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We consider an oscillating electric dipole, embedded in a uniform medium with relative permittivity e1 and relative per-
meability l1. The dipole is located near an interface with a layer with uniform material parameters e2 and l2, and the
second interface borders a uniform medium with parameters e3 and l3. We have obtained the solutions for the electric
and magnetic fields in the various regions, without any restrictions on the parameters and for any state of oscillation of
the dipole (elliptical, in general). The solution involves a set of auxiliary functions, which are given as integral represen-
tations containing the Fresnel coefficients for plane waves. With this solution, the field lines of energy flow can be
obtained, and we have considered the flow pattern for the simple case of a dipole oscillating perpendicular to the inter-
face. When the material of the layer is optically thicker than the embedding medium of the dipole, energy flows more or
less along straight lines. At an interface, the field lines refract, similar to optical rays. When the layer material is opti-
cally thinner, the energy flow lines curve. A portion of the energy that propagates toward the interface bends away from
it before reaching the interface. Other field lines of energy flow cross the interface, but then return to the area of the
dipole by crossing the interface again. This leads to an oscillation of energy back and forth through the interface. In the
neighborhood of this oscillation, a concentric set of vortex tori appears.

Keywords: dipole radiation; reflection; transmission; Fresnel coefficients; angular spectrum; Poynting vector

1. Introduction

An oscillating electric dipole near an interface was con-
sidered for the first time by Sommerfeld [1], who studied
the propagation of the emitted electromagnetic waves
near the surface of the Earth. Ever since then, a large
number of publications have been devoted to this topic.
The radiation field can most easily be computed by
means of the Green’s function for the configuration or an
angular spectrum representation, and these methods apply
both to a single interface and multiple parallel interfaces
(slabs of material) [2–6]. In such an approach, the electric
and magnetic fields are found as integral representations
involving the Fresnel coefficients. The reflected and
transmitted far fields can then be obtained by asymptotic
expansion, and the radiated power per unit solid angle
can be found in closed form [7]. Interestingly, the total
emitted power is altered by the presence of the interface,
as compared to the emitted power by the same dipole in
free space. When the radiation is electric dipole radiation
emitted during an electronic transition in an atom or mol-
ecule, it implies that the lifetime of the excited state is
influenced by the interaction of the radiation with the
interface. This change in emission rate and lifetime has
been computed for various configurations, and has been
observed experimentally [8–12]. Most notably, the
change in emission rate depends on the distance between

the particle and the interface, assuming this distance is of
the order of a wavelength.

The change in emission rate and power per unit solid
angle are macroscopic effects, observable in the far field.
In near-field optics, the details of the radiation field in the
vicinity of the source are of interest, and this requires an
exact solution to Maxwell’s equations. Radiation patterns
have intricate sub-wavelength structures, including inter-
ference vortices and singularities [13], and the angular
emission pattern of the radiation (which is not the same as
the power per unit solid angle in the far field) is drastically
altered due to the presence of the interface [14]. When
electric dipole radiation passes through an interface into a
thinner medium, some of the energy oscillates back and
forth through the interface [15]. We shall consider the
arrangement shown in Figure 1. An electric dipole, oscil-
lating at angular frequency x, is embedded in a uniform
medium with relative permittivity e1 and relative perme-
ability l1, and is located on the z axis, a distance H from
the xy plane. The planes z ¼ 0 and z ¼ L are interfaces
between media with different e and l, as shown in the
figure. The values of e and l depend on x, and are in gen-
eral complex with a non-negative imaginary part. The
(point-like) oscillating electric dipole has a dipole moment

dðtÞ ¼ doRe½u expð�ixtÞ�; do [ 0; u � u� ¼ 1: (1)
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In its most general state of oscillation, the dipole
moment dðtÞ traces out an ellipse in a plane [16]. For
instance, if we take

u ¼ �ðex þ ieyÞ=
ffiffiffi
2

p
; (2)

then the dipole moment traces out a circle in the xy
plane, and the rotation is counterclockwise when viewed
from the positive z axis. Energy is emitted as a vortex
structure, with the field lines of energy flow spiraling
around the z axis [17,18]. The arrangement in Figure 1
has also been considered in Ref. [19] for u ¼ ez, a verti-
cal dipole, and u ¼ ex, a horizontal dipole. We shall
obtain the solution for arbitrary u, and illustrate the flow
of energy through this system with examples.

2. Electric dipole radiation

When the dipole oscillates with angular frequency x, the
electric and magnetic fields also oscillate with the same
angular frequency. For the electric field at field point r
we write

Eðr; tÞ ¼ Re½EðrÞ expð�ixtÞ�; (3)

with EðrÞ being the complex amplitude, and the mag-
netic field Bðr; tÞ is represented similarly. We shall refer
to EðrÞ as the electric field, rather than Eðr; tÞ. It is con-
venient to split off overall factors as

EðrÞ ¼ 1~EðrÞ; (4)

BðrÞ ¼ 1
c
~BðrÞ; (5)

with

1 ¼ l1k
3
odo

4peo
; (6)

and ko ¼ x=c, the free-space wavenumber. The fre-
quency dependence can be scaled away entirely by
adopting dimensionless variables. We set h ¼ koH for
the distance between the dipole and the interface and
‘ ¼ koL for the layer thickness. The dimensionless posi-
tion vector of the field point r with respect to the loca-
tion of the dipole is then q1 ¼ kor þ hez. For the
radiation emitted by the dipole we have

