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Transmission of electric dipole radiation through an interface
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We consider the transmission of electric dipole radiation through an interface between two dielectrics,
for the case of a vertical dipole. Energy flows along the field lines of the Poynting vector, and in the
optical near field these field lines are curves (as opposed to optical rays). When the radiation passes
through the interface into a thicker medium, the field lines bend to the normal (as rays do), but the
transmission angle is not related to the angle of incidence. The redirection of the radiation at the interface
is determined by the angle dependence of the transmission coefficient. This near-field redistribution
is responsible for the far-field angular power pattern. When the transmission medium is thinner than
the embedding medium of the dipole, some energy flows back and forth through the interface in an
oscillating fashion. In each area where field lines dip below the interface, an optical vortex appears just
above the interface. The centers of these vortices are concentric singular circles around the dipole axis.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

A light ray incident upon an interface reflects and refracts, with
the angle of reflection equal to the angle of incidence, and the
angle of refraction (transmission) given by Snell’s law. When the
angle of incidence is larger than the critical angle (for reflection at
a thinner medium), there is no transmitted ray (total reflection).
This ray description is valid for incoherent light on a macroscopic
scale. In nano-photonics, where spatial resolution on the scale of
a wavelength is of concern, this simple picture needs to be re-
fined. Rather than viewing light as a bundle of optical rays, we
need to consider the flow lines of electromagnetic energy, which
are the field lines of the Poynting vector. For instance, when a light
beam of finite cross section undergoes total reflection at a thin-
ner medium, the center of the beam shifts parallel to the surface,
which is known as the Goos–Hänchen shift [1]. In addition, an in-
terference vortex in the energy flow lines appears in the thicker
medium, and very close to the interface [2].

Both this shift and vortex are of sub-wavelength dimension, and
are due to the finite cross section of the beam. Fig. 1 shows the
field lines of the Poynting vector for a p-polarized plane wave inci-
dent under 30◦ from vacuum on an interface with a medium with
index of refraction n2 = 2. The scale is normalized with the wave
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number ko in vacuum, so z̄ = koz, etc. Therefore, a distance of 2π
corresponds to an optical wavelength. Snell’s law gives θt = 14.5◦
for the transmission angle, and we see that indeed the field lines
of energy flow emerge from the interface under angle θt. The field
lines are straight, and indistinguishable from optical rays. The field
in z̄ < 0 is a superposition of the incident and the reflected field.
The angle of reflection for an infinite wave is equal to the angle of
incidence, but due to the superposition the interpretation in terms
of optical rays cannot be seen anymore. It appears that the en-
ergy flows to the interface under an angle larger than θi , and the
field lines are wavy. Moreover, all energy flows towards the inter-
face and transmits into the region z̄ > 0, giving the impression that
there is no reflection at all.

We shall consider an oscillating electric dipole, embedded in
a medium with relative permittivity ε1, as shown in Fig. 2. The
dipole is located on the z axis, a distance H below an inter-
face (xy plane) with a medium with relative permittivity ε2. We
shall assume that ε1 and ε2 are positive. The emitted electric
field by the dipole (source) is Es, and Er and Et indicate the re-
flected and transmitted fields, respectively. In the region z̄ < 0,
the superposition of Es and Er gives interference. For a reflect-
ing surface (mirror) this interference gives rise to the appearance
of numerous singularities and vortices [3], and the mechanism of
emission is fundamentally altered [4]. In the present paper we in-
clude transmission into the second medium, as a generalization of
the mirror problem. The assumption that ε1 and ε2 are positive is
non-essential, but is made here for simplicity of presentation.

http://dx.doi.org/10.1016/j.physleta.2014.01.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:hfa1@msstate.edu
mailto:matt.berg@msstate.edu
mailto:Xin.Li@millersville.edu
http://dx.doi.org/10.1016/j.physleta.2014.01.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2014.01.011&domain=pdf


756 H.F. Arnoldus et al. / Physics Letters A 378 (2014) 755–759
Fig. 1. The figure shows the field lines of the Poynting vector for a p-polarized plane
wave incident upon an interface under angle θi = 30◦ . The wave enters from vac-
uum, and the material in z̄ > 0 has index of refraction n2 = 2. The energy in the
transmitted wave flows along straight lines, and into the direction given by Snell’s
law. In the region z̄ < 0 the incident wave interferes with the reflected wave. The
energy approaches the interface along a wavy path, and under an angle larger than
the angle of incidence θi . The reflection coefficient is Rp = 0.28.

Fig. 2. An electric dipole is embedded in a medium with relative permittivity ε1,
and is located a distance H blow an interface with a medium with relative permit-
tivity ε2. The interface is the xy plane, and the positive z axis is taken as up. The
part of the source field Es that travels towards the interface gives rise to reflection
and transmission. Each wave can be traveling or evanescent, which is schematically
represented by an arrow and parallel lines, respectively.

