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ABSTRACT
The field lines of energy flow of radiation emitted by an oscillating electric dipole in free space 
are either straight lines (linear dipole) or they form a vortex (rotating dipole). When the dipole is 
embedded in a material, the properties of the medium affect the direction of energy flow. Damping 
due to the imaginary part of the relative permittivity �

r
 makes the field lines curve for the case of 

a linear dipole, and for a rotating dipole, the shape of the vortex is altered. In addition, a negative 
value of the real part of �

r
 has the effect that the rotation direction of the vortex reverses for the 

case of a rotating dipole. The value of the relative permeability �
r
 has in general not much effect 

on the redistribution of the direction of energy propagation. We show that a dramatic effect occurs 
when the embedding material is near-single-negative (both �

r
 and �

r
 approximately real, and the 

real parts of opposite sign). The curving of field lines is in general a sub-wavelength phenomenon. 
For near-single-negative materials, however, this curving extends over large distances from the 
dipole. In particular, the small free-space vortex of a rotating dipole becomes a vortex of enormous 
dimensions when the radiation is emitted into a near-single-negative material.
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1.  Introduction

Electromagnetic energy travels along the field lines of the 
Poynting vector. Far away from the source and any obsta-
cles, these field lines are straight and reminiscent of optical 
rays. Close to the source or any objects, the field lines are 
usually curved, provided that details of the radiation field 
are resolved on a scale of a wavelength and less. We shall 
consider the seemingly simple case of radiation emitted 
by an electric dipole, oscillating with angular frequency 
ω. The dipole moment is given by
 

with d
o
> 0. Vector û is complex, and we shall assume 

that it is normalized as û∗
⋅ û = 1. For û = ez, we have a 

linear dipole, oscillating along the z-axis. The field lines of 
the Poynting vector are straight at all distances from the 
dipole, as shown in Figure 1. For
 

the dipole moment rotates over a circle in the xy plane, and 
the rotation is counterclockwise when viewed from the 

(1)d(t) = d
o
Re(û e−i𝜔 t),

(2)û = −
1
√
2

(ex + iey),

positive z-axis. The field lines swirl around the z-axis, and 
each field line lies on a cone. Figure 2 shows one field line. 
The dimensionless Cartesian coordinates are x̄ = k

o
x, etc. 

with k
o
= �∕c. In this way, a distance of 2π corresponds to 

one free-space optical wavelength. Within about a wave-
length from the dipole, the field lines form a vortex, and 
at larger distances from the source, they level off asymp-
totically to straight lines. We have named this ‘the dipole 
vortex’ [1]. Due to the rotation near the source, a field line 
in the far field is displaced, as compared to a field line that 
would come straight out of the dipole [2], and this has 
been observed experimentally [3]. In its most general state 
of oscillation, vector d(t) traces out an ellipse in a plane 
[4,5]. The field lines still lie on a cone, but the spatial extent 
of the vortex diminishes with increasing eccentricity of the 
ellipse [6]. In the limit where the minor axis shrinks to 
zero, we recover the case of a linear dipole, and the vortex 
disappears (as in Figure 1).

2.  Embedded dipole

We shall assume that the oscillating dipole is located 
at the origin of coordinates and embedded in a linear 
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with E(r) the complex amplitude, and the magnetic field 
B(r, t) is represented similarly. In order to minimize the 
number of parameters, we introduce the dimensionless 
complex amplitudes e(r) and b(r) as

 

 

where
 

The complex amplitudes of the electric and magnetic fields 
are [8]

 

 

Here, q = k
o
r is the dimensionless field point, and q = |q|. 

The unit vector r̂ from the dipole to the field point is the 
same as q̂.

3.  Poynting vector

The time-averaged Poynting vector for electromagnetic 
radiation in a medium is given as [9]
 

The dimensionless Poynting vector �(q) is defined as 
 

so that
 

Expression (11) for �(q) can be worked out explicitly with 
the help of the expressions (7) and (8) for e(q) and b(q), 
respectively. We split off an overall positive factor (which 
does not affect the field lines, since these are only deter-
mined by the direction of the vector field):

 

(4)E(r) = � e(r),

(5)B(r) =
�

c
b(r),

(6)� =
�
r
d
o
k3
o

4��
o

.