~EdðrÞ

¼ u� ðq̂1 � uÞq̂1 þ u� 3ðq̂1 � uÞq̂1½ � i

n1q1
1þ i

n1q1

� �� �

� expðin1q1Þ
q1

;

(7)

~BdðrÞ ¼ n1ðq̂1 � uÞ 1þ i

n1q1

� �
expðin1q1Þ

q1
; (8)

with q1 ¼ jq1j and q̂1 ¼ q1=q1. The index of refraction
of medium i is the solution of

n2i ¼ eili; Im ni [ 0; i ¼ 1; 2; 3: (9)

This leaves an ambiguity when ei and li are either both
positive or both negative. In these cases, the solution
should be considered with a limit, where at first small
imaginary parts are included in ei and li. For ei and li
as both positive we should take the root ni [ 0, and for
ei and li as both negative we have ni\0 (negative index
of refraction material).

3. Angular spectrum

With Weyl’s representation of the scalar Green’s func-
tion, the electric dipole field can be represented by an
angular spectrum of plane waves [20]. The representation
depends on whether z[ � H (above the dipole in
Figure 1) or z\� H (below the dipole). The source
field in z[ � H serves as the incident field on the inter-
face, so we shall consider only this case. The angular
spectrum is an integral representation, with the integral
running over the kjj plane. This is a fictitious plane, par-
allel to the xy plane. For a given kjj, a plane wave has
wave vector

k ¼ kjj þ kov1ez: (10)

Its z component, kov1, is determined by the dispersion
relation in medium 1. First, we set

a ¼ kjj=ko; (11)

with kjj being the magnitude of kjj. Then, v1 must be the
solution of

v21 ¼ n21 � a2; Im v1 [ 0: (12)

Figure 1. Shown here is the arrangement we consider. The
electric dipole is located on the negative z axis, a distance H
from the xy plane. The second interface is the plane z ¼ L, and
the three media have relative permittivities ei and relative per-
meabilities li as shown.
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We take the root with Im v1 [ 0 because of causality.
For n21 [ 0 this leaves an ambiguity in the solution, and
we shall assume that an appropriate limit is considered,
just like for the index of refraction. For the common case
of e1 and l1 as both positive, v1 is positive for a\n1
(traveling wave) and positive imaginary for a[ n1 (eva-
nescent wave). For the dipole field we have

~EdðrÞ¼ i

2pk2o

Z
d2kjj

expðihv1Þ
v1

expðik �rÞ u� 1

n21k
2
o

ðu �kÞk
� �

;

(13)

and the magnetic field follows from

BðrÞ ¼ � i

x
r� EðrÞ: (14)

For a given kjj, we set

es ¼ 1

ako
ez � kjj; (15)

ep ¼ 1

n1ko
k � es; (16)

which are unit polarization vectors for s and p waves.
The electric field then becomes

~EdðrÞ ¼ i

2pk2o

X
r

Z
d2kjj

expðihv1Þ
v1

ðu � erÞer expðik � rÞ;

(17)

with r ¼ s; p.

4. Method of solution

The representation (17) of the electric dipole field is a
superposition of plane waves with wave vector k and
polarization r. Each plane wave, with a given kjj and r, is

a solution of Maxwell’s equations in medium 1 for
z[ � H . Such a plane wave reflects at the z ¼ 0 inter-
face, and partially transmits into the layer. This transmit-
ted wave reflects at the z ¼ L interface, and partially
transmits into region 3. The wave vectors for the various
waves are shown in Figure 2. Each wave vector must have
the same kjj as the incident wave, due to the boundary
conditions. The perpendicular components of the wave
vectors are determined by the dispersion relations in the
media and by causality. Each plane wave has the same
polarization r as the incident wave. The complex ampli-
tudes of the waves, relative to the incident wave, are
expressed as Fresnel coefficients, and these will be indi-
cated by Rr, Dar, Dbr, and Tr, in obvious notation. Their
expressions and sign conventions are given in Appendix
1. They depend parametrically on the respective values of
e and l, and the dimensionless layer thickness ‘, and are
functions of the variable a, defined by Equation (11).

The fields in the various regions are in the same
superpositions as the incident waves in Equation (17). In
z\0, region 1, the field is the sum of the dipole field
and the reflected field

~E1ðrÞ ¼ ~EdðrÞ þ ~ErðrÞ; (18)

with ~EdðrÞ given by Equation (7). In region 2, 0\z\L,
we have

~E2ðrÞ ¼ ~EaðrÞ þ ~EbðrÞ; (19)

and in region 3, z[ L, we only have the transmitted field

~E3ðrÞ ¼ ~EtðrÞ: (20)

The same holds for the corresponding magnetic fields.
For instance, the reflected electric field is given by

~ErðrÞ¼ i

2pk2o

X
r

Z
d2kjj

expðihv1Þ
v1

ðu � erÞRrerr expðikr � rÞ:

(21)

The polarization vectors err and the wave vector kr are
defined in Appendix 1. We shall use cylindrical coordi-
nates ðq;/; zÞ for the field point r. The corresponding
basis vectors are

eq ¼ ex cos/þ ey sin/; (22)

e/ ¼ �ex sin/þ ey cos/; (23)

together with ez. In the kjj plane, we adopt polar coordi-
nates as follows. For a given field point r, the vectors eq
and e/ are fixed in the xy plane. In the kjj plane, we take
the ~x and ~y axes along eq and e/, respectively, and
ðkjj; ~/Þ then represent the polar coordinates of kjj with
respect to the ~x and ~y axes in the usual way. So we have

kjj ¼ kjjðeq cos ~/þ e/ sin ~/Þ; (24)

