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Energy flow of electric dipole radiation in between parallel mirrors
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ABSTRACT
We have studied the energy flow patterns of the radiation emitted by an electric dipole located 
in between parallel mirrors. It appears that the field lines of the Poynting vector (the flow lines of 
energy) can have very intricate structures, including many singularities and vortices. The flow line 
patterns depend on the distance between the mirrors, the distance of the dipole to one of the 
mirrors and the angle of oscillation of the dipole moment with respect to the normal of the mirror 
surfaces. Already for the simplest case of a dipole moment oscillating perpendicular to the mirrors, 
singularities appear at regular intervals along the direction of propagation (parallel to the mirrors). 
For a parallel dipole, vortices appear in the neighbourhood of the dipole. For a dipole oscillating 
under a finite angle with the surface normal, the radiating tends to swirl around the dipole before 
travelling off parallel to the mirrors. For relatively large mirror separations, vortices appear in the 
pattern. When the dipole is off-centred with respect to the midway point between the mirrors, the 
flow line structure becomes even more complicated, with numerous vortices in the pattern, and 
tiny loops near the dipole. We have also investigated the locations of the vortices and singularities, 
and these can be found without any specific knowledge about the flow lines. This provides an 
independent means of studying the propagation of dipole radiation between mirrors.

1.  Introduction

An atom or molecule in an excited electronic state will 
decay spontaneously to the ground state, and at the same 
time a fluorescent photon is emitted. Assuming a steady 
excitation of the particle, for instance by a laser beam, 
this leads to a steady emission of photons. The emission 
rate, multiplied by the energy of a photon, is the emitted 
power, and the inverse of the emission rate is the lifetime 
of the excited state. We shall assume that the particle can 
be represented by an oscillating electric dipole moment. 
When the particle is located close to an interface with a 
dielectric material or a mirror, the photon emission rate is 
altered due to the fact that the reflected radiation partially 
travels back to the particle and the reflected electric field 
at the location of the dipole alters the emission rate (1). 
Of particular interest is the dependence of the emission 
rate on the distance between the dipole and the inter-
face. The dependence of the emission rate on the various 
parameters has been studied by numerous authors, both 
theoretically and experimentally (2–10). Also of interest 
is the modification of the far-field radiation pattern, as it 
is modified by interference between directly emitted and 
reflected light (11, 12). An obvious generalization of the 

case of a dipole near an interface is the situation where 
the emitter is located in between two parallel interfaces 
(13–18). When the two interfaces are mirrors, a relatively 
simple expression can be derived for the emission rate. It 
follows theoretically that spontaneous emission is ‘turned 
off ’ entirely when the distance between the mirrors is less 
than half a wavelength of the radiation, and when the 
dipole moment is oriented parallel to the mirror surfaces. 
This has been observed experimentally for Rydberg atoms 
in between parallel mirrors (19).

When a small particle emits radiation near an inter-
face, the presence of the interface alters the decay rate due 
to reflected radiation which comes back to the particle. 
A simultaneous phenomenon is that the reflected light 
and the direct light interfere, and this is responsible for 
constructive and destructive interference, leading to lobes 
in the power per unit solid angle in the far field. In the 
near field, however, this interference leads to complicated 
energy flow patterns in the neighbourhood of the particle. 
For a single mirror, numerous singularities and vortices 
appear (20) and the flow lines of energy are far from triv-
ial. From a larger view, it appears that four strings con-
taining small vortices appear to come out of the location 
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with E(r) the complex amplitude and the magnetic field 
B(r, t) is expressed similarly. Here, r is the position vector 
of the field point of interest. For the radiation emitted 
by the dipole, it is convenient to introduce the position 
vector of the field point with respect to the location of the 
dipole as follows:

 

and this vector is shown in Figure 1. With the help of the 
wave number k = ω/c, we introduce dimensionless varia-
bles. The dimensionless position vector of the field point is 
q = kr and similarly q

0
= kr

0
. The dimensionless complex 

amplitudes e(r) and b(r) of the electric and magnetic fields, 
respectively, are defined as follows:

 

 

with

For the fields emitted by the dipole we then have (24)
 

 

The subscripts ‘0’ everywhere are for later purpose.

