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Reflection and transmission of traveling and evanescent waves by a layer of material with a negative
index of refraction (NIM) is studied by means of the Fresnel coefficients. We derive their values in the
“NIM limit”, and we show that this limit is consistent with the exact solution. It is also indicated that
simply substituting the negative values of the relative permittivity and permeability of the NIM material
into the exact solution leads to incorrect results for evanescent waves.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The electromagnetic properties of a material are accounted for
by the (relative) permittivity ε and the (relative) permeability μ,
and both are complex-valued in general, with a positive imaginary
part. The index of refraction n is a solution of n2 = εμ, and we
take the solution with Im n > 0. This leaves an ambiguity when
n2 is positive, and this can only happen when ε and μ are both
positive or both negative. In that case, we consider ε and μ to
have small positive imaginary parts, and we take the limit where
the imaginary parts go to zero. For common dielectrics, ε and μ
are positive, and the index of refraction is n = √

εμ. For certain
metamaterials, ε and μ are in the second quadrant of the complex
plane, and the index of refraction is n = −√

εμ (we shall take the
branch line for square roots just below the negative real axis). In
the limit where both ε and μ are negative, the index of refraction
n is negative.

A negative index of refraction material (NIM) is predicted to
have peculiar properties [1–6]. Although NIM’s are constructed
from sub-wavelength metal structures [7–29], they are transparent
at the frequency under consideration. When a plane wave propa-
gates through the material, the energy flows against the direction
of the wave vector, and this leads to unusual refraction at an inter-
face with a NIM. When a ray refracts into a NIM, it appears at the
opposite side of the surface normal, as compared to refraction into
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a dielectric. Similarly, when a ray exits a layer of NIM, the trans-
mitted ray also appears at the opposite side of the surface normal,
as compared to transmission through a dielectric layer. As a result,
a point-like object at one side of a layer of NIM has a real image at
the other side, provided that the distance between the source and
the interface (H) is less than the thickness (L) of the NIM layer.
When H is larger than L, a virtual image is formed at a location in
between the source and the second interface. Therefore, a layer of
NIM acts as a lens.

This notion was taken a step further by Pendry [30], who
showed that evanescent waves are amplified when passing through
the layer, and they therefore contribute to the image. Evanescent
waves die out over a short distance from the source, and so they
generally do not contribute to the image. This limits image reso-
lution in an optical system to spatial variations of about a wave-
length. Since the evanescent waves are amplified by a layer of NIM,
they will contribute to the image, and this may provide a mecha-
nism for obtaining images with sub-wavelength resolution. Such a
superlens has been studied theoretically and experimentally, with
mixed results [31–35].

It has been realized for a long time that the assumption of
a prefect (theoretical) NIM leads to inconsistencies [36–38]. One
of the problems is that the Fresnel transmission coefficients seem
to grow exponentially with decreasing wavelength of the parallel
component of the incident wave vector. As a result, for H < L, as
in the superlens configuration, the electric and magnetic fields di-
verge in a region around the second interface (over a distance of
L − H at both sides). We shall show in this Letter that this is the
result of an erroneous computation of the Fresnel coefficients. Also,
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Fig. 1. The figure shows the setup considered. A wave can either be traveling or
evanescent. A traveling wave is represented by a wave vector. If the wave is evanes-
cent, it travels in the k‖ direction and it decays in the z direction, as indicated by
the thin lines. The a wave and the b wave in the layer are not shown.

the common notion [30,32,39] that a layer of NIM does not reflect
any radiation appears to be false.

2. Fresnel coefficients for a layer

The electromagnetic field, emitted by a source, can be repre-
sented by an angular spectrum, which is a superposition of travel-
ing and evanescent plane waves. Therefore, transmission of radia-
tion through a layer of NIM is determined by the Fresnel transmis-
sion coefficients (s and p polarization) of these waves. We shall
consider the setup shown in Fig. 1. A layer of material has per-
mittivity ε2 and permeability μ2, and is embedded in an ε1, μ1
medium (both positive). The incident wave has wave vector ki , and
kr and kt are the wave vectors of the reflected and transmitted
waves, respectively. Inside the layer, there are two waves, due to
multiple reflections, and their wave vectors will be indicated by ka

and kb . Due to boundary conditions, all wave vectors must have
the same parallel component k‖ , and we shall assume that this
vector is real. In an angular spectrum, vector k‖ is the integration
variable, so here we consider this vector as given. For its magni-
tude we shall write k‖ = αko, with ko = ω/c and ω the angular
frequency of the radiation. The z component of ki then follows
from the dispersion relation ki · ki = n2

