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An oscillating magnetic dipole moment emits radiation. We assume that the dipole is embedded in a medium with
relative permittivity εr and relative permeability μr, and we have studied the effects of the surrounding material on
the flow lines of the emitted energy. For a linear dipole moment in free space the flow lines of energy are straight
lines, coming out of the dipole. When located in a medium, these field lines curve toward the dipole axis, due to
the imaginary part of μr. Some field lines end on the dipole axis, giving a nonradiating contribution to the energy
flow. For a rotating dipole moment in free space, each field line of energy flow lies on a cone around the axis
perpendicular to the plane of rotation of the dipole moment. The field line pattern is an optical vortex. When
embedded in a material, the cone shape of the vortex becomes a funnel shape, and the windings are much less
dense than for the pattern in free space. This is again due to the imaginary part of μr. When the real part of μr is
negative, the field lines of the vortex swirl around the dipole axis opposite to the rotation direction of the dipole
moment. For a near-single-negative medium, the spatial extent of the vortex becomes huge. We compare the
results for the magnetic dipole to the case of an embedded electric dipole. © 2016 Optical Society of America
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1. INTRODUCTION

The optical properties of a linear, homogeneous, isotropic
material are represented by the relative permittivity εr and the
relative permeability μr. Both parameters are complex, in gen-
eral, with a nonnegative imaginary part. The index of refraction
n is defined as

n2 � εrμr; Im n ≥ 0: (1)

This leaves an ambiguity if εr and μr are both positive or both
negative. Then we include small positive imaginary parts in
these parameters, and consider the limit where these imaginary
parts approach zero. We then find that n is positive when εr and
μr are both positive (normal dielectric material) and n is neg-
ative when εr and μr are both negative (negative index of re-
fraction material). When a plane wave of light travels through a
medium, the wavelength changes, as compared to propagation
in free space, and this is due to the real part of n. The effect of
the imaginary part of n is damping of the amplitudes of the
electric and magnetic fields in the propagation direction,
and this gives a corresponding damping of the intensity along
the direction of propagation. The disappearing energy is ab-
sorbed by the material. The flow lines of energy are the field
lines of the Poynting vector. For propagation in free space, these
field lines are straight, and they remain straight for propagation
in a material. One could argue that the damping only affects the

magnitude of the Poynting vector, and, since field lines are only
determined by the direction of the Poynting vector, the field
lines should remain unaltered for propagation in a medium.
The damping, due to absorption by the material, diminishes
the intensity along the propagation direction, but it does not
affect the paths of energy flow. For a plane wave, this argument
holds true, but in general the effect of damping is more intri-
cate, as we shall show below.

2. MAGNETIC DIPOLE RADIATION

We consider a magnetic dipole oscillating at angular frequency
ω and located at the origin of coordinates. The dipole moment
is given by

p�t� � Re�pe−iωt�; (2)

with p being the complex amplitude. The dipole is embedded
in a medium with relative permittivity εr and relative per-
meability μr. The emitted electric field is time harmonic,

E�r; t� � Re�E�r�e−iωt �; (3)

with E�r� being the complex amplitude, and a similar repre-
sentation holds for the magnetic field B�r; t�. With a slight
generalization of [1] we obtain,
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with ko � ω∕c and r̂ � r∕r.
In order to simplify the notation, we set p � poû, with

po > 0 and û normalized as û · û� � 1. The overall constant
is abbreviated as

ς � μrnk3opo
4πεoc

: (6)

The dimensionless distance between the dipole and the field
point is indicated by q � kor and the dimensionless fields
e�q� and b�q�, with q � kor are defined as

E�r� � ςe�q�; (7)

B�r� � ς

c
b�q�: (8)

The self field on the right-hand side of Eq. (5) is irrelevant here,
so we set r ≠ 0 from now on. We then obtain

e�q� � �û × q̂�
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Here, q̂ � q∕q � r̂. These dimensionless fields only depend
on the dimensionless position vector q of the field point.

3. POYNTING VECTOR

The time-averaged Poynting vector for electromagnetic radia-
tion in a linear, homogeneous, isotropic material is given by

S�r� � 1

2μo
Re

�
1

μr
E�r�� × B�r�

�
: (11)

For magnetic dipole radiation this can be expressed in terms of
the dimensionless fields as

S�q� � jςj2
2μoc

Re

�
1

μr
e�q�� × b�q�

�
: (12)

We notice that S only depends on the field point r through the
dimensionless position vector q.

