
of appropriate Fresnel coefficients, and the reflected electric and magnetic fields then follow
by superposition. This approach has proven to be very successful for the study of the radiation
pattern of an electric dipole near an interface [36], and for the computation of the field lines of
energy flow in the near field [37,38]. In order to tackle this problem for an ENZ medium, it is
imperative to study the solutions for plane waves first, and in particular include the evanescent
incident plane waves.

2. Traveling and evanescent waves

We shall assume a harmonic time dependence with angular frequency ω. Then the electric field
is represented as

E(r, t) = Re[E(r) exp(−iωt)], (3)

with E(r) the complex amplitude, and the magnetic field B(r, t) is written similarly. The incident
field is a plane wave with wave vector ki, as shown in Fig. 1. It travels in vacuum towards an
interface with a material having permittivity ε. We shall assume that the parallel component
k | | of this wave vector is real, and given. A plane wave of an angular spectrum representation
of a radiation field has this k | | as the free variable, and in the superposition this becomes
the summation (integration) variable. Since the wave travels in vacuum, it has to hold that



Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 724

ki · ki = (ω/c)2, and this is ki · ki = k2o. When we set ki = k | | + ki,zez this gives k2
| |
+ k2i,z = k2o,

and this is an equation for ki,z, since k | | = |k | | | and ko are given. We now introduce the parameter

α = k | |/ko, (4)

and we set
v1 =

√
1 − α2. (5)

Then the two solutions for ki,z are ±kov1. Parameter α is the dimensionless representation of the
magnitude of k | | , and this is considered to be the free variable. For 0 ≤ α<1 we see that v1 is
real and positive. Therefore ki is a real vector, and we have a traveling incident wave. We then
take the solution ki,z = v1ko for which the wave travels in the positive z direction. This wave is
represented by arrow ki in Fig. 1. It is easy to see that α = sin θi, with θi the angle of incidence.
On the other hand, when α>1 we find that v1 is positive imaginary. We take again the solution
ki,z = v1ko, so that the wave decays exponentially in the positive z direction. The incident wave is
now evanescent, and is indicated schematically by the parallel lines in Fig. 1. Such waves still
travel along the surface with wave vector k | | . The integration variable in an angular spectrum,
after integration over the direction of k | | is the parameter α, with 0 ≤ α<∞.

Fig. 1. Illustration of a travelling or an evanescent plane wave reflecting off and transmitting
into a dielectric. We take the positive z direction as up.

The wave vectors kr and kt of the reflected wave and the transmitted wave, respectively, must
have the same parallel component k | | as the wave vector ki of the incident wave. The wave vector
of the incident wave is

ki = k | | + kov1ez, (6)

and since the reflected wave is also in vacuum, we must have

kr = k | | − kov1ez. (7)

For 0 ≤ α<1 this wave is traveling and for α>1 the reflected wave is evanescent. The transmitted
wave is in the medium with permittivity ε, so we must have k2

| |
+ k2t,z = εk2o. The causal solution is

kt = k | | + kov2ez, (8)

with
v2 =

√
n2 − α2, (9)

and n =
√
ε.

Let us now consider what kind of wave the t wave is. Let us assume for a moment that ε is
positive, like in good approximation for most dielectrics. Then also n is positive. If α<n, then v2
is real, and the t wave is traveling. If α>n, then v2 is imaginary, and the t wave is evanescent. If
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the incident wave is traveling, then α is in the range 0 ≤ α<1, and α = sin θi with θi the angle
of incidence. If n>1, then α<n for all α, and thus the t wave is traveling. If n<1, the t wave is
traveling for 0 ≤ α<n and evanescent for n<α<1. Borderline is α = n, and this is sin θi = n.
This is the familiar critical angle. If the incident wave is evanescent, we have α>1. If n<1, the t
wave is evanescent for all α. If n>1, the t wave is evanescent for α>n and traveling for 1<α<n.
In the latter case we have the unusual situation that an evanescent incident wave is converted
into a traveling wave upon transmission through the interface. For a metallic medium we have
ε<0, and n is positive imaginary. The t wave is evanescent for all α. When ε is complex, with a
positive imaginary part, then so is n. In addition, the real part of n is positive. Then the t wave is
partially traveling and partially evanescent in the z direction.