Figure 2. Schematically shown here are the various waves for
the plane-wave solution for the layer problem. Each wave vec-
tor must have the same parallel component, kjj. Their z compo-
nents, however, are determined by the dispersion relations of
the materials and by causality. The waves can be traveling, eva-
nescent, or a combination of both. The arrows indicate the
wave vector when the wave is pure traveling, and the lines
indicate the direction of exponential decay if the wave is pure
evanescent.
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and kjj ¼ ako with Equation (11). The integral over the
kjj plane then becomes

Z
d2kjjð. . .Þ ¼ k2o

Z 1

0
daa

Z 2p

0
d ~/ð. . .Þ: (25)

With r ¼ qeq þ zez and kr ¼ kjj � kov1ez we have
kr � r ¼ qkjj cos ~/� kov1z. We introduce dimensionless
coordinates as �x ¼ kox, �y ¼ koy, �z ¼ koz and �q ¼ koq. In
these coordinates, 2p corresponds to one free-space opti-
cal wavelength. We have kr � r ¼ a�q cos ~/� v1�z, which
depends on the integration variable ~/. The remaining ~/
dependence only enters through the polarization vectors
er and er;r. We find

es ¼ ers ¼ e/ cos ~/� eq sin ~/; (26)

ep ¼ 1

n1
aez � v1eq cos ~/� v1e/ sin ~/

	 

; (27)

erp ¼ 1

n1
ðaez þ v1eq cos ~/þ v1e/ sin ~/Þ: (28)

In the integrand in Equation (21) we have ðu � erÞerr,
with a summation over r, so this leads to a large number
of terms. Each term contains the factor expðia�q cos ~/Þ
and combinations of sin ~/ and cos ~/. The integrals over
~/ can be expressed in terms of Bessel functions. For
instance,Z 1

0
d ~/ expðia �q cos ~/Þsin2 ~/ ¼ p½J0ða�qÞ þ J2ða�qÞ�:

(29)

Then Equation (21) becomes

~ErðrÞ ¼ i

2
ðu � eqÞeq

Z 1

0
da

a
v1

exp½iv1ðh� �zÞ�RsðJ0 þ J2Þ
þmany more terms:

(30)

The argument of each Bessel functions is a�q and Rs is a
function of a. The function v1 also depends on a. Then
we introduce the auxiliary function

Rð1Þ
s ð�q;�zÞ ¼ i

2

Z 1

0
da

a
v1

exp½iv1ðh� �zÞ�RsðJ0 þ J2Þ; (31)

which gives

~ErðrÞ ¼ eqðu � eqÞRð1Þ
s ð�q;�zÞ þmany more terms: (32)

With this method the fields in all regions can be
obtained. The fields can be expressed entirely in terms
of auxiliary functions RðmÞ

r , DðmÞ
kr , and T ðmÞ

r , with r ¼ s; p,
k = a, b, and m = 1, 2, …. These functions depend on
the dimensionless field point coordinates �q and �z, and
parametrically on ‘ and h, and on the respective values
of e and l. They are defined in Appendix 2, and the
expressions for the fields are given in Appendix 3.

5. Traveling and evanescent parts

In this section, we shall consider the common case
where e1 and l1 are both positive, so that n1 is positive.
The angular spectrum representation (17) of the incident
field ~EdðrÞ has a factor 1=v1 in the integrand. We see
from Equation (12) that v1 ¼ 0 for a ¼ n1, and this point
is on the integration axis for the integration over a in the
auxiliary functions in Appendix 2. When e1 and l1 are
not both positive this is not an issue, since the branch
point then has an imaginary part, and is off the integra-
tion axis. As shown in Appendix 2, this factor of 1=v1
cancels for a, b, and t waves, since the corresponding
Fresnel coefficients are proportional to v1. However, for
five of the RðmÞ

r ’s this factor is present, and therefore the
integration runs over the singularity at a ¼ n1. The sin-
gularity is integrable, but it is numerically not attractive
to have such a complication. Fortunately, this singularity
can be removed by a change of variables. To this end,
we split the range of integration in 0\a\n1 and
n1\a\1. In the first range, the incident waves are
traveling, and in the second the incident waves are eva-
nescent. For traveling waves we make the substitution
t ¼ ðn21 � a2Þ1=2, which givesZ n1

0
da

a
v1

ð. . .Þ ¼
Z n1

0
dtð. . .Þ: (33)

For evanescent waves we set t ¼ ða2 � n21Þ1=2, which
yields Z 1

n1

da
a
v1

ð. . .Þ ¼ �i

Z 1

0
dtð. . .Þ: (34)

In the integrations over t, the 1=v1 singularity has disap-
peared.