(7)

e(q) =

{
û − (r̂ ⋅ û)r̂ + [û − 3(r̂ ⋅ û)r̂]

i

nq

(
1 +

i

nq

)}
einq

q
.

(8)b(q) = n(r̂ × û)

(
1 +

i

nq

)
einq

q
.

(9)S(r) =
1

2�
o

Re

(
1

�
r

E(r)∗ × B(r)

)
.

(10)S(r) =
|� |2

2�
o
c
�(q),

(11)�(q) = Re

(
1

�
r

e (q)∗ × b(q)

)
.

(12)
�(q) =

1

q2
e−2qImn

�
�(q).

homogeneous isotropic material, characterized by the rel-
ative permittivity �

r
 and the relative permeability �

r
. Both 

parameters are complex, in general, with non-negative 
imaginary parts. The index of refraction n is defined as the 
solution of n2 = �

r
�
r
, Imn ≥ 0. For �

r
 and �

r
 both positive 

or both negative, this leaves an ambiguity. By considering 
the limit where the imaginary parts of �

r
 and �

r
 go to zero, 

we find that we should take n as having the same sign as 
�
r
 and �

r
 [7].

When the dipole moment oscillates harmonically with 
angular frequency ω, so do the electric and magnetic 
fields. We write for the electric field

 (3)E(r, t) = Re[E(r)e−i� t],

z

Figure 1. The figure shows the field lines of the Poynting vector 
for radiation emitted by an electric dipole, oscillating along the 
z-axis.

1
2 1

2

2

x
y

z

Figure 2.  The field lines of the Poynting vector for an electric 
dipole moment that rotates in the xy-plane form an optical 
vortex. Shown is one field line. Close to the dipole, the field lines 
wind around the z-axis, and at larger distances, they go over in a 
straight line.
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We then obtain

The vector ��(q) defines a vector field, and electromagnetic 
energy flows along its field lines. A field line through a given 
point 

(
x̄
o
, ȳ

o
, z̄

o

)
 is the solution of dq∕du = �

� with q(u) the 
parametrization of the field line with the dummy variable u. 
The equation dq∕du = �

� would need to be solved numeri-
cally, with 

(
x̄
o
, ȳ

o
, z̄

o

)
 as initial values, except in simple cases 

where a closed form solution can be found [6].

4.  General effects of the embedding medium

When the distance between the dipole and the field point 
is more than several wave lengths, q is large, and we have

 

(13)

�
�(q) = [1 − (r̂ ⋅ û)(r̂ ⋅ û∗)] r̂ Re

[
n

𝜇r

(
1 +

i

nq

)]
(1)

+
||||
1 +

i

nq

||||

2
1

|n|2q
{[1 − 3(r̂ ⋅ û)(r̂ ⋅ û∗)] r̂Im(𝜀

r
)

+ 2Im[𝜀
r
(r̂ ⋅ û∗)û]}. (2)

(14)�
�(q) = [1 − (r̂ ⋅ û)(r̂ ⋅ û∗)] Re

(
n

𝜇
r

)
r̂ + ….

This is the far field, and we see that ��(q) is proportional 
to r̂. Therefore, in the far field, the field lines run radi-
ally outward. Inspection of Equation (13) shows that all 
terms are proportional to r̂, except the one containing 
2Im[𝜀

r
(r̂ ⋅ û∗)û]. Any curving of field lines comes from 

this term, and since it has an overall 1/q factor, this curv-
ing can only occur in the near field.

For a linear dipole, oscillating along the z-axis, we have 
û = ez and 2Im[𝜀

r
(r̂ ⋅ û∗)û] is equal to 2ez cos �Im�

r
. 

Therefore, any curving of the field lines comes from the 
imaginary part of �

r
. The field lines of the Poynting vec-

tor, e.g. ��(q), lie in a plane containing the z-axis. Due 
to 2ez cos �Im�

r
, the vector ��(q) has a part proportional 

to ez, in addition to the remaining part which is propor-
tional to r̂. This makes the field lines bend away from 
the xy-plane. A typical field line diagram is shown in 
Figure  3. The field lines are rotationally symmetric around 
the z-axis, and the picture is reflection symmetric in the  
xy-plane. A more detailed analysis of this phenomenon 
can be found in Ref. [10].