3. Polarization vectors

When the incident wave is s polarized (TE), then so are the reflected and transmitted waves. The
same holds for p polarization (TM). The unit vector in the k | | direction is

k̂ | | =
1
αko

k | | . (10)

The unit vector for s polarization is taken to be

es = ez × k̂ | | , (11)

which is perpendicular to the plane of the page in Fig. 1, and into the page. The unit vectors for p
polarization are defined as

ep,` =
1
ko

k` × es , ` = i, r, (12)

ep,t =
1

nko
kt × es. (13)

With the wave vectors given by Eqs. (6–8), we find explicitly

ep,i = αez − v1k̂ | | , (14)

ep,r = αez + v1k̂ | | , (15)

ep,t =
1
n
(αez − v2k̂ | |), (16)

and these lie in the plane of the paper in Fig. 1, although they may be complex-valued. The
normalization is chosen such that

eσ,` · eσ,` = 1 , σ = s, p , ` = i, r, t. (17)

Furthermore, the polarization vectors are orthogonal to the corresponding wave vectors:

eσ,` · k` = 0 , σ = s, p , ` = i, r, t, (18)

and obviously every s polarization vector is orthogonal to the corresponding p polarization vector.
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4. Fields and Fresnel coefficients

The incident plane wave has wave vector ki and amplitude Eo, which may be complex. The
expressions for the reflected and transmitted waves are plane waves with the corresponding wave
vectors and polarization vectors. The amplitudes are Eo times the appropriate Fresnel coefficients.
We find for s polarization

E(r)1 = Eo exp(ik | | · r)es[exp(iv1z̄) + Rs exp(−iv1z̄)], (19)

B(r)1 = (Eo/c) exp(ik | | · r)[ep,i exp(iv1z̄) + Rsep,r exp(−iv1z̄)], (20)
E(r)2 = Eo exp(ik | | · r)Tses exp(iv2z̄), (21)

B(r)2 = n(Eo/c) exp(ik | | · r)Tsep,t exp(iv2z̄), (22)
where the subscripts 1 and 2 refer to the vacuum and the medium, respectively. We have set
z̄ = koz for the dimensionless z coordinate of the field point. Similarly, for p polarization we have

E(r)1 = Eo exp(ik | | · r)[ep,i exp(iv1z̄) + Rpep,r exp(−iv1z̄)], (23)

B(r)1 = − (Eo/c) exp(ik | | · r)es[exp(iv1z̄) + Rp exp(−iv1z̄)], (24)
E(r)2 = Eo exp(ik | | · r)Tpep,t exp(iv2z̄), (25)

B(r)2 = −n(Eo/c) exp(ik | | · r)Tpes exp(iv2z̄). (26)
The magnetic field in the medium is proportional to n for both polarizations. This may seem to
lead to the conclusion that these fields vanish in the ENZ limit. We shall show below that this is
not necessarily the case. The expressions for the Fresnel coefficients follow by applying the usual
boundary conditions at the interface. This yields

Rs(α) =
v1 − v2
v1 + v2

, (27)

Ts(α) =
2v1

v1 + v2
, (28)

Rp(α) =
εv1 − v2
εv1 + v2

, (29)

Tp(α) =
2nv1

εv1 + v2
. (30)

5. ENZ limit of the Fresnel coefficients

For an ENZ medium we have ε → 0 and n→ 0. This gives v2 → iα and v1 remains as is, Eq. (5).
In Eqs. (27–29) we can immediately take this limit, with result

Rs(α)
ENZ = (v1 − iα)2, (31)

Ts(α)
ENZ = 2v1(v1 − iα), (32)

Rp(α)
ENZ = −1. (33)

The expression for Tp(α) seems to go to zero for n→ 0. However, if α = 0 (normal incidence of
a traveling wave), then both numerator and denominator go to zero. Then v1 = 1 and v2 = n.
With ε = n2 we then get Tp(0)ENZ = 2. So,

Tp(α)
ENZ =


0 , α , 0

2 , α = 0
. (34)

Let us now consider some of the properties of the Fresnel coefficients. In the following graphs,
we plot the Fresnel coefficients as a function of α. The solid lines are the ENZ limits and the
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Fig. 2. The figure on the left shows the real and imaginary parts of the reflection coefficient
for s waves. The dashed lines are for the small value of ε = 0.015 × (1 + i), and the solid
lines are the ENZ limits, with the real part red and the imaginary part blue. The figure on
the right shows the ENZ limit of the absolute value of Rs (green curve), with the dashed line
the result for the same small ε as in the figure on the left.