1k2
o, which only leaves the

sign of kz undetermined. From causality it follows that we need to
take ki,z = ko v1, in terms of the dimensionless parameter

v1 =
√

n2
1 − α2. (1)

The variable α, representing the magnitude of k‖ , is in the range
0 � α < ∞. For α < n1, the parameter v1 is real and the incident
wave is traveling. For α > n1, v1 is positive imaginary, and the
incident wave is evanescent. Similar considerations hold for the
other wave vectors. The parameter representing the z components
of the wave vectors in the layer is v2, defined as the solution of

v2
2 = n2

2 − α2, Im v2 > 0. (2)

We shall consider s polarized light, with es = ez × k‖/k‖ . The
complex amplitudes of the electric fields in the three regions are
then

E(r) = Eoeseik‖·r(eiko v1 z + Re−iko v1 z), z < 0, (3)

E(r) = Eoeseik‖·r(Daeiko v2 z + Dbeiko v2(L−z)), 0 < z < L, (4)

E(r) = Eoeseik‖·rT eiko v1 z, z > L, (5)

with Eo an overall amplitude. The corresponding complex ampli-
tudes of the magnetic fields follow from B(r) = (−i/ω)∇ × E(r),
and the Fresnel coefficients are determined by requiring that εE⊥ ,
E‖ , B⊥ and B‖/μ are continuous at z = 0 and at z = L. This yields
R = 1

Λ

[
(μ2 v1)

2 − (μ1 v2)
2](1 − e2iv2�

)
, (6)

Da = 2

Λ
μ2 v1(μ1 v2 + μ2 v1), (7)

Db = 2

Λ
μ2 v1(μ1 v2 − μ2 v1)eiv2�, (8)

T = 4

Λ
μ1μ2 v1 v2eiv2�, (9)

with

Λ = (μ1 v2 + μ2 v1)
2 − (μ1 v2 − μ2 v1)

2e2iv2�, (10)

and here we have set � = koL for the dimensionless layer thickness.
The free parameters are ε1, μ1, ε2, μ2 and �, and we see α

as the variable. Of particular interest is the behavior of the Fres-
nel coefficients for large α. Then we have v1 ≈ v2 ≈ iα, and for
α → ∞ we obtain the limits

Db = T = 0, (11)

Da = 2μ2

μ2 + μ1
, (12)

R = μ2 − μ1

μ2 + μ1
. (13)

When the incident wave is on the border line between travel-
ing and evanescent, we have α = n1, and therefore v1 = 0. Then
Da = Db = T = 0 and R = −1. We see from Eq. (3) that the re-
flected wave extinguishes the incident wave, and we have E(r) = 0
everywhere.

3. Layer of perfect NIM

The expressions from the previous section hold for arbitrary ε2
and μ2. For a perfect NIM we would have ε2 ≡ −ε1, μ2 ≡ −μ1
and n2 ≡ −n1. From Eq. (2) it follows that v2

2 = v2
1. Just like for the

index of refraction n2, we need to consider the solution for v2 as
a limit. It follows easily that for traveling waves we need to take
v2 = −v1, and for evanescent waves we have v2 = v1. We then
find R = 0 and T = exp(−iv1�). For α < n1 we have Da = 1 and
Db = 0, and for α > n1 we find Da = 0 and Db = exp(−iv1�).

Since R = 0 for all α, it seems that a perfect NIM does not
reflect any radiation. However, if we let μ2 → −μ1 in Eq. (13), we
see that on general grounds the value of R becomes very large in
this limit. Similarly, T should vanish for α large (Eq. (11)), whereas
T = exp(−iv1�) diverges as exp(α�). The Fresnel coefficient Db has
the same problem. From the fact that Db and T grow as exp(α�)

for α large, it can be shown that the electric and magnetic fields
diverge in the neighborhood of the z = L interface (both above and
below) when the distance between a source and the interface is
smaller than the layer thickness L. Therefore, if such a perfect NIM
would be constructed, a single radiating atom in its neighborhood
would make it self destruct.