Figure 3 shows the real and imaginary parts of the
reflection coefficient Rp as a function of a. We notice a

Figure 3. The solid and dashed curves here represent the real
and imaginary parts, respectively, of the Fresnel reflection coef-
ficient for a p-polarized wave as a function of a. The parame-
ters are e1 ¼ 1, l1 ¼ 1, e3 ¼ 4, l3 ¼ 1, and ‘ ¼ 0. The indices
of refraction are n1 ¼ 1 and n2 ¼ 2. Note that the real part has
a sharp peak at the index of refraction a ¼ n1.
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sharp peak in the real part at a ¼ n1, which is the border-
line point between traveling and evanescent waves. When
we transform to t as the independent variable, as in the
previous paragraph, then the functional dependence of Rp

is altered. Figures 4 and 5 show Rp in the traveling and
evanescent regime, respectively, as a function of t. The
point a ¼ n1 transforms to the point t ¼ 0 in both
regimes, and we see that as a function of t, the reflection
coefficient no longer has a sharp peak. The other Fresnel
coefficients have a similar peak at a ¼ n1, and they also
disappear in the transformation. Therefore, it seems
numerically advantageous to split all the integrals.

The splitting of the integrals over a in the auxiliary
functions removes the 1=v1 singularity in five of these
functions. The other functions do not have this singular-
ity, but the splitting smooths the Fresnel coefficients.
The trade-off here is that this doubles the number of
integrals to be computed for each field point.

6. Energy flow lines

Electromagnetic energy flows along the fields lines of
the Poynting vector. The time averaged (over an optical
cycle) Poynting vector is defined as

SiðrÞ ¼ 1

2lo
Re

1

li
EiðrÞ� � BiðrÞ; i ¼ 1; 2; 3; (35)

and here i numbers the three regions. We split off an
overall factor as

SiðrÞ ¼ j1j2
2loc

~SiðrÞ; (36)

which gives

~SiðrÞ ¼ Re
1

li
~EiðrÞ� � ~BiðrÞ; (37)

in terms of the dimensionless field amplitudes. Although
written as a function of r, this vector only depends on
the dimensionless position vector q, corresponding to a
field point with dimensionless coordinates �x, �y, and �z.
Let qðtÞ be a parametrization of a field line through a
given point qo in region i. Then qðtÞ is a solution of

d

dt
qðtÞ ¼ ~SiðqÞ: (38)

This equation requires numerical integration, starting
from the initial point qo.

Field lines of a vector field are determined by the
directions of the vectors at the field points, but not by
their magnitudes. Therefore, ~Si and f ðqÞ~Si, with f ðqÞ as
a positive function of q, have the same field lines. The
electric and magnetic dipole fields, Equations (7) and
(8), respectively, have singularities at the location of the
dipole (q1 ¼ 0), and this may give rise to numerical
problems when integrating Equation (38) in the neigh-
borhood of the dipole. We multiply the electric fields
through by q31 and the magnetic fields by q21. Then the
source fields remain finite at q1 ¼ 0, and this greatly
improves the numerical accuracy.

7. Vertical dipole

The solution for the fields in the various regions is given
in Appendix 3, with the auxiliary functions defined in
Appendix 2. For the most general solution (arbitrary u),
a large number of auxiliary functions must be computed
for each field point, and when we split the integrals into
traveling and evanescent parts, this number doubles. The
numerical integration of Equation (38), after multiplying
through by q31 and q21 for the electric and magnetic fields,
respectively, requires the computation of a large number
of field points for each field line.

In order to illustrate some of the features of the field
line patterns, we consider the simple case of a vertical

Figure 4. Shown here are the real and imaginary parts of the
same reflection coefficient as in Figure 3, for the range
0\a\n1 (traveling waves). Here, the independent variable is
t, rather than a, and we see that the sharp peak in the real part
seen in Figure 3 has disappeared.

Figure 5. Shown here are the real and imaginary parts of the
same reflection coefficient as in Figure 3, for the range a[ n1
(evanescent waves). When seen as a function of t, the sharp
peak in the real part disappears.
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dipole for which u ¼ ez. Then u � eq ¼ 0 and u � e/ ¼ 0,
and many terms vanish. For the dipole fields in Equa-
tions (7) and (8) we have

q̂1 ¼
1

q1
�qeq þ ð�zþ hÞez
� �

; (39)

with

q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q2 þ ð�zþ hÞ2

q
; (40)

in cylindrical coordinates. The reflected fields simplify to

~ErðrÞ ¼ eqR
ð4Þ
p þ ezR

ð3Þ
p ; (41)

~BrðrÞ ¼ e/R
ð7Þ
p : (42)

For the fields in the layer we obtain

~EkðrÞ ¼ eqD
ð4Þ
kp þ ezD

ð3Þ
kp ; (43)

~BkðrÞ ¼ e/D
ð8Þ
kp ; (44)

with k = a, b, and the transmitted fields become

~EtðrÞ ¼ eqT
ð4Þ
p þ ezT

ð3Þ
p ; (45)

~BtðrÞ ¼ e/T
ð8Þ
p : (46)

For a given field point, the electric fields are linear
combinations of eq and ez and the magnetic fields are
proportional to e/. Therefore, the Poynting vector is a
linear combination of eq and ez. We now consider a
plane which contains the z axis. Vectors eq and ez
span this plane, and so the Poynting vector is in this
plane. Consequently, a field line through a point in
this plane lies entirely in the plane. In general, field
lines are three-dimensional curves, but for the case of
a vertical dipole the field lines lie in a two-dimen-
sional plane containing the z axis. Moreover, the sys-
tem is rotation symmetric around the z axis, so
without loss of generality we only need to consider
the yz plane with y[ 0.