dashed lines are the values for a hypothetical medium with ε = 0.015 × (1 + i). Figure 2 shows
the real and imaginary parts of Rs(α), and |Rs(α)|. For evanescent waves, the imaginary part in
the ENZ limit is identically zero. We see that

|Rs(α)
ENZ | = 1 , 0 ≤ α<1, (35)

as can also be shown explicitly with Eq. (31). This means that a traveling wave undergoes a phase
shift upon reflection, but the amplitude of the reflected wave is the same as the amplitude of the
incident wave. For evanescent waves, however, the amplitude of the reflected wave is smaller
than the amplitude of the incident wave, and the amplitude ratio decreases with α. Figure 3
shows the real and imaginary parts of Ts, and |Ts |. Again, the imaginary part is identically zero
for evanescent waves. The real part, however, grows with α. For normal incidence we have
Ts(0)ENZ = 2, and for grazing incidence (α = 1) we have Ts(1)ENZ = 0. For 0 ≤ α<1 the incident
wave is traveling, and v1 is real, with 0<v1 ≤ 1. Since v21 = 1 − α2 we have |v1 + iα | = 1.
Therefore, v1 + iα is on the unit circle in the complex plane. For the phase angle θ we have
sin θ = α. For a traveling wave, α is the sine of the angle of incidence, so we conclude that this
phase angle is θi. We then have

v1 + iα = exp(iθi). (36)
The Fresnel reflection and transmission coefficients from Eqs. (31) and (32) become

Rs(α)
ENZ = exp(−2iθi), (37)

Ts(α)
ENZ = 2v1 exp(−iθi). (38)

Relation (35) now follows immediately from Eq. (37).

Fig. 3. Shown are the real and imaginary parts of Ts, and the absolute value of Ts, for small
ε (dashed curves). The solid curves are the ENZ limits.
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Fig. 4. Shown are the real and imaginary parts of Rp, and the absolute value of Rp, for
small ε (dashed curves). The solid curves are the ENZ limits.

Let us now consider p waves. We see from Eq. (33) that the reflection coefficient is −1 for all
α. Any p wave reflects back with only a phase shift, and this phase shift is the same for all α.
This behavior is illustrated in Fig. 4. The transmission coefficient vanishes for all α, except α = 0,
as shown in Fig. 5. It seems that no radiation penetrates the material for α , 0. This would be
the same as for a perfect conductor (mirror). We shall show below that for an ENZ material this
conclusion is incorrect. The dashed curves for the small value ε = 0.015 × (1 + i) in Fig. 5 are
not close to the ENZ limit for traveling waves, which is zero for all α, except α = 0. Tp(α)

ENZ in
Eq. (34) has a discontinuity at normal incidence. Such a point singularity is obviously unphysical.
The interpretation of this phenomenon can be inferred from Fig. 5. For ε → 0, the imaginary
part vanishes, and the real part has a sharp peak near α = 0, with a height of 2. From Eq. (9) for
v2 we see that in the ENZ limit and α → 0 we have v2 → 0. However, the limits n → 0 and
α→ 0 do not commute. For n = 0 and α→ 0 we have Tp(α) → 0, but for α = 0 and n→ 0 we
have Tp(0) → 2. Physically, neither n nor α can be exactly zero. Whether Tp(α) → 0 for n = 0
or Tp(0) → 2 depends on which one is smaller: |n| or α. As mentioned in Sec. 2, the critical
angle (of incidence) is at n = α = sin θi (for n real). For any n, there will always be a small range
0 ≤ α< |n| for which Tp(α) ≈ 2, and the transmitted wave is (partially) traveling. Outside this
range, the transmitted wave is mainly evanescent, and Tp(α) ≈ 0. For ε = 0.015 × (1 + i) we
have n = 0.13+ 0.056× i and |n| = 0.15 as the upper limit on α. This corresponds to an angle of
incidence of about 8°.