2. Source field

When an electric dipole moment oscillates with angular fre-
quency ω, the dipole moment can be written as d(t) =
do Re[û exp(−iωt)], with do > 0 and û∗ · û = 1. The emitted electric
field is of the form

Es(r, t) = Re
[
Es(r)e−iωt], (1)

with Es(r) the complex amplitude. Other fields have a similar time
dependence. For the source field we have

Es(r) = ς

{
û − (q̂1 · û)q̂1 + [

û − 3(q̂1 · û)q̂1
] i

n1q1

(
1 + i

n1q1

)}

× ein1q1

q1
, (2)

where n1 = √
ε1 is the index of refraction of the embedding

medium and ko = ω/c. The overall constant is
ς = k3
odo

4πεo
. (3)

The position vector of the field point r with respect to the location
of the dipole is r1 = r + Hez . We use the dimensionless position
vector q1 = kor1, with magnitude q1 = |q1|, and the corresponding
unit vector is q̂1 = q1/q1. The complex amplitude of the emitted
magnetic field is

Bs(r) = ς

c
n1(q̂1 × û)

(
1 + i

n1q1

)
ein1q1

q1
. (4)

In order to obtain the reflected and transmitted fields, the
source field is represented by an angular spectrum of plane waves.
With the help of Weyl’s representation of the scalar Green’s func-
tion [5], the electric field amplitude from Eq. (2) can be written
as

Es(r) = iς

2πk2
o

∫
d2k‖

1

v1
eiK·r1

[
û − 1

ε1k2
o
(û · K)K

]
. (5)

The integral runs over the k‖ plane, which is a fictitious plane that
coincides with the xy plane. We adopt polar coordinates (k‖, φ̃)
in this plane, and we set α = k‖/ko. Convenient functions for this
problem are

vi =
√

εi − α2, i = 1,2. (6)

We have vi > 0 for α < ni , and for α > ni this function is posi-
tive imaginary. The wave vector K in this representation is defined
as K = k‖ + ko v1sgn(z̄ + h)ez , with h = ko H as the dimensionless
distance between the dipole and the interface. For α < n1, e.g.,
k‖ < n1ko, the partial wave is traveling and for α > n1 it is evanes-
cent. The complex amplitude of the magnetic source field is

Bs(r) = − iς

2πck3
o

∫
d2k‖

1

v1
eiK·r1 [û × K]. (7)

3. Reflected and transmitted fields

The most attractive feature of the angular spectrum representa-
tion of the source field is that each partial wave (one value of k‖)
is a plane-wave solution of Maxwell’s equations in medium ε1. For
each such partial wave, the reflected and transmitted waves can be
expressed in terms of appropriate Fresnel coefficients, and the re-
flected and transmitted fields then follow by superposition. For a
given k‖ , the fields Es, Er and Et all have the same k‖ , as shown
schematically in Fig. 2.

The simplest case is a dipole oscillating vertically with respect
to the interface, for which û = ez , and in this case all partial waves
of the source field are p-polarized. The system is rotationally sym-
metric around the z axis, and therefore we only need to consider
the fields in the yz plane, with y > 0. The electric fields Es, Er and
Et are in the yz plane, and the magnetic fields are along the x axis.
The Fresnel reflection and transmission coefficients are

Rp(α) = ε2 v1 − ε1 v2

ε2 v1 + ε1 v2
, (8)

Tp(α) = n2

n1

2ε1 v1

ε2 v1 + ε1 v2
, (9)

where the α dependence enters through v1 and v2. The reflected
and transmitted fields are angular spectra, as in Eqs. (5) and (7).
For the integrals over the k‖ plane we use polar coordinates
(k‖ , φ̃). The integrals over angle φ̃ can be expressed in terms of
Bessel functions. We introduce the associated functions rp and tp
as
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rp(α, z̄) = Rpeiv1(h−z̄), (10)

tp(α, z̄) = T ′
pei(v1h+v2 z̄), (11)

with T ′
p = Tp/v1. For the reflected fields we obtain

Er(r) = ς

ε1

∞∫
0

dαα2rp

[
ez

iα

v1
J0 − ey J1

]
, (12)

Br(r) = −ς

c
ex

∞∫
0

dα
α2

v1
rp J1, (13)

and the transmitted fields are

Et(r) = ς

n1n2

∞∫
0

dαα2tp[eziα J0 + ey v2 J1], (14)

Bt(r) = −ς

c
ex

n2

n1

∞∫
0

dαα2tp J1. (15)

The argument of each Bessel functions Jn is α ȳ. Eqs. (12)–(15)
give the reflected and transmitted fields at the field point r, and
they are functions of ȳ and z̄ only. The integrations over α are
done numerically. We have verified that these results agree with
Ref. [6], although the appearance there is quite different.