3.  The image system

The radiation emitted by the dipole bounces off the mir-
rors and multiple reflections lead to complicated inter-
ference patterns. This system can be analysed most easily 
with the method of images. In between the mirrors, the 
dipole field is a solution of Maxwell equations. At the mir-
ror surfaces we must have that the parallel component 
of the electric field vanishes and the perpendicular com-
ponent of the magnetic field must be zero. To this end, 
mirror images are introduced outside the region 0 < z < D, 
such that the total fields at the mirror surfaces satisfy the 
boundary conditions. For a single (bottom) mirror, this 
image is located at a distance H below the mirror and its 
dipole moment has its parallel component reversed. So 
if we write
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of the dipole (21). An interesting phenomenon occurs 
when dipole radiation passes through an interface with 
a dielectric (22, 23). When the medium is thicker than 
the embedding medium of the dipole, radiation passes 
through more or less in straight lines, similar to optical 
rays. When the medium is thinner, however, some radi-
ation that transmits into the medium turns around and 
passes through the interface again. Then, it turns around 
again and so on. This leads to an oscillating energy flow 
back and forth through the interface, and at each crossing 
a vortex appears.

2.  Dipole in between mirrors

We shall consider an electric dipole located in between 
parallel mirrors, as shown in Figure 1. The dipole is 
located on the z axis, a distance H above the lower mir-
ror. The surface of the lower mirror is the xy plane and 
the surface of the second mirror is the z = D plane. The 
dipole moment d(t) oscillates harmonically with angular 
frequency ω:

 

with d the complex amplitude. We set

and here the unit polarization vector û
0
 may be complex 

(as for circular or elliptical polarization). The electric field 
E(r, t) in between the mirrors is

 

(1)d(t) = Re(de−i� t),

(2)d = d
o
û
0
, d

o
> 0, û

0
⋅ û∗

0
= 1,

(3)E(r, t) = Re[E(r)e−i� t],

Figure 1. The dipole is located on the z axis, a distance H above 
the lower mirror. The vector r

0
 represents the field point r, but 

measured from the location of the dipole. The Poynting vector 
at the field point is indicated by vector S(r). For a linear dipole, 
oscillating in the yz plane, the unit vector û

0
 makes an angle γ with 

the positive z axis.
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then the mirror dipole has polarization vector
 

It can then be verified that the total fields satisfy the 
boundary conditions.

For the case of two mirrors, the dipole has an image 
in both mirrors. But then, the image of the dipole in the 
lower mirror produces a field at the position of the upper 
mirror. Therefore, we need an image of the first image 
with respect to the upper mirror to compensate for this. 
This continues indefinitely, leading to an infinite array of 
images on the z axis. We shall number the images with 
m, and such that above the top mirror we have m > 0 and 
below the bottom mirror we have m < 0. The value m = 0 
is taken to correspond to the dipole itself. It then follows 
by inspection that the mth image is located at

 

The location of the images is illustrated in Figure 2. 
Equation (12) can be written as follows:

(10)û
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= (û

0
)
⊥
+ (û
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| |
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= (û
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2
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(
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1

2
D
)

.

 

and this shows that the mth image is located in between 
the planes z = mD and z = (m + 1)D. We also see that 
images with m even have polarization vector û

0
 and images 

with m odd have ûmi

0
 as polarization vector. This can be 

combined as follows:
 

for the polarization vector of the mth image.

4.  Fields and Poynting vector

Each image dipole radiates an electric and magnetic field, 
similar to Equations (8) and (9) for the dipole. For the 
fields by the mth image, we replace û

0
 by ûm from Equation 

(14) and the dimensionless position vector q
0
 of the field 

point is replaced by
 

with z̄m = kzm. The dimensionless electric and magnetic 
fields are em(r) and bm(r), respectively, and the total fields 
at field point r are

 

 

Energy in between the mirrors flows along the field 
lines of the Poynting vector S(r, t). For time-harmonic 
fields, we consider the time-averaged Poynting vector:

 

which is time-independent. We split off a factor
 

so that
 

With e(r) and b(r) from Equations (16) and (17) substi-
tuted, we see that we get cross-terms between all the m 
values. Vector �(r) depends only on q (and not r), so we 
shall write �(q).