Fig. 5. Shown are the real and imaginary parts of Tp, and the absolute value of Tp, for small
ε (dashed curves). The solid curves are the ENZ limits. For evanescent waves, the values of
the real and imaginary parts of Tp are close to their ENZ limit of zero, with the real part
larger than the imaginary part. For traveling waves, the convergence to the ENZ limit is
much slower. The dot represents Tp(0)ENZ = 2. For α , 0 we have Tp = 0, which is the
green line in the figure on the right. In the figure on the left, the red and blue lines are on top
of each other, making it look purple.
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Finally, we mention that for α ≈ 0 the distinction between s and p waves should disappear.
We see from Figs. 2 and 4 that Rs ≈ 1 and Rp ≈ −1. The difference in sign is due to the phase
conventions for the polarization vectors. From Figs. 3 and 5 we see that Ts ≈ 2 and Tp ≈ 2.

6. ENZ limit of the fields

We now consider the fields from Eqs. (19–26) in the ENZ limit. Nothing simplifies for the
incident and reflected waves, except that Rp → −1 in Eqs. (23) and (24), and Rs in Eqs. (19)
and (20) can be replaced by the right-hand side of Eq. (31). In the medium, v2 → iα, and so
exp(iv2z̄) → exp(−αz̄). All fields in the ENZ medium are evanescent, with α = 0 borderline.
Let us first look at the s waves. In Eq. (22) we have the product nep,t. From Eq. (16) we see

that ep,t ∝ 1/n, so the factor n cancels. We then get nep,t = αez − v2k̂ | | , and with v2 → iα this
yields nep,t → αη, with

η = ez − ik̂ | | . (39)

The t wave for s polarization becomes

E(r)2 = 2Eov1(v1 − iα) exp(ik | | · r)es exp(−αz̄), (40)

B(r)2 = 2α(Eo/c)v1(v1 − iα) exp(ik | | · r)η exp(−αz̄), (41)

where we have replaced Ts by the right-hand side of Eq. (32). The electric field is still s polarized,
but the polarization vector ep,t of the magnetic field has become η. In order to see the significance
of this, we note that the right-hand side of Eq. (38) is the complex amplitude of the magnetic field

B2(r, t) = Re[B2(r) exp(−iωt)]. (42)

For a fixed point r in the ENZ medium we set temporarily

2α(Eo/c)v1(v1 − iα) exp(ik | | · r) exp(−αz̄) = A exp(iφ) , A>0 , φ real. (43)

Then
B2(r, t) = ARe{η exp[−i(ωt − φ)]}, (44)

and this is
B2(r, t) = A[ez cos(ωt − φ) − k̂ | | sin(ωt − φ)]. (45)

Vector B2(r, t) has magnitude A, and as a function of time it rotates in the plane of incidence in
the direction from k̂ | | to ez. This is counterclockwise in Fig. 1. The magnetic field in the medium
is circularly polarized, although not in the usual sense. Now let us set

2α(Eo/c)v1(v1 − iα) = C exp(iψ) , C>0 , ψ real, (46)

and take the y axis along k̂ | | . Then we have

B2(r, t) = C exp(−αz̄)Re{(ez − iey) exp[i(k | |y − ωt + ψ)]}. (47)

We first notice that the field has no x dependence, so it is constant into the direction perpendicular
to the page in Fig. 1. The magnetic field is the same in every plane parallel to the incident
plane. The z dependence comes in as exp(−αz̄), so the amplitude decays exponentially into
the direction perpendicular to the interface (up in Fig. 1). The y and t dependence enters as
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exp[i(k | |y − ωt + ψ)]. This represents a traveling wave in the y direction (to the right in Fig. 1),
with phase velocity

vph =
ω

k | |
=

c
α
, (48)

and wavelength λ = 2π/k | | . The dimensionless wavelength is λ̄ = koλ, so

λ̄ =
2π
α
. (49)

In these units, the free space wavelength is λ̄ = 2π. If the incident wave is traveling, we have
0<α<1, and the phase velocity along the surface is greater than the speed of light. If the incident
wave is evanescent, we have α>1, and the phase velocity is less than the speed of light. The
wavelength is greater than or less than the free space wavelength, respectively. Figure 6 shows
field lines of the magnetic field in the plane of incidence for a fixed t, and α = 0.5. In each plane
parallel to this plane the picture is the same. As a function of time, the field line pattern moves
to the right with vph = 2c. The picture is periodic in the horizontal direction with wavelength
λ̄ = 4π. At the vacuum side, the pattern is due to interference between the incident and the
reflected wave. The field lines form closed loops with singularities at the centers. Field lines that
cross the interface stretch into the medium, and return to the interface to complete the loop in the
vacuum side. The magnitude of the magnetic field in the medium decreases exponentially in the
upward direction, but this cannot be seen in a field line picture (field lines are determined by the
direction of a vector field, but not by its magnitude). The electric field is s polarized, so its field
lines are straight lines, perpendicular to the plane of the page in Fig. 6.
For p waves we get the factor Tpep,t in Eq. (25). From Eqs. (16) and (30) we see that again a

factor of n cancels. We therefore have two cases, just as for Tp in Eq. (34). We now find