For a circular dipole, vector û is given by Equation (2). 
We now have

 

The imaginary part of �
r
 adds an ez component, just like 

for the linear dipole. As a result, the tight windings shown 
in Figure 2 become thinner, and the cone shape becomes 
more like a funnel shape. A typical field line is shown 
in Figure 4. We also notice that the spatial extent of the 
vortex has diminished. The real part of �

r
 is proportional 

to e
�
. This yields the rotation around the z-axis, and so 

this part is responsible for the appearance of the vortex. 
In Figures 2 and 4, the field lines wind around the z-axis 
with the same orientation as the rotation of the dipole 
moment in the xy-plane. For materials with a negative 
real part of �

r
, the rotation of the field lines is opposite to 

the rotation of the dipole moment [8].

5.  Single-negative materials

The curving of the field lines in Figure 3 and the vor-
tex in Figure 4 are near-field phenomena. In the far field, 
field lines approach a straight line, since ��(q), given by 
Equation (14) is proportional to r̂. The material param-
eters enter through Re (n∕�

r
), and it is easy to show that

The equal sign holds if and only if both �
r
 and �

r
 are 

real, and are of opposite sign. Such materials are called 
single-negative materials. A simple example is a metal 

(15)
2Im[𝜀

r
(r̂ ⋅ û∗)û] = (r̂ − ez cos 𝜃)Im𝜀

r
+ e

𝜙
sin 𝜃Re𝜀

r
.

(16)Re

(
n

�
r

)
≥ 0.
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Figure 3. Shown are field lines of the Poynting vector for a dipole 
oscillating along the z-axis. The parameters of the medium are 
�
r
= 1.7 + 0.06i and �

r
= 1. The upward curving comes from the 

imaginary part of �
r
.
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Figure 4. The graph shows one field line of the Poynting vector 
for a rotating dipole moment. The parameters of the medium are 
�
r
= 2 + 0.1i and �

r
= 1.
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without damping. For these materials, the first term on the 
right-hand side of Equation (14) vanishes, and therefore 
there is no far field. Or, from a different point of view, the 
near field extends to infinity. Expression (13) simplifies to

 

The radial component is
 

since Im[(r̂ ⋅ û∗)(û ⋅ r̂)] = 0. Therefore, there is no 
power outflow in the radial direction, and consequently, 
the emitted power per unit solid angle is dP∕dΩ = 0 for 
any direction and any distance q from the dipole. Field 
lines of the Poynting vector are parametrized as q(u), and 
the curves are the solution of dq∕du = �

�(q). When using 
spherical coordinates (q, θ, ϕ) for the representation of 
points on the field line, we find dq∕du = �

�(q) ⋅ r̂ = 0 for 
the u dependence of q. This implies that q is constant along 
a field line, and therefore, any field line of the Poynting 
vector is a curve on a sphere around the dipole.

For a linear dipole, we take û = ez. Then, 
Im[(r̂ ⋅ û∗)û] = 0  and ��(q) = 0 for all field points. There 
is no power flow anywhere. It can be shown that e(q) is real 
and b(q) is imaginary. This makes e (q)∗ × b(q) imagi-
nary, and since �

r
 is real, we find ��(q) = 0 with Equation 

(11). For a realistic material, �
r
 and �

r
 will contain at least 

a small imaginary part. Figure 5 shows the field lines of 
the Poynting vector for �

r
 = −1.7 + 0.06i and �

r
 = 1. The 

picture has a similar appearance as the field line distri-
bution in Figure 3 for which �

r
 = +1.7 + 0.06i and �

r
 = 1. 

However, the scale differs by a factor of 10. The extent of 
the curving in the near field in Figure 5 is about 10 times 
larger for the case of Figure 3.