4. Field lines of the Poynting vector

The complex amplitude of the electric field in z < 0 is E = Es +
Er, and similarly for the magnetic field. In z > 0 we only have the
transmitted field. The time-averaged Poynting vector is defined as

S(r) = 1

2μo
Re

[
E(r)∗ × B(r)

]
. (16)

This defines a vector field, and the field lines of this vector field
are the flow lines of energy. With the expressions above, S(r) can
be found for field points in the yz plane. Vector S(r) is in the
yz plane for all r, and therefore the field lines are 2D curves in
this plane. If we parametrize a field line as r(u), with u a running
variable, then the field lines are solutions of dr/du = S. A field line
through a given point ( ȳo, z̄o) in the ȳ z̄ plane (in dimensionless
variables) can be obtained by numerical integration of dr/du = S
with ( ȳo, z̄o) as initial value.

For a field point on the z axis we have q̂1 = sgn(z̄ + h)ez , and
since û = ez we have q̂1 × û = 0. It then follows from Eq. (4) that
Bs = 0. For the reflected and transmitted fields we have J1(0) = 0
in Eqs. (13) and (15). Therefore, the magnetic field vanishes on the
z axis, and the Poynting vector is zero. The z axis is a singular line
in the flow pattern of energy.

5. Transmission into a thicker medium

When a linear dipole is embedded in an infinite medium with
index of refraction n1, the field lines of the Poynting vector are
straight. Fig. 3 shows the field lines of energy flow for a dipole
in a medium with n1 = 1, and the material in z > 0 has index of
refraction n2 = 2. The dipole is located at h = 2, which is a frac-
tion of a wavelength from the interface. In the region z̄ < 0, the
field lines come out of the dipole, and they are slightly curved.
This curving is a result of interference with the reflected field, and
this is very similar to the wiggling of the field lines in z̄ < 0 in
Fig. 1. The field lines of the transmitted field in z̄ > 0 are nearly
straight and parallel, and they bend to the normal, as compared
to the incident field lines. This could be expected for transmission
Fig. 3. The figure shows the flow lines of energy for a dipole embedded in a medium
with index of refraction n1 = 1, and located near an interface with a medium with
index of refraction n2 = 2. The transmitted flow lines leave the interface approxi-
mately under the critical angle (30◦ for this case), except near the z axis.

into a thicker medium. The parallel flow lines in z̄ > 0 in Fig. 3
are very similar to the flow lines of the transmitted field for a
plane wave (Fig. 1). For a plane wave, all radiation hits the inter-
face under the same angle of incidence, whereas it can be seen
from Fig. 3 that for dipole radiation the angle of incidence of the
Poynting vector varies along the interface. At ȳ = 0, the radiation
is under normal incidence (θi = 90◦), and this angle gets smaller
with increasing ȳ. Nevertheless, the transmission angle θt appears
to be the same along the interface. Clearly, θt is not determined by
the angle of incidence (and the indices of refraction), as in Snell’s
law.

The transmitted field is a superposition of plane waves, as given
by the angular spectrum representation. The weight of each partial
wave is determined by the (reduced) Fresnel coefficient T ′

p. This
Fresnel coefficient is a function of α, which is related to the an-
gle of incidence as α = n1 sin θi . Since the transmitted wave has
the same α, we also have α = n2 sin θt, and this yields Snell’s law.
For n2 > n1 we have θt < θi . The critical angle θc for this case is
the transmission angle corresponding to an angle of incidence of
90◦ . Therefore, sin θc = n1/n2. At this angle of incidence we have
α = n1, and with Eq. (6) this gives v1 = 0. Since v1 appears in the
denominator in Eq. (9), we expect a sharp peak in T ′

p at θt = θc.

Fig. 4 shows |T ′
p|2 as a function of θt for n1 = 1, n2 = 2. We have

θc = 30◦ , and there is indeed a sharp peak at the critical angle.
As a result, the field lines of the transmitted field in Fig. 3 em-
anate from the interface under θt = 30◦ , except very close to the z̄
axis.

The field line pattern in Fig. 3 shows the flow of energy in the
near field. Experimentally, one measures the radiated power per
unit solid angle, dP/dΩ , in the far field. This radiation pattern
can be obtained from the same angular spectra representations as
above by asymptotic expansion [7]. Fig. 5 shows dP/dΩ for the
same system as in Fig. 3. In the transmission region, z > 0, there
is a sharp peak in the power distribution at the critical angle, and
there is almost no radiated power in the region z < 0. Since the
system is rotation symmetric around the z axis, this peak repre-
sents a cone around the z axis. Most radiation appears to travel
over the surface of this cone to the far field. It is clear from Fig. 3
that this is due to the change of direction of the field lines of en-
ergy flow at the interface.
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Fig. 4. Graph of |T ′
p|2 for a p-polarized (solid curve) plane wave as a function of the

transmission angle θt . The indices of refraction are n1 = 1 and n2 = 2. The critical
angle is θt = 30◦ , and |T ′

p|2 has a sharp peak at this angle. For comparison, the

dashed line is |T ′
s|2, the same function for s polarization.