E(r)2 = −2Eo ×


k̂ | | , 0 ≤ α<< |n|

iv1η exp(ik | | · r) exp(−αz̄) , α>> |n|
, (50)

B(r)2 = 0. (51)

The magnetic field vanished for all α. Here we have the remarkable situation that even though
the transmission coefficient is zero for α>> |n|, there is still a finite electric field in the material.
For α>> |n|, the electric field is circular polarized, and for 0 ≤ α<< |n| this field is linearly
polarized. For α→ 0 the distinction between s and p waves should disappear. Comparison with
Eqs. (40) and (41) shows that this is indeed the case, provided that for p waves we take the limit
as 0 ≤ α<< |n| in Eq. (50). Experimentally, the value of n is fixed for a given material, and it can
never be exactly equal to zero. However, α = sin θi, and the angle of incidence can be varied
from large values to as good as zero. In the neighborhood of sin θi = |n|, the polarization of the
electric field changes abruptly from circular to linear, and the field becomes identical to the field
for s waves in this limit.
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Fig. 6. Shown are the field lines of the magnetic field in the plane of incidence, for s
polarization. Here, 2π correspond to an optical wavelength in free space. The fat line in the
middle is the interface, and the ENZ medium is above it.

7. Energy flow

We now return to the question whether or not energy will flow through the ENZ medium. To this
end, we consider the time averaged Poynting vector

S(r) = 1
2µo

Re[E(r) × B(r)∗], (52)

containing the complex amplitudes of the electric and magnetic fields. We spilt off a factor

S(r) = SoS(r)′, (53)

with
So =

|Eo |
2

2µoc
. (54)

In this way, S(r)′ is dimensionless, and So is an overall measure for the field strength. It is
advantageous to consider traveling and evanescent incident waves separately.

7.1. Traveling incident wave

For 0 ≤ α<1 the incident wave is traveling, and parameter v1 from Eq. (5) is real and positive.
In the complex conjugate of B(r) we can then set v∗1 = v1. For the reflection and transmission
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coefficients in the ENZ limit we use Eqs. (37) and (38). We then obtain for s waves

S(r)′1 = 4αk̂ | |cos2(v1z̄ + θi), (55)

S(r)′2 = 4αk̂ | |(1 − α2) exp(−2αz̄). (56)

In the ENZ material, energy flows along the interface in the k̂ | | direction, and the magnitude
of the energy flow vector decreases exponentially away from the interface. At the vacuum side,
energy also flows in the k̂ | | direction with an oscillating z dependence. At the interface we have
z̄ = 0, and with cos2θi = 1− α2 we see that the Poynting vector is continuous across the interface.
Energy is transported by the ENZ medium, but not in a direction away from the interface. For p
waves we find

S(r)′1 = 4αk̂ | |sin2(v1z̄), (57)

S(r)′2 = 0. (58)

The Poynting vector at the vacuum side is similar to that for s waves, but now we find that there is
no energy flow at all in the material for p polarization. This is a direct consequence of the fact
that the magnetic field in the medium is zero, as shown in Eq. (51).

7.2. Evanescent incident wave

For an evanescent incident wave, v1 is positive imaginary, and we have v∗1 = −v1. We define

u =
√
α2 − 1, (59)

so that v1 = iu and u>0. We now find for s waves

S(r)′1 = αk̂ | |[exp(−uz̄) + Rs(α)
ENZ exp(uz̄)]2, (60)

S(r)′2 = αk̂ | |[Ts(α)
ENZ]2 exp(−2αz̄). (61)

For evanescent waves we have
Rs(α)

ENZ = −(u − α)2, (62)

Ts(α)
ENZ = −2u(u − α), (63)

and both are real. It is easy to check that

[1 + Rs(α)
ENZ]2 = [Ts(α)

ENZ]2, (64)

from which it follows that the Poynting vector is continuous across the interface. There is energy
transport in the k | | direction near the interface. For p waves we obtain