Equation (20) determines the Poynting vector at a 
field point q. Let q(u) be a parametrization of a field line 

(13)zm =

{

mD + H , m even

(m + 1)D − H , m odd
,

(14)ûm = (û
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,

(15)qm = q − z̄mez ,

(16)e(r) =

∞
∑

m=−∞

em(r),

(17)b(r) =

∞
∑

m=−∞

bm(r).

(18)S(r) =
1

2�
o

Re[E(r) × B(r)∗],

(19)S(r) =
�2

2�
o
c
�(r),

(20)�(r) = Re[e(r) × b(r)∗].

Figure 2. The diagram shows the locations of the mirror images.
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between the dipole and the lower mirror. We shall first 
consider the case γ = 0, corresponding to a dipole oscil-
lating along the z axis, and with the dipole located midway 
between the mirrors. For a linear dipole in free space, 
the field lines are straight, coming out of the dipole and 
running to infinity. We see from Figure 3 that close to the 
dipole the field lines indeed come out of the dipole, and 
almost as straight lines. At this close distance it seems 
that the mirrors have no effect yet. When the field lines 
approach the mirrors, they bend and then run off to infin-
ity. For γ = 0, the system is rotation symmetric around the 
z̄ axis, so there are no additional features off the ȳz̄ plane.

The flow lines in Figure 3 are what one would expect 
for the energy flow in between mirrors when the flow 
lines come out of the dipole. Figure 4 shows an extension 
to the right of the flow pattern in Figure 3. We see that, 
instead of smoothly running off to infinity, two singular-
ities appear near the midway plane between the mirrors. 
At a singularity, the Poynting vector vanishes and such 
singularities are indicated by small circles. Figure 5 shows 
a further extension of the graph, and now we notice that 
two singularities appear close to the mirror surfaces. Since 
for a vertical dipole the field line picture is rotation sym-
metric around the z̄ axis, these singularities are singular 
circles around the z̄ axis. We have verified numerically 
that this picture continues to the right indefinitely. After 
about 8 units further, two singularities appear along the 
midway plane, then again 8 units further two near the 
mirrors and so on.

The pattern with the sequences of singularities in 
Figures 3–5 seems to be universal for a vertical dipole 
located at the midway point. The locations of the singular-
ities, in the horizontal direction, depend on δ. The larger 
the separation between the mirrors, the further apart the 
singularities are. However, it seems that there are always 
two singularities near the midway plane and two singu-
larities near the mirrors. The number of singularities does 
not seem to increase with the mirror separation. When 
the mirror separation is less than about δ = π, there are no 
singularities, and the radiation flows along almost straight 
lines to infinity. Since 2π corresponds to an optical wave-
length, we conclude that the mirror separation must be at 
least half a wavelength for the singular circles in the flow 
pattern to appear.

7.  Horizontal dipole

We now consider a horizontal dipole (γ = π/2) located 
midway between the mirrors. Figure 6 shows the energy 
flow picture for δ = 4. Energy is emitted by the dipole in 
the up and down directions and the flow lines bend at the 
mirror surfaces, just like in Figure 3. For a dipole in free 
space, no energy is emitted along the dipole axis and the 

through a given initial point (x̄
o
, ȳ

o
, z̄

o
), with x̄

o
= kx

o
, etc. 

The curves q(u) are then the solution of
 

Here, f (q) is an arbitrary positive function of q, which can 
be selected for convenience or numerical stability. A good 
choice seems to be f (q) = q4

0
. We use Mathematica to solve 

Equation (21) (which is actually a set of three equations 
when written out in Cartesian coordinates).

The sums over m in Equations (16) and (17) obvi-
ously needs to be truncated with a certain maximum M 
(−M ≤ m ≤ M, so 2M + 1 dipoles). This M is determined 
by considering the Poynting vector near the two mirrors. 
At a mirror surface, the Poynting vector must be parallel 
to the surface (no energy flows through the mirrors). Only 
for a sufficient large value of M will this be the case and we 
find that values of M of about 100 are usually necessary 
for convergence.