With expressions (9) and (10), the right-hand side of
Eq. (12) can be worked out. We split off an overall factor:

S�q� � jςj2
2μoc

1

q2
e−2q Im�n�σ�q�: (13)

This defines the dimensionless vector σ�q�. The positive overall
factor depends on the field point through q. Since field lines of
a vector field only depend on the direction of the vectors, the
vector field σ�q� has the same field lines as the vector field
S�q�. We shall refer to σ�q� as the Poynting vector.

We obtain explicitly

σ�q� � �1 − �û · q̂��û� · q̂��q̂Re
�
n
μr

�
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nq

���
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�2 Im�μr�û� · q̂�û�g: (14)

In terms of the dimensionless coordinate q, a distance of 2π
corresponds to one free-space optical wavelength. The far field
(many wavelengths from the source) is therefore the region
q ≫ 1. Equation (14) then simplifies to

σ�q� ≈ �1 − �û · q̂��û� · q̂��q̂Re
�
n
μr

�
: (15)

The factor 1 − �û · q̂��û� · q̂� is positive (except maybe zero for
a certain direction q̂), and it can be shown that [2]

Re

�
n
μr

�
≥ 0: (16)

The equal sign only holds for εr > 0 and μr < 0, or εr < 0 and
μr > 0. Such materials are called single-negative, and we shall
exclude this case for now. We come back to this interesting case
in Section 6. The Poynting vector σ�q� in the far field is there-
fore approximately a positive (or zero) constant times q̂, and
consequently the field lines are approximately straight, running
outward from the dipole. Conversely, this implies that any
curving of the field lines can only occur in the near field.

Let us now return to the general expression (14). It can be
shown that

Re

�
n
μr

�
1� i

nq

���
≥ 0; (17)

with the equal sign only holding for single-negative materials.
Therefore, the first term on the right-hand side of Eq. (14) is a
positive (or zero) constant times q̂, giving rise to radially out-
ward-running straight field lines. The first term in braces on the
right-hand side of Eq. (14) is also proportional to q̂ (although
the multiplying factor may not be positive), so this term also
gives a radial contribution to the field lines. The second term in
braces, 2 Im�μr�û� · q̂�û�, is not proportional to q̂, and there-
fore any curving of the field lines comes from this term.

It is interesting to notice that the material parameters in the
expressions above only appear through μr and n. There is no
explicit dependence on εr. Equation (14) in [3] gives the ex-
pression for σ�q� for the case of an embedded electric dipole.
The terms in braces are identical, with εr and μr switched. For
an electric dipole, however, there is also an explicit dependence
on μr.

The field lines of the Poynting vector are obtained as fol-
lows. Let q�u� be a parametrization of a field line. Any field
line is the solution of dq�u�∕du � σ�q�u��. We select an initial
point with Cartesian dimensionless coordinates �x̄o; ȳo; z̄o�.
Here, x̄ � kox, and so on. The field line through the selected
point follows from integrating dq�u�∕du � σ�q�u��, with u �
0 corresponding to the initial point. The direction of the field
line is the direction of increasing u. The numerical integration
is done with Mathematica.
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4. LINEAR DIPOLE

When the unit vector û is real, we have p�t� � poû cos�ωt�,
and the dipole moment oscillates along the vector û. This is a
linear dipole. We shall take û � ez , so the dipole moment os-
cillates along the z axis. It is easy to verify that σ�q� is rotation
symmetric around the z axis and reflection symmetric in the xy
plane. We therefore only consider field lines in the yz plane,
with y ≥ 0 and z ≥ 0. We have û · q̂ � cos�θ�. The term
2 Im�μr�û� · q̂�û� becomes 2ez cos�θ�Im�μr�. This term is pro-
portional to ez , whereas all other terms are proportional to q̂.
Moreover, this term is positive, and therefore the field lines
will deviate from the radial direction such that they bend
“up” toward the positive z axis. Furthermore, the term is pro-
portional to Im�μr�, and therefore the curving is entirely due to
the imaginary part of the permeability.

We find explicitly,

σ�q� � sin2�θ�q̂Re
�
n
μr

�
1� i

nq

���

� 1

qjμrj2
����1� i

nq

����
2

f�1 − 3 cos2�θ��q̂

�2ez cos�θ�gIm�μr�: (18)

Interestingly, the entire term in braces is proportional to
Im�μr�. For free space we have εr � μr � n � 1, and the
Poynting vector becomes σ�q� � sin2�θ�q̂. The field line
pattern is shown in Fig. 1. The field lines are straight, coming
out of the dipole. Figure 2 shows the field lines for εr � 2 and
μr � 1.5� 0.8i. The field lines bend up due to Im�μr� ≠ 0.
We see from the figure that near the z axis the field lines end
on the z axis rather than running to infinity. Consider a field
point close to the z axis, so ȳ is small. Equation (18) becomes
approximately