Figure 6 shows the flow-line pattern for e1 ¼ 1,
e2 ¼ 4, e3 ¼ 2, l1 ¼ l2 ¼ l3 ¼ 1, ‘ ¼ 3, and h ¼ 2. All
field lines emerge from the dipole as approximately
straight lines. A field line which hits the �z ¼ 0 interface
continues into the layer, and upon entering, its direction
changes. This field line bends toward the normal upon
transmission, reminiscent of the transmission of an opti-
cal ray at such an interface (medium 2 is optically
thicker than medium 1). The change in angle, though,
does not obey Snell’s law, and there is no reflected ray.
At the second interface, all field lines continue into med-
ium 3, and their directions bend away from the normal
upon transmission. This could be expected, since med-
ium 3 is optically thinner than medium 2.

Figure 7 shows a field line pattern for the same case
as in Figure 6, except that e1 ¼ 4 and e2 ¼ 1. At the
�z ¼ ‘ interface, the field lines enter an optically thicker
medium, and bend toward the normal, as expected. The
behavior near the �z ¼ 0 interface, however, is drastically
different than expected. Field lines that approach the
interface near the �z axis continue across the interface,
and then slightly bend away from the normal. Field lines

Figure 6. Shown here is the energy flow pattern for radiation
emitted by a vertical dipole located on the z axis (h = 2). The
dimensionless layer thickness is ‘ ¼ 3 and the two interfaces
are shown as solid lines. The material parameters are e1 ¼ 1,
e2 ¼ 4, e3 ¼ 2, and all l are equal to unity.

Figure 7. Shown here is the energy flow pattern for h ¼ 2,
‘ ¼ 3, e1 ¼ 4, e2 ¼ 1, e3 ¼ 2, and all l are equal to unity. The
dip of the flow lines below the �z ¼ 0 interface near �y ¼ 9 is
shown enlarged in Figure 8.
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that cross the interface more to the right in the figure
continue in medium 2, but then cross the interface again,
returning to medium 1. Thus, the transported energy
oscillates back and forth through the interface, and this
continues indefinitely (outside the figure). Unlike in
Figure 6, where the field lines in medium 1 are approxi-
mately straight, here we see that some field lines that run
into the direction of the interface change direction when
approaching the interface, and then continue downward.

Figure 8 shows an enlargement of a part of Figure 7,
near the area where the field lines first dip below the
interface. An optical vortex appears just above the inter-
face, where the energy continuously swirls around a sin-
gular point, indicated by a little circle. Just above the
vortex is another singular point. A bundle of field lines
that approaches this point from the left splits at the sin-
gularity. Just above and below the singularity, the field
lines run in opposite directions. Since the pattern is rota-
tion symmetric around the z axis, these singular points
are actually points on a singular circle around the z axis,
and the vortex is a torus vortex around the z axis. For
larger values of �y, there is a vortex above every dip of
the field lines that drop below the interface. Thus, there
is a set of concentric vortex tori just above the interface.
At a singularity, the Poynting vector vanishes, and it can
be shown that at the center of a vortex this is due to the
disappearance of the magnetic field [13]. At a singularity
where the field lines split, the Poynting vector is zero
because ~EiðrÞ� � ~BiðrÞ=li is purely imaginary.

8. Conclusions

We have considered the arrangement shown in Figure 1
where an oscillating electric dipole, embedded in material,
is located near a slab of uniform material. We have
obtained the exact solution of Maxwell’s equations for
this configuration, without any restrictions on the material
constants or the state of oscillation of the dipole. This ele-
gant solution, given in Appendix 3, is expressed in a set
of auxiliary functions, defined in Appendix 2. These func-
tions depend on the dimensionless cylindrical coordinates
�q and �z of the field point. The integral representations of
these auxiliary functions contain the Fresnel coefficients
for reflection and transmission of a plane wave, and cylin-
drical Bessel functions which come from the angular inte-
gration in the kjj plane of the angular spectrum solution
for the various fields. The integration variable a is the
dimensionless magnitude of the kjj vector. The integrands
of some of these functions have a singularity at a ¼ n1 (if
n1 [ 0), which is the borderline between traveling and
evanescent waves of the incident field. By splitting these
integrals in traveling and evanescent parts, and making a
change of variables, these singularities disappear. More-
over, sharp peaks in the Fresnel coefficients at a ¼ n1 are
smoothened out by this procedure.

Electromagnetic energy flows along the field lines of
the Poynting vector. With the solutions for the electric
and magnetic fields, this Poynting vector can be con-
structed. We have considered the simplest case of a verti-
cal dipole for which the radiation field is rotation
symmetric around the z axis, and the field lines of the
Poynting vector lie in a plane (rather than being three-
dimensional curves). Typical flow patterns are shown in
Figures 6 and 7. Field lines appear to emerge from the
dipole as nearly straight lines. When the material of the
layer is optically thicker than the embedding medium, as
in Figure 6, the field lines seem to refract at the first
interface, similar to optical rays (although they do not
follow Snell’s law). However, when the material of the
layer is optically thinner than the embedding medium, as
in Figure 7, the field lines in both regions, 1 and 2,
curve considerably. Many field lines that emerge from
the dipole in the upward direction do not reach the inter-
face, but bend downwards after a certain distance. Other
field lines cross the interface, but then return back to
medium 1. Then they bend again, and cross the interface
again. This continues, resulting in a persisting oscillation
of energy around the first interface. Once a field line
crosses the second interface, it continues as approxi-
mately a straight line in medium 3.