5.  Linear dipole

The field lines of the Poynting vector are in general 3D 
curves, which makes it very difficult to visualize energy 
flow line patterns. A great simplification arises if we 
assume that the dipole oscillates linearly, as in Figure 1. 
The direction of oscillation is specified by the angle γ with 
the positive z axis and we take the plane of oscillation as 
the yz plane. We then have

 

and for the images we obtain

Let us now consider a field point in the yz plane. It follows 
from Equation (8) (with 0 → m) that em(q) is in the yz plane 
and we see from Equation (9) that bm(q) is along the x 
axis. Therefore, the Poynting vector �(q) is in the yz plane. 
Consequently, if a field line of the Poynting vector goes 
through a point in the yz plane, then the entire field line 
lies in the yz plane. Similarly, it is easy to verify that the 
field line pattern is reflection symmetric in the yz plane, 
so we only need to consider field lines in the region x ≥ 0. 
The yz plane is a symmetry plane, and field lines in this 
plane are 2D curves.

6.  Vertical dipole

In the graphs to follow, we use dimensionless coordi-
nates ȳ = ky and z̄ = kz for points in the yz plane and we 
introduce δ = kD for the dimensionless distance between 
the mirrors and h = kH for the dimensionless distance 

(21)
d

du
q(u) = f (q)�(q(u)).

(22)û
0
= ez cos 𝛾 + ey sin 𝛾 ,

(23)ûm = ez cos 𝛾 + (−1)mey sin 𝛾 .
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the flow lines bend to the dipole axis z̄ = 2 and the flow 
lines end at this axis. For a dipole in free space, the field 
lines are straight, but due to the presence of the mirrors 
here, all field lines bend to the dipole axis and end there. 
This is also clear from Figure 7, which is an extension to 
the right of Figure 6.

When the distance between the mirrors is increased, 
four vortices appear near the location of the dipole. This 
is shown in Figure 8. Not all field lines end at the dipole 
axis, as for smaller δ. Close to the dipole, field lines start 
at the dipole axis and then swirl into the vortices, where 

same appears to hold here. The line z̄ = 2 is a singular line, 
with no energy flow along this line (indicated by a dashed 
line in the figure). Radiation emitted upward and down-
ward changes direction at the mirror surfaces, after which 
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2
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8

Figure 3. The figure shows field lines of the Poynting vector in the 
ȳz̄ plane for a vertical dipole. In this and other figures, we shall 
take z̄ as up and ȳ to the right. The dipole moment vector û

0
 is 

represented by an arrow (not to scale). The distance between the 
mirrors is δ = 8 and the locations of the mirrors are indicated by 
fat black lines. The dipole is located midway between the mirrors, 
so at h = 4.
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Figure 4. This figure is an extension to the right of Figure 3. The 
white circles are singularities.
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Figure 5. This figure is an extension to the right of Figure 4.
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Figure 6. Shown are the field lines of energy flow for a horizontal 
dipole midway between the mirrors, for δ = 4.D
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typical flow line pattern for small δ is shown in Figure 9. 
Most of the radiation is emitted perpendicular to the 
dipole axis, as in free space. We see that field lines coming 
out of the dipole swing around the dipole and then run off 
to infinity. Some field lines make half a swing, as for curve 
a, and some make a full swing, as for curve b. For larger 
values of the mirror separation, vortices appear along 
the dipole axis. This is illustrated in Figure 10. Two large 
vortices form in the top-right and the bottom-left of the 
picture, and in between the large vortices and the dipole 
two small vortices appear. An enlargement of the top-
right vortices is shown in Figure 11. When we increase δ 
even further, more vortices appear approximately along 
the dipole axis.

they end. Further out, the field lines again bend towards 
the axis, as in Figure 7. In the transition region, there are 
two singularities on the dipole axis, which are indicated 
by white circles in the figure. For even larger δ, a similar 
structure as in Figures 4 and 5 appears, where there are 
sets of singularities alternating in location.