σ�q� ≈ −2ey
ȳ

q2jμrj2
����1� i

nq

����
2

Im�μr�: (19)

We see that the Poynting vector is into the negative y direction,
and therefore every field line hits the z axis under 90°. The
field lines end at the z axis. The z axis is a singular line, and
σ�q� � 0 on the z axis. Energy flowing along field lines that
end at the z axis does not contribute to the radiated power.
Similar behavior was found for an electric dipole [4], where
the bending of the field lines resulted from the imaginary part
of the permittivity. Figure 3 shows a larger view of the same
graph as in Fig. 2. We see that there is a cylindrical subwave-
length region around the z axis that contains the field lines
that end up on the z axis. Field lines outside this region run
to infinity, and they level off to straight lines in the far field.
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Fig. 1. Figure shows the field lines of the Poynting vector for a mag-
netic dipole oscillating along the z axis. The field lines are straight. The
shown density of the field lines has no significance.
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Fig. 2. Field lines for a linear magnetic dipole embedded in a
medium with εr � 2 and μr � 1.5� 0.8i are curved. The bending
toward the z axis is a consequence of the nonzero imaginary part
of μr.
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Fig. 3. Figure shows a larger view of the field line pattern of Fig. 2.
Field lines close to the z axis bend toward the axis, hitting it perpen-
dicularly. Other field lines run to infinity as almost straight lines.
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5. CIRCULAR DIPOLE

When we take vector û as

û � −
1ffiffiffi
2

p �ex � iey�; (20)

then the dipole moment p�t� rotates in the xy plane with an-
gular frequency ω. The rotation direction is counterclockwise
when viewed down the positive z axis. We now have

û · q̂ � −
1ffiffiffi
2

p sin�θ�eiϕ; (21)

and the only term which is not proportional to q̂ becomes

2 Im�μr�û� · q̂�û� � sin�θ��eρ Im�μr� � eϕ Re�μr��: (22)

The unit vectors eρ and eϕ are given by

eρ � ex cos�ϕ� � ey sin�ϕ�; (23)

eϕ � −ex sin�ϕ� � ey cos�ϕ�; (24)

and therefore the right-hand side of Eq. (22) is a vector in the
xy plane. The Poynting vector from Eq. (14) becomes

σ�q� �
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1

2
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q̂Re
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1� i
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� 1
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�
q̂ Im�μr�

� sin�θ��eρ Im�μr� � eϕ Re�μr��
�
…: (25)

The Poynting vector is reflection symmetric in the xy plane, so
we consider z ≥ 0 only.

For a circular magnetic dipole in free space we have

σ�q� �
�
1 −

1

2
sin2�θ�

�
q̂� 1

q

�
1� 1

q2

�
sin�θ�eϕ: (26)

This result is identical to the expression for an electric dipole in
free space [5]. The basis vectors in a spherical coordinate system
are q̂, eθ, and eϕ. Vector σ�q� has no eθ component, and there-
fore θ is constant along a field line. Each field line lies on a cone
around the z axis. The eϕ component is positive, and therefore
the field lines wind around the z axis into the direction of in-
creasing ϕ. This is counterclockwise when viewed down the
positive z axis, and so the rotation direction of the field lines
around the z axis is the same as the rotation direction of the
rotating dipole moment. Figure 4 shows a typical field line.
Within about a wavelength from the location of the dipole,
a field line winds around the z axis, and at a larger distance
it levels off to approximately a straight line. The field line pat-
tern has a vortex structure near the dipole, and the field lines
run off in the radial direction in the far field. For a point on the
positive z axis we have θ � 0, and the Poynting vector becomes
σ�q� � ez . Therefore, the z axis is a field line.

For radiation in a medium, the Poynting vector is given by
Eq. (25). It is easy to see that the z axis is still a field line. Off
the z axis, the Poynting vector has a q̂ component and an eϕ
component. Vector eρ can be expressed as

eρ � q̂ sin�θ� � eθ cos�θ�; (27)

so vector σ�q� also has an eθ component. Therefore θ varies
along a field line. The eθ component equals sin�θ� cos�θ�

Im�μr� multiplied by a positive function of q. For z > 0 this
is positive, provided that Im�μr� ≠ 0. Therefore, θ increases
along a field line, and the cone shape for radiation in free space
becomes a funnel shape. This is shown in Fig. 5. The funnel
shape is due to the imaginary part of μr. For an electric dipole, a
funnel shape appears due to the imaginary part of εr. Another
effect is that with an increasing of Im�μr�, the windings around
the z axis become less dense. This is illustrated in Fig. 6.