For a dipole rotating in the xy-plane, we take û as in 
Equation (2). We then have 2Im[(r̂ ⋅ û∗)û] = e

𝜙
sin 𝜃, and 

the Poynting vector becomes
 

This vector is proportional to e
�
, and therefore, the field 

lines are circles around the z-axis. For �
r
 positive, the 

direction of the field lines is in the same direction as the 
rotation of the dipole (counterclockwise when viewed 
down the positive z-axis). For �

r
 negative, the field lines 

run opposite to the rotation direction of the dipole. In 
general, the sign of Re�

r
 determines the rotation direc-

tion. Figure 6 shows a field line of the Poynting vector 
for �

r
 = −0.8 + 0.1i and �

r
 = 1. As compared to Figure 4, 

for which �
r
 = 2 + 0.1i and �

r
 = 1, the spatial extent of the 

vortex in Figure 6 is huge. For Figure 7, we have �
r
 = 1 and 

(17)�
�(q) =

2𝜀
r

|n|2q

(
1 +

1

|n|q

)2

Im[(r̂ ⋅ û∗)û].

(18)�
�(q) ⋅ r̂ = 0,

(19)�
�(q) =

�
r
sin �

|n|2q

(
1 +

1

|n|q

)2

e
�
.
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Figure 5. The figure shows the field lines of the Poynting vector 
for a dipole oscillating along the z-axis, and embedded in a near-
single-negative material with parameters �

r
  =  −1.7  +  0.06i and 

�
r
 = 1. The extent of the curving is about 10 times larger than in 

Figure 3.
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Figure 6. Shown is a field line of the Poynting vector for a rotating 
dipole, embedded in a medium with �

r
 = −0.8 + 0.1i and �

r
 = 1. 

We notice the thin windings, due to Im�
r
, and the large spatial 

extent, due to the fact that the material is near-single-negative.
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Figure 7. Shown is a field line of the Poynting vector for a rotating 
dipole, embedded in a medium with �

r
 = −0.8 + 0.1i and �

r
 = 1. 

The windings are tight, since Im�
r
= 0, and the vortex is huge, 

since the medium is near-single-negative.
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determines the direction of rotation. The value of �
r
 has 

in general very little effect on the pattern of energy flow. 
A typical field line distribution for a linear dipole is shown 
in Figure 3 and a typical field line for a circular dipole is 
depicted in Figure 4.

The curving of the field lines is a near-field phenome-
non, and the structures shown in Figures 3 and 4 have a 
spatial extent of at most an optical wavelength. Further 
out, in the far field, the field lines approach straight lines. 
An exception to this occurs when the embedding material 
is single-negative. In this case, the dominating term in 
the far field (the right-hand side of Equation (14)) van-
ishes. For near-single-negative materials, the far-field term 
only becomes significant at very large distances from the 
dipole, and therefore, the near-field curving continues up 
to large distances from the dipole. The effect is most dra-
matic for a circular dipole, as shown in Figures 6–8. When 
the material is very-near-single-negative, as in Figure 8, a 
‘giant dipole vortex’ appears.
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�
r
 = −0.8 + 0.1i. As compared to Figure 2, for a dipole in 

free space, we see again that for a near-single-negative 
material, the dimension of the vortex becomes enormous. 
Usually, the value of �

r
 has a negligible effect on the energy 

flow, but the case of a near-single-negative material is an 
exception. For Figure 8, we have �

r
 = −0.8 = 0.01i and 

�
r
  =  1. These parameters are similar to the parameters 

for Figure 6, except that the imaginary part of �
r
 is 10 

times smaller. So, the case of Figure 8 is closer to a per-
fect single-negative material. We see that the windings of 
the field line are much tighter, the funnel shape is more 
pronounced, and the field lines are near circular. Also the 
extent of the vortex is much larger than in Figure 6, and, 
in fact, is much larger than depicted in the figure. This is 
‘the giant dipole vortex’, which is unique to single-negative 
materials.

6.  Conclusions

The pattern of energy flow of radiation emitted by an elec-
tric dipole is strongly affected by the medium into which 
the radiation is emitted. Absorption by the material does 
not only weaken the energy flow, but it also redirects it. An 
imaginary part of �

r
 makes the field lines of the Poynting 

vector bend towards the z-axis. For a linear dipole, the 
z-axis is the oscillation direction of the dipole, and for 
a circular dipole, the z-axis is the axis perpendicular to 
the plane of rotation. For a circular dipole, the field lines 
wind around the z-axis and the sign of the real part of �

r
 

1
2 1

2

2

x
y

z

Figure 8. The figure shows a field line of energy flow for a rotating 
dipole and a very-near-single-negative medium. The parameters 
are �

r
 = −0.8 + 0.01i and �

r
 = 1.
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