Fig. 5. The figure shows a polar diagram of the radiated power per unit solid angle
for n1 = 1, n2 = 2 and h = 2.

6. Transmission into a thinner medium

Fig. 6 shows the field lines of energy flow for a dipole near an
interface with a thinner medium. The dipole is located at h = 2,
and the indices of refraction are n1 = 2 and n2 = 1. Close to the
dipole, the field lines bend away from the normal when passing
through the interface, just like optical rays. But then, in the thin-
ner medium some field lines curve towards the interface, and cross
the interface again. Once in z < 0, they turn around again, and this
pattern repeats itself. We see that radiation near the interface os-
cillates back and forth through the interface. The far-field intensity
distribution is shown in Fig. 7. There are two interference maxima
in the reflection region, and hardly any radiation ends up in the
transmitted far field.

An enlargement of the region around the first crossing of field
lines with the interface is shown in Fig. 8. Field lines that enter
this area from the left split at the point indicated by the white
circle. Since at this point the direction of the Poynting vector is
undetermined, it must be a singularity where S = 0. Below this
point, some field lines form closed loops. These loops form an op-
Fig. 6. The figure shows the energy flow pattern for n1 = 2, n2 = 1 and h = 2. Near
the interface, the energy oscillates back and forth through the interface.

Fig. 7. Polar diagram of dP/dΩ for n1 = 2, n2 = 1 and h = 2.

Fig. 8. The figure shows an enlargement of a part of Fig. 6. Field lines of energy
flow that have crossed the interface return to the lower medium, and then curve
back up to the upper medium. Above the dip below the interface, an optical vortex
appears.

tical vortex, and there has to be a singular point at the center.
Since the system is rotation symmetric around the z axis, these
loops are cross sections of a torus with the z axis at the center.
The oscillating pattern repeats for large ȳ, and therefore there is a
set of concentric vortex tori around the z axis, and just above the
interface.

7. Location of the vortices

At the center of a vortex is a singularity where S = 0. The
Poynting vector vanishes when E = 0, B = 0 or E∗ × B imaginary.
In the yz plane, E is in the yz plane, B is along the x axis, and
S is in the yz plane. Since E and B are complex amplitudes, they
vanish when their real and imaginary parts are zero at the same
point. Therefore, it is highly unlikely that E = 0, since this would
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Fig. 9. The solid curve represents the solution of Re Bx = 0, and on the dashed
curves we have Im Bx = 0. At an intersection of a solid curve and a dashed curve,
the magnetic field vanishes and the Poynting vector has a singularity. This singular-
ity is at the center of a vortex.

require four functions to vanish simultaneously. We now consider
B = 0. For this to occur we must have Re Bx = 0 and Re B y = 0.
Each equation defines a set of curves in the yz plane, and the
magnetic field vanishes at intersections of these curves. Along the
solid curve in Fig. 9 we have Re Bx = 0, and along the dashed
curves the imaginary part of Bx vanishes. The solid and dashed
curves intersect at one point in the figure, and it is seen that this
is the location of the center of the vortex in Fig. 8. For larger values
of ȳ, the curves in Fig. 9 repeat, and each intersection represents
the center of a vortex. Again, the system is rotation symmetric
around the z axis, so these intersections represent concentric cir-
cles around the z axis.
The singularity indicated by the little circle in Fig. 8 is ap-
parently not due to the vanishing of the magnetic field. At such
singular points, where field lines split, E∗ × B is imaginary.

8. Conclusions

We have considered the radiation emitted by a vertical electric
dipole in the vicinity of an interface with a dielectric, and in partic-
ular the transmission of the radiation through the interface. When
the radiation transmits into a thicker medium, it appears that the
angle of transmission is determined by the Fresnel transmission
coefficient, and not by the angle of incidence (as in ray optics).
After passing through the interface, the radiation travels along (ap-
proximately) straight lines to the far field, and the redirection at
the interface is responsible for the angular power distribution in
the far field. For transmission into a thinner medium, it appears
that some of the energy that passes through the interface keeps on
oscillating back and forth through the interface. Just above a point
where the energy flow lines dips back into the lower medium, an
optical vortex appears. These vortices form a set of concentric tori
around the z axis, and they are located just above the interface in
the thinner medium. At the centers are singular circles, at which
the magnetic field vanishes.
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