The swirling of the field lines around the z axis comes from
the eϕ component of σ�q�. This component is a positive func-
tion of q times Re�μr�. If Re�μr� > 0, as for free space, the
rotation direction is counterclockwise when viewed down the
positive z axis, and this is the same rotation direction as the mag-
netic dipole moment. IfRe�μr� < 0, however, the eϕ component
of σ�q� is negative, and this reverses the rotation direction of the
field lines around the z axis. In this case, the flow of energy
counter-rotates the rotation direction of the dipole moment. For
an electric dipole, the same effects are attributed to Re�εr�.

6. NEAR-SINGLE-NEGATIVE MATERIALS

For a circular dipole we have in the far field,

σ�q� ≈
�
1 −

1

2
sin2�θ�

�
q̂Re

�
n
μr

�
1� i

nq

���
; (28)
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Fig. 4. Shown is a field line of the Poynting vector for a rotating
dipole moment in free space. The field line lies on a cone around the
z axis. Close to the dipole, it winds around the z axis numerous times,
and in the far field it levels off to approximately a straight line.
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Fig. 5. Graph shows a field line of the Poynting vector for material
parameters εr � 1 and μr � 0.8� 0.01i. The cone shape of Fig. 4
becomes a funnel shape due to Im�μr� ≠ 0.
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which is proportional to q̂. Therefore, the field lines run
approximately radially outward, and they are approximately
straight. A single-negative material has a real εr and a real μr,
and they are of opposite sign. From Eq. (1) we see that n2 is
negative, and so n is positive imaginary. The expression in
square brackets in Eq. (28) is pure imaginary, so Re�…� � 0.
We conclude that for a single-negative material the right-hand
side of Eq. (28) vanishes. Apparently, for such materials the
far-field term of the field line pattern is absent. Consequently,
the remaining near-field terms continue to dominate in the far
field. In the near field, the field lines swirl around the z axis,
and therefore we expect this pattern to extend into the far field.
The vortex structure is not of subwavelength scale anymore,
but extends into the far field. This leads to a huge vortex
pattern, when seen on the scale of a wavelength.

A perfect single-negative material does not exist, so we con-
sider near-single-negative materials, which have a small positive
imaginary part in εr, in μr, or in both. Figure 7 shows a field
line of the Poynting vector for εr � −1� 0.1i and μr � 0.8.
The field line lies on a cone, because Im�μr� � 0. As compared

to Fig. 4, we see that the spatial extent of the vortex is very
large. If we make Im�εr� smaller, the size of the vortex increases
even more. Figure 8 shows a field line for εr � 1 and
μr � −0.8� 0.01i. The shape is a funnel; the rotation direc-
tion is reversed, as compared to the rotation direction of the
dipole moment; and the spatial extent of the vortex is immense.
In fact, it is much larger than shown in the figure. Also inter-
esting to see is that the field line flattens out. At some distance
from the dipole, the field line appears to be rotating around the
z axis while remaining approximately in a plane parallel to the
xy plane. In the theoretical limit of a perfect single-negative
material, the field lines are circles around the z axis.

7. CONCLUSIONS

A magnetic dipole is embedded in a medium with relative per-
mittivity εr and relative permeability μr. We have studied the
energy flow patterns of the emitted radiation as it propagates
through the material. For a linear dipole, the field lines of en-
ergy flow bend toward the dipole axis due to the imaginary part
of μr. Field lines close to the axis end at the axis, whereas other
field lines run to infinity. For a circular dipole, the field lines
wind around the axis perpendicular to the plane of rotation in
the near field. In the far field they level off to straight lines. In
free space, each field line lies on a cone. The effect of the imagi-
nary part of μr is that the cone shape becomes a funnel shape,
and the windings are less dense than for the case of free space.
When the real part of μr is negative, the rotation of the field
lines around the axis is opposite to the rotation direction of the
magnetic dipole moment. For a near-single-negative embed-
ding medium, the spatial extent of the optical vortex becomes
enormous.
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Fig. 6. Shown is a field line of the Poynting vector for εr � 1 and
μr � 0.8� 0.1i. The only difference with the parameters for Fig. 5 is
that the imaginary part of μr is 10 times larger. As a result, the windings
are much less tight.
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Fig. 7. Shown is a field line of the Poynting vector for a rotating
dipole. The material parameters are εr � −1� 0.1i and μr � 0.8.
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Fig. 8. Shown is a field line of the Poynting vector for a rotating
dipole. The material parameters are εr � 1 and μr � −0.8� 0.01i.
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