Figure 8 shows an enlargement of the flow pattern of
Figure 7, in the neighborhood of where the field lines dip
below the interface. It appears that close to the interface
some of the energy circulates in closed loops around a sin-
gular point. Since the system is rotation symmetric around

Figure 8. Shown here is an enlargement of a part of the flow
pattern of Figure 7. The two white circles denote the singular
points.
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the z axis, this point actually represents a singular circle.
These vortices appear above every point where field lines
dip below the interface, leading to a set of concentric
torus-shaped vortices in the field line pattern. Above each
torus is a singular circle, indicated by a small white circle
in Figure 8. This is necessary since just above and below
this circle the energy flows in opposite directions.
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Appendix 1. Fresnel coefficients
The fields in the various regions (i = 1, 2, 3) are derived from
an angular spectrum representation of the incident field. For
this construction, we need the solution for an incident plane
wave with wave vector k, given by Equation (10), and
polarization r. The various wave vectors are shown in Figure 2.
Due to boundary conditions, all wave vectors must have the
same parallel component kjj. For each wave vector it has to
hold that

kc � kc ¼ n2k2o ; (A1)

where c ¼ r; a; b, or t, and the k vector without a subscript
refers to the incident wave, as in Section 3. The index of
refraction n is taken as that of the medium in which the wave
propagates. Equation (A1) is the dispersion relation for the
wave with wave vector kc. We consider vector kjj as given, and

therefore only the z components of the wave vectors need to be
determined. With Equation (A1) we then have kcz ¼ �kov, and
v for medium i is defined as in Equation (12) for i = 1. From
causality it follows that krz ¼ �kov1 and ktz ¼ kov3. For the a
and b waves we take kaz ¼ kov2 and kbz ¼ �kov2. The polariza-
tion vectors for s polarization are defined by Equation (15),
and these are the same for each wave. For p polarization, we
define these vectors as

ecp ¼ 1

nko
kc � es; (A2)

with n being the index of refraction for the corresponding
medium.

The electric field of the plane wave in z\0 is written as

EðrÞ ¼ Eoe
ikjj �r½er expðiv1�zÞ þ Rrerr expð�iv1�zÞ�; (A3)

which is the sum of the incident field and the reflected field.
Here, we set �z ¼ koz, and Eo is an overall factor. For 0\z\L
we have

EðrÞ ¼ Eoe
ikjj �r Darear expðiv2�zÞ þ Dbrebr exp½iv2ð‘� �zÞ�f g;

(A4)

and for z[ L the field is

EðrÞ ¼ Eoe
ikjj �rTretr exp½iv3ð�z� ‘Þ�: (A5)

The magnetic field in each region follows from Equation (14).
The unknowns in the fields in the various regions are the

Fresnel coefficients Rr, Dar, Dbr, and Tr. The boundary condi-
tions require that eE?, Ejj, B?, and Bjj=l are continuous
across the boundaries z ¼ 0 and z ¼ L. For each polarization,
this gives eight equations for the four unknown Fresnel coeffi-
cient. Upon solving these, we find for s polarization

RsðaÞ ¼ 1

Ks
ðl2v1 � l1v2Þðl3v2 þ l2v3Þ½

þ l2v1 þ l1v2Þðl3v2 � l2v3Þ expð2iv2‘Þð �; (A6)

DasðaÞ ¼ 2

Ks
l2v1ðl3v2 þ l2v3Þ; (A7)

DbsðaÞ ¼ 2

Ks
l2v1ðl3v2 � l2v3Þ expðiv2‘Þ; (A8)

TsðaÞ ¼ 4

Ks
l2l3v1v2 expðiv2‘Þ; (A9)

with

Ks ¼ ðl2v1 þ l1v2Þðl3v2 þ l2v3Þ þ ðl2v1 � l1v2Þðl3v2
� l2v3Þ expð2iv2‘Þ:

(A10)

The a dependence enters through the functions vi. For p polari-
zation we obtain

RpðaÞ ¼ 1

Kp
ðe2v1 � e1v2Þðe3v2 þ e2v3Þ½

þðe2v1 þ e1v2Þðe3v2 � e2v3Þ expð2iv2‘Þ�; ðA11Þ
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DapðaÞ ¼ 2

Kp

n2
n1

e1v1ðe3v2 þ e2v3Þ; (A12)

DbpðaÞ ¼ 2

Kp

n2
n1

e1v1ðe3v2 � e2v3Þ expðiv2‘Þ; (A13)

TpðaÞ ¼ 4

Kp

n3
n1

e1e2v1v2 expðiv2‘Þ; (A14)

with

Kp ¼ ðe2v1 þ e1v2Þðe3v2 þ e2v3Þ
þðe2v1 � e1v2Þðe3v2 � e2v3Þ expð2iv2‘Þ: ðA15Þ

Appendix 2. Auxiliary functions
The electric and magnetic fields are computed with the method
outlined in Section 4, and the result can be expressed in terms
of a set of auxiliary functions. First, we define the associated
functions

rrða;�zÞ ¼ Rr exp½iv1ðh� �zÞ�; (B1)

darða;�zÞ ¼ 1

v1
Dar expðiv1hþ iv2�zÞ; (B2)

dbrða;�zÞ ¼ 1

v1
Dbr exp½iv1hþ iv2ð‘� �zÞ�; (B3)

trða;�zÞ ¼ 1

v1
Tr exp½iv1hþ iv3ð�z� ‘Þ�; (B4)

which contain the Fresnel coefficients from Appendix 1. These
functions depend on the field-point coordinate �z and the integra-
tion variable a. Angular spectra representations have the charac-
teristic 1=v1 singularity, as can be seen from Equation (13).
However, all Fresnel coefficients, except Rs and Rp, are propor-
tional to v1, so in the associated functions this factor cancels.