S(r)′1 = 4αk̂ | |sinh2(uz̄), (65)

S(r)′2 = 0. (66)

We find again that for p waves no energy propagates through the material.
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8. Normal incidence

Of practical importance is the case of normal or near normal incidence. In this case, the vector k | |
goes to zero, and k̂ | | becomes undefined. We then assume a direction for s polarization chosen,
and set

k̂ | | = es × ez, (67)

as follows from Eq. (11). For normal incidence we have α = 0, and the expressions for the fields
simplify considerably. The time dependent fields follow from the complex amplitudes as in
Eq. (42).
With v1 = 1, Rs = 1, ep,i = −k̂ | | , ep,r = k̂ | | and Ts = 2 we find for s polarization

E(r, t)1 = 2Eoes cos(z̄) cos(ωt), (68)

B(r, t)1 = −2
Eo
c

k̂ | | sin(z̄) sin(ωt), (69)

E(r, t)2 = 2Eoes cos(ωt), (70)

B(r, t)2 = 0. (71)

The electromagnetic field in vacuum is a standing wave, resulting from interference between
the incident and reflected wave. The electric field in the ENZ material has no r dependence. Its
value is the same throughout the material, and it oscillates with angular frequency ω. This is
called ‘static optics’. The magnetic field is zero everywhere.
For p waves near normal incidence we obtain

E(r, t)1 = −2Eok̂ | | cos(z̄) cos(ωt), (72)

B(r, t)1 = −2
Eo
c

es sin(z̄) sin(ωt), (73)

E(r, t)2 = −2Eo


k̂ | | cos(ωt) , 0 ≤ α<< |n|

η sin(ωt) , |n| <<α
, (74)

B(r, t)2 = 0. (75)

The electric field in the ENZ material is again ‘static’. It is linearly polarized if α is much closer
to zero than |n|, and circularly polarized if |n| is much closer to zero than α. When α is seen
as a variable, like in an angular spectrum, then there must be an abrupt, but smooth transition
between the two polarization states.
Finally, we consider the time averaged Poynting vector in the limit of normal incidence. By

considering the complex amplitudes in this limit, we find that in vacuum the value of E(r)×B(r)∗
is imaginary, and therefore the Poynting vector vanishes. In the ENZ medium, the magnetic field
is zero. Therefore, for normal incidence we have S(r) = 0 everywhere.

9. Conclusions

We have studied the reflection off and the transmission through an ENZ interface. The incident
field is taken as a plane wave, and we consider both traveling and evanescent incoming waves.
The only variable in the problem is parameter α. For a traveling incident wave (0 ≤ α<1)
this is the sine of the angle of incidence, and for an evanescent incident wave (α>1), 1/α is a
dimensionless measure for the penetration depth. Moreover, koα is the magnitude of the parallel
components of all wave vectors (incident, reflected and transmitted).
First we have obtained the ENZ limit of the Fresnel reflection and transmission coefficients.

We found that for p polarization of the incident wave the reflection coefficient is -1 for all α. The
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transmission coefficient vanishes for all α, except for α<< |n| with both α and n going to zero.
Then the transmission coefficient is 2. Close to normal incidence (α = 0) there is an abrupt but
smooth transition in the transmission coefficient for p waves. There is no such behavior for s
polarized incident radiation. In that case, the absolute value of the reflection coefficient is unity
for traveling incident waves and for α>1 it drops to zero rapidly with increasing α.
We then considered the electric and magnetic fields at both sides of the interface. At the

vacuum side we have the usual interference between the incident and the reflected waves. In
the ENZ medium all fields are evanescent for α , 0. For an s polarized incident wave, the
electric field in the ENZ medium is also s polarized. Remarkably, however, the magnetic field is
exactly circularly polarized, and moves with a phase velocity of c/α along the surface. For p
polarized incident radiation, the magnetic field in the medium vanishes identically. The electric
field is linearly polarized for 0 ≤ α<< |n| and circularly polarized for α>> |n|. For α>> |n|, the
transmission coefficient is zero for all α, but there is still an electric field. For normal incidence,
the magnetic field in the medium is zero, both for s and p irradiation. The electric field is
‘static’, either linearly or circularly polarized. The Poynting vector in the medium for p waves is
identically zero, but for s polarization there is a finite flow of energy along the surface.
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