8.  Dipole under an angle

We now consider the effect of an angle γ between the z̄ 
axis and the direction of oscillation û

0
 of the dipole. A 

3 4 5
0

1

2

3

4
3 4 5

0

1

2

3

4

Figure 7. This figure is an extension to the right of Figure 6.
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Figure 8. The figure shows the energy flow lines for δ = 8, h = 4 
and γ = π/2. The black circles are at the centres of vortices and the 
white circles are other singularities.
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Figure 9. The dipole oscillates under 45° with the z̄ axis, and we 
have δ = 2.
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Figure 10. Field lines for a dipole oscillating under 45° with the z̄ 
axis, and for δ = 8.
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12 is almost the same as the spiral in Figure 11. The field 
line has to flatten out on approach of the ȳz̄ plane, since 
no field line can cross the symmetry plane. The field line 
pattern is reflection symmetric in the symmetry plane, so 
a mirror image spiral is present in the region x̄ < 0. This 
spiral has the same rotation direction, when viewed down 
the positive x̄ axis. Very close to the ȳz̄ plane, both spirals 
are almost identical to the big spiral in Figure 11. It is clear 
that neither field line comes out of the singularity at the 
centre of the 2D vortex. Only for a field line exactly in the 
ȳz̄ plane does the vortex seem to have a source.

10.  Dipole off-centre

A new aspect of the energy flow pattern appears when we 
consider a dipole located off the midway plane between 
the mirrors. Figure 13 shows field lines for δ = 4, h = 1 and 
γ = π/3. We see that all field lines come out of the dipole at 
the bottom-right, and some loop around the dipole, and 
enter the dipole at the other side. Just above the point of 
entry there is necessarily a singularity. The same phenom-
enon occurs for a single mirror (20), although under dif-
ferent conditions. A detailed analysis of this exotic effect 
will be presented elsewhere.

Figure 14 shows the field line pattern for δ = 4π, h = π/2 
and γ = π/2. For γ = π/2 the pattern is reflection symmetric 
in the z̄ axis, so only the region ȳ ≥ 0 is shown. We notice 
the appearance of a large number of vortices. The field 
lines in the four vortices on the left rotate clockwise and 
the field lines in the vortices on the right rotate counter-
clockwise. This pattern repeats if we extend the graph to 
the right (not shown). Interestingly, if we replace δ = 4π 
by, say, δ = 12, the entire pattern washes out, and we just 
get some wiggly curves going to the right. Similarly, if we 
would replace δ = 4 in Figure 13 by δ = π, a vortex appears 

9.  Energy flow near a vortex

The energy flow lines near the small vortex in Figure 11 
end at the centre of the vortex and the flow line (only 
one shown) near the large vortex comes out of the centre 
of the vortex and then runs off to the left. At the centre 
of each vortex is a singularity, indicated by small circles, 
and three more singularities can be seen in the picture. 
It seems that the small vortex is an energy sink and the 
large vortex is an energy source. Since the flow line pattern 
is time independent, this can obviously not be the case. 
Energy cannot pile up at the centre of the small vortex, 
and no energy is created at the centre of the large vortex. 
From a mathematical point of view, the divergence of the 
Poynting vector is zero in between the mirrors, except at 
the location of the dipole. There are no energy sinks or 
sources other than the dipole.

We only draw field lines in the symmetry plane in 
order to avoid cumbersome 3D visualizations. This gives 
a good impression of the behaviour of the energy flow in 
most cases. However, the field line patterns shown are 
part of larger, 3D pictures. This becomes most relevant 
when considering the energy flow near a vortex. Figure 
12 shows a 3D field line in the neighbourhood of the 
large vortex in Figure 11. The field line’s initial point is 
taken as (x̄

o
, ȳ

o
, z̄

o
) = (0.02, 3 , 7), so slightly in front of 

the ȳz̄ plane. The field line is spiralling counterclockwise 
and it approaches the ȳz̄ plane. The spiral gets thinner 
on approach and then flattens out when reaching the ȳz̄ 
plane. Close to the ȳz̄ plane, the field line keeps on spi-
ralling almost parallel to the ȳz̄ plane and then it runs 
off to the left, as in Figure 11. The large spiral in Figure 

1 2 3

5

6

7

8
1 2 3

5

6

7

8

Figure 11.  The figure shows an enlargement of the top-right 
vortex in Figure 10. The black circles are at the centres of the 
vortices and the white circles are other singularities.