The auxiliary functions for s-polarized waves are

Rð1Þ
s ð�q;�zÞ ¼ i

2

Z 1

0
daa rs

1

v1
ðJ0 þ J2Þ; (B5)

Rð2Þ
s ð�q;�zÞ ¼ i

2

Z 1

0
daa rs

1

v1
ðJ0 � J2Þ; (B6)

Rð3Þ
s ð�q;�zÞ ¼ i

2

Z 1

0
daa rsðJ0 � J2Þ; (B7)

Rð4Þ
s ð�q;�zÞ ¼ � i

2

Z 1

0
daa rsðJ0 þ J2Þ; (B8)

Rð5Þ
s ð�q;�zÞ ¼ �

Z 1

0
daa rs

a
v1

J1; (B9)

Dð1Þ
as ð�q;�zÞ ¼

i

2

Z 1

0
daa dasðJ0 þ J2Þ; (B10)

Dð2Þ
as ð�q;�zÞ ¼

i

2

Z 1

0
daa dasðJ0 � J2Þ; (B11)

Dð3Þ
as ð�q;�zÞ ¼ � i

2

Z 1

0
daa dasv2ðJ0 � J2Þ; (B12)

Dð4Þ
as ð�q;�zÞ ¼

i

2

Z 1

0
daa dasv2ðJ0 þ J2Þ; (B13)

Dð5Þ
as ð�q;�zÞ ¼ �

Z 1

0
daa dasaJ1; (B14)

Dð1Þ
bs ð�q;�zÞ ¼

i

2

Z 1

0
daa dbsðJ0 þ J2Þ; (B15)

Dð2Þ
bs ð�q;�zÞ ¼

i

2

Z 1

0
daa dbsðJ0 � J2Þ; (B16)

Dð3Þ
bs ð�q;�zÞ ¼

i

2

Z 1

0
daa dbsv2ðJ0 � J2Þ; (B17)

Dð4Þ
bs ð�q;�zÞ ¼ � i

2

Z 1

0
daa dbsv2ðJ0 þ J2Þ; (B18)

Dð5Þ
bs ð�q;�zÞ ¼ �

Z 1

0
daa dbsaJ1; (B19)

T ð1Þ
s ð�q;�zÞ ¼ i

2

Z 1

0
daa tsðJ0 þ J2Þ; (B20)

T ð2Þ
s ð�q;�zÞ ¼ i

2

Z 1

0
daa tsðJ0 � J2Þ; (B21)

T ð3Þ
s ð�q;�zÞ ¼ � i

2

Z 1

0
daa tsv3ðJ0 � J2Þ; (B22)

T ð4Þ
s ð�q;�zÞ ¼ i

2

Z 1

0
daa tsv3ðJ0 þ J2Þ; (B23)

T ð5Þ
s ð�q;�zÞ ¼ �

Z 1

0
daa tsaJ1; (B24)

and for p-polarized waves we have

Rð1Þ
p ð�q;�zÞ ¼ � i

2n21

Z 1

0
daa rpv1ðJ0 � J2Þ; (B25)

Rð2Þ
p ð�q;�zÞ ¼ � i

2n21

Z 1

0
daa rpv1ðJ0 þ J2Þ; (B26)
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Rð3Þ
p ð�q;�zÞ ¼ i

n21

Z 1

0
daa rp

a2

v1
J0; (B27)

Rð4Þ
p ð�q;�zÞ ¼ � 1

n21

Z 1

0
daa rpaJ1; (B28)

Rð5Þ
p ð�q;�zÞ ¼ � i

2

Z 1

0
daa rpðJ0 þ J2Þ; (B29)

Rð6Þ
p ð�q;�zÞ ¼ i

2

Z 1

0
daa rpðJ0 � J2Þ; (B30)

Rð7Þ
p ð�q;�zÞ ¼

Z 1

0
daa rp

a
v1

J1; (B31)

Dð1Þ
ap ð�q;�zÞ ¼

i

2n1n2

Z 1

0
daa dapv1v2ðJ0 � J2Þ; (B32)

Dð2Þ
ap ð�q;�zÞ ¼

i

2n1n2

Z 1

0
daa dapv1v2ðJ0 þ J2Þ; (B33)

Dð3Þ
ap ð�q;�zÞ ¼

i

n1n2

Z 1

0
daa dapa

2J0; (B34)

Dð4Þ
ap ð�q;�zÞ ¼

1

n1n2

Z 1

0
daa dapav2J1; (B35)

Dð5Þ
ap ð�q;�zÞ ¼

1

n1n2

Z 1

0
daa dapav1J1; (B36)

Dð6Þ
ap ð�q;�zÞ ¼ � in2

2n1

Z 1

0
daa dapv1ðJ0 þ J2Þ; (B37)

Dð7Þ
ap ð�q;�zÞ ¼

in2
2n1

Z 1

0
daa dapv1ðJ0 � J2Þ; (B38)

Dð8Þ
ap ð�q;�zÞ ¼

n2
n1

Z 1

0
daa dapaJ1; (B39)

Dð1Þ
bp ð�q;�zÞ ¼ � i

2n1n2

Z 1

0
daa dbpv1v2ðJ0 � J2Þ; (B40)

Dð2Þ
bp ð�q;�zÞ ¼ � i

2n1n2

Z 1

0
daa dbpv1v2ðJ0 þ J2Þ; (B41)

Dð3Þ
bp ð�q;�zÞ ¼

i

n1n2

Z 1

0
daa dbpa

2J0; (B42)

Dð4Þ
bp ð�q;�zÞ ¼ � 1

n1n2

Z 1

0
daa dbpav2J1; (B43)

Dð5Þ
bp ð�q;�zÞ ¼

1

n1n2

Z 1

0
daa dbpav1J1; (B44)

Dð6Þ
bp ð�q;�zÞ ¼ � in2

2n1

Z 1

0
daa dbpv1ðJ0 þ J2Þ; (B45)

Dð7Þ
bp ð�q;�zÞ ¼

in2
2n1

Z 1

0
daa dbpv1ðJ0 � J2Þ; (B46)

Dð8Þ
bp ð�q;�zÞ ¼

n2
n1

Z 1

0
daa dbpaJ1; (B47)

T ð1Þ
p ð�q;�zÞ ¼ i

2n1n3

Z 1

0
daa tpv1v3ðJ0 � J2Þ; (B48)

T ð2Þ
p ð�q;�zÞ ¼ i

2n1n3

Z 1

0
daa tpv1v3ðJ0 þ J2Þ; (B49)

T ð3Þ
p ð�q;�zÞ ¼ i

n1n3

Z 1

0
daa tpa

2J0; (B50)

T ð4Þ
p ð�q;�zÞ ¼ 1

n1n3

Z 1

0
daa tpav3J1; (B51)

T ð5Þ
p ð�q;�zÞ ¼ 1

n1n3

Z 1

0
daa tpav1J1; (B52)

T ð6Þ
p ð�q;�zÞ ¼ � in3

2n1

Z 1

0
daa tpv1ðJ0 þ J2Þ; (B53)

T ð7Þ
p ð�q;�zÞ ¼ in3

2n1

Z 1

0
daa tpv1ðJ0 � J2Þ; (B54)

T ð8Þ
p ð�q;�zÞ ¼ n3

n1

Z 1

0
daa tpaJ1: (B55)

The argument of each Bessel function is a�q. The auxiliary
functions depend on �q through the arguments of the Bessel
functions and on �z through the �z dependence of the associated
functions. All integrands have a factor of a. We could have
simplified the notation by absorbing this a in the associated
functions, but the combination ada is more convenient for
splitting the integrals into traveling and evanescent parts, as
shown in Section 5.

Appendix 3. Electric and magnetic fields
With the method outlined in Section 4, the electric and mag-
netic fields can be obtained. We use cylindrical coordinates
ðq;/; zÞ for the field point r. The corresponding basis vectors
are eq, e/, and ez, and u is the unit vector representing the
state of oscillation of the dipole. We obtain for the reflected
fields

~ErðrÞ ¼ eqðu � eqÞðRð1Þ
s þ Rð1Þ

p Þ þ e/ðu � e/Þ
� ðRð2Þ

s þ Rð2Þ
p Þ þ ezðu � ezÞRð3Þ

p

þ ½eqðu � ezÞ � ezðu � eqÞ�Rð4Þ
p ; ðC1Þ
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~BrðrÞ ¼ eqðu � e/ÞðRð3Þ
s þ Rð5Þ

p Þ þ e/ðu � eqÞðRð4Þ
s þ Rð6Þ

p Þ
þ ezðu � e/ÞRð5Þ

s þ e/ðu � ezÞRð7Þ
p :

(C2)

The fields in the layer are

~EkðrÞ ¼ eqðu � eqÞðDð1Þ
ks þ Dð1Þ

kp Þ þ e/ðu � e/Þ
� ðDð2Þ

ks þ Dð2Þ
kp Þ þ ðu � ezÞðezDð3Þ

kp þ eqD
ð4Þ
kp Þ

þ ezðu � eqÞDð5Þ
kp ;

(C3)

~BkðrÞ ¼ eqðu � e/ÞðDð3Þ
ks þ Dð6Þ

kp Þ þ e/ðu � eqÞ
� ðDð4Þ

ks þ Dð7Þ
kp Þ þ ezðu � e/ÞDð5Þ

ks

þ e/ðu � ezÞDð8Þ
kp ; ðC4Þ

with k = a, b, and the transmitted fields are

~EtðrÞ ¼ eqðu � eqÞðT ð1Þ
s þ T ð1Þ

p Þ þ e/ðu � e/ÞðT ð2Þ
s þ T ð2Þ

p Þ
þ ðu � ezÞðezT ð3Þ

p þ eqT
ð4Þ
p Þ þ ezðu � eqÞT ð5Þ

p ;

(C5)

~BtðrÞ ¼ eqðu � e/ÞðT ð3Þ
s þ T ð6Þ

p Þ þ e/ðu � eqÞðT ð4Þ
s þ T ð7Þ

p Þ
þ ezðu � e/ÞT ð5Þ

s þ e/ðu � ezÞT ð8Þ
p :

(C6)
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