1 1

2

3

6.5

7

z

x y
Figure 12. Shown is a 3D field line in the neighbourhood of the 
large vortex in Figure 11. The axes origin has been moved for 
clarity of perspective.
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as can be seen for instance in Figures 4, 11 and 13. Here, 
we have e(r) × b(r)∗ imaginary and this is the same as 
� = 0. Since � is in the ȳz̄ plane, this is therefore the same 
as σy = 0 and σz = 0. Both equations define sets of curves, 
and at the intersections the Poynting vector vanishes. 
Figure 16 shows these curves for the same parameters as 
in Figure 15. Interestingly, the condition � = 0 includes 
the condition b = 0, so the black circles in Figure 16 are 

to the left of the dipole. Apparently, the system is very 
sensitive to small variations in parameters.

11.  Locations of vortices and singularities

Energy flow patterns can become complicated, especially 
for a large separation δ between the mirrors, and details 
of the energy flow cannot always be resolved on the scale 
of the figure. For instance, in the flow pattern of Figure 14 
there are 9 vortices and 11 singularities. At the centre of 
a vortex is a singular point. At such a point the Poynting 
vector � is necessarily zero. This can be due to e = 0 or 
b = 0 or e(r) × b(r)∗ imaginary. For field points in the ȳz̄ 
plane, vector e is in the ȳz̄ plane. Since e is the complex 
amplitude, the condition e = 0 requires that the real and 
imaginary parts of both the ȳ and the z̄ components van-
ish simultaneously at a field point. Obviously, this is highly 
unlikely. The b vector, however, is along the x̄ axis, so b = 0 
requires Rebx = 0 and Imbx = 0. Each equation defines a 
set of curves in the ȳz̄ plane, and at each intersection we 
have a singular point. In Figure 15, the solid lines are the 
solution of Rebx = 0 and the dashed lines are the solution 
of Imbx = 0. The parameters are δ = 8, h = 4 and γ = π/4, 
which are the same as for the flow lines in Figure 10. The 
intersections of the curves, indicated by little black circles, 
appear to correspond to the locations of the four vortices 
in Figure 10. We have found in general that a singularity 
at the centre of a vortex is due to the vanishing of the 
magnetic field at that point.

Besides the centres of vortices, numerous other singu-
larities appear and these are indicated by white circles in 
the figures. At such singularities, field lines split or collide, 
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Figure 13. Shown are field lines for δ = 4, h = 1 and γ = π/3. Tiny 
loops appear close to the dipole.
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Figure 14. Shown are field lines for δ = 4π, h = π/2 and γ = π/2. 
Many vortices appear, more or less along vertical lines.
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Figure 15.  The solid lines are the solution of Rebx = 0 and the 
dashed lines are the solution of Imbx = 0 and the parameters 
are the same as for the field line pattern in Figure 10. The 
intersections, indicated by black circles, represent the locations 
of the four vortices.
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Therefore, each mirror in the figure has a dashed line on 
top of it. Consequently, if a solid curve ends at a mirror, 
there is a singularity at this point. Two of these can be 
seen in Figure 16.

As another example, Figure 17 shows the solution of 
b = 0 for δ = 4π, h = π/2 and γ = π/2, and these are the 
same parameters as for the flow line picture of Figure 14. 
We see two sets of four vortices, more or less along upward 
lines. The one in the bottom-right corner is the lowest one 
of another set of four. Figure 18 shows the corresponding 
diagram for � = 0. We notice 11 singularities, other than 
the 9 vortices. The locations of the vortices and singular-
ities can very clearly be seen from Figure 18, whereas in 
the flow line picture of Figure 14, most of these locations 
are not clear at all.

12.  Conclusions

The energy flow patterns for the propagation of electric 
dipole radiation in between parallel mirrors are far from 
trivial. The system only has three parameters: the dimen-
sionless distance δ separating the mirrors, the dimen-
sionless distance h between the location of the dipole 
and the lower mirror and the angle γ between the oscil-
lation direction of the dipole moment and the normal to 
the mirror surfaces. For a radiating dipole in free space, 
most radiation is emitted perpendicular to the dipole axis 
(oscillation direction of the dipole moment) and none 
is emitted along the dipole axis. For a vertical dipole, as 
illustrated in Figure 3, this appears also to be the case for 
a radiating dipole in between mirrors, except that near 
the mirror surfaces the field lines of energy flow bend and 

at the same locations as the black circles in Figure 15. 
The sets of curves in both figures are very different, but 
they intersect at the same points for the locations of the 
vortices. In this fashion, we can tell which intersections in 
Figure 16 correspond to vortices and which intersections 
correspond to other singularities. Near a mirror surface, 
the Poynting vector is parallel to the mirror and so σz = 0. 
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Figure 16. The solid lines are the solution of σy = 0 and the dashes 
lines are the solution of σz = 0 and the parameters are the same as 
for Figure 15. The black circles are the centres of vortices, and we 
conclude that by comparing to Figure 15. The white circles then 
must be singularities where field lines split.
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Figure 17.  The solid and dashed lines represent the solutions 
of Rebx = 0 and Imbx = 0, respectively, for δ  =  4π, h  = π/2 and 
γ = π/2. This corresponds to the flow line pattern of Figure 14.
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Figure 18.  The intersections shown in the figure are the 
singularities of the energy flow diagram of Figure 14.
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are also reproduced, we have a means of distinguishing 
between vortices and points where the singularities are 
due to the splitting of field lines. Examples are shown in 
Figures 16 and 18, with the black circles indicating the 
locations of vortices and the white circles represent any 
other singularities.
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become parallel to the surfaces. This has to be so, since 
no radiation can penetrate the mirrors. When we look 
further away from the dipole, however, as in Figures 4 and 
5, singularities appear. First, two singularities appear near 
the midway line between the mirrors and, further out, two 
singularities appear near the mirror surfaces. This pattern 
repeats indefinitely going outwards. In the figures, we use 
dimensionless coordinates for which 2π corresponds to 
an optical wavelength. Therefore, the pattern here, and in 
the following figures, are of near-wavelength or sub-wave-
length scale.

For a horizontal dipole and small mirror separation we 
find again that most radiation is emitted perpendicular 
to the dipole axis and that the flow lines curve when they 
approach the mirrors, as shown in Figure 6. When the 
distance between the mirrors is increased, optical vortices 
appear in the vicinity of the dipole, as shown in Figure 8. 
When the dipole oscillates under a finite angle with the 
vertical, energy swirls around the dipole before taking off 
to infinity, as shown in Figure 9. For a larger separation 
between the mirrors we see from Figure 10 that several 
vortices appear in the flow pattern. Obviously, energy can-
not accumulate at the centre of a vortex and cannot come 
out of the singularity at the centre of a vortex. It is shown 
in Figure 12 that the vortices in the plane of oscillation of 
the dipole should be seen as the cross sections of 3D vorti-
ces. Only in this plane is there a singularity at the centre of 
the vortex. When the dipole is located off-centre with the 
midpoint between the mirrors, small loops appear near 
the dipole. Field lines come out of the dipole at one side 
and then return back to the dipole at the other side. For 
larger separations between the mirrors, numerous vortices 
appear in the flow pattern of an off-centred dipole.

When flow patterns become complicated, an alterna-
tive way to look at these patterns is by considering the 
locations of the vortices and singularities, without refer-
ence to the flow lines. At the singularity at the centre of a 
vortex the magnetic field vanishes. This condition leads 
to two sets of curves and the vortices are located at the 
intersections. Typical examples are shown in Figures 15 
and 17. Then, at any singularity the Poynting vector is 
zero and this condition also leads to two sets of curves. 
Any singularity is located at intersections in these dia-
grams. Since the singularities at the centres of the vortices 
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