Fig. 2 shows |R| and |T | for ε1 = μ1 = 1, ε2 = −1, μ2 =
−1 + i/5 and � = 2, computed with the exact results of Section 2.
For traveling waves, α < n1, we have |R| ≈ 0 and |T | ≈ 1, as ex-
pected for a layer of NIM. For evanescent waves, however, the
Fresnel reflection coefficient is large. The transmission coefficient
has a peak, just above the index of refraction, and it vanishes for
α large. Apparently, setting ε2 ≡ −ε1 and μ2 ≡ −μ1 in the exact
expressions for the Fresnel coefficients for a layer does not give the
correct results for a layer of NIM.

4. The NIM limit

Expressions (6)–(9) for the Fresnel coefficients of a layer hold
for any ε2 and μ2. However, care should be exercised when
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Fig. 2. Shown are the absolute values of the exact Fresnel reflection and transmis-
sion coefficients for ε1 = μ1 = 1, ε2 = −1, μ2 = −1 + i/5 and � = 2. The index of
refraction n1 separates the traveling and evanescent waves. The reflection coefficient
levels off to a constant for α large, which is indicated by the dashed line.

Fig. 3. Illustration of the various waves for the case of traveling and evanescent
waves. For the traveling case, the energy in the material propagates against the
direction of vector ka .

considering the case of a NIM: ε2 → −ε1, μ2 → −μ1. Just as for
determining the index of refraction, n2 = −n1, we need to consider
this case as a limit. To this end, we set

ε2 = −ε1(1 − δε), Im δε > 0, (14)

μ2 = −μ1(1 − δμ), Im δμ > 0, (15)

and we let δε and δμ be small.
For traveling waves we have v2 = −v1, and we find immedi-

ately

Db = R = 0, (16)

Da = 1, (17)

T = e−iv1�. (18)

In this NIM limit, there is no r and b wave, and the wave vector
of the a wave is ka = k‖ − ko v1ez . Since v1 > 0, this wave vector
is up, as shown in Fig. 3. In a NIM, energy propagates against the
wave vector, so we see from the diagram that indeed a ray refracts
at the opposite side of the surface normal, as compared to a di-
electric, and the same holds when it exits the layer. We also notice
that |T | = 1, so the energy propagates through the layer without
loss.

For evanescent waves, we need to keep δε and δμ finite, al-
though small. The parameter v2 can be written as v2 = v1(1 + x)
with

x = 1

2

n2
1

α2 − n2
1

(δε + δμ). (19)

For α not to close to n1, this is a small parameter. We then obtain
for the Fresnel coefficients

Da = R = − 2

Z
(x + δμ), (20)

Db = T = − 4
eiv1�, (21)
Z

Fig. 4. The graph shows the exact value of |R| (solid curve) and its NIM limit approx-
imation (dashed curve) for ε1 = 4, μ1 = 1, ε2 = −4, μ2 = −1+ δμ , with δμ = 0.01i,
and � = 3. The point α = n1 = 2 separates the traveling and the evanescent waves,
and in the limit δμ → 0 this becomes a discontinuity. The NIM limit R = 0 for
α < n1 is drawn slightly above the axis.

Fig. 5. The graph shows |Da| and its NIM limit for the same parameters as in Fig. 4,
except here we took δμ = 0.03i.

with

Z = (x + δμ)2 − 4e2iv1�. (22)

Interestingly, the Fresnel coefficients for the r and the a waves are
the same, and so are the Fresnel coefficients for the b and the t
waves. The various evanescent waves are shown in Fig. 3.

The α dependence enters through v1 = i
√

α2 − n2
1 and x. For α

large, we have x = 0, and the Fresnel coefficients in the NIM limit
become Da = R = −2/δμ , Db = T = 0. The evanescent waves at
the z = L interface disappear, and the Fresnel coefficients for the a
and the r waves are large. This is in agreement with the general
result (11)–(13) and μ2 → −μ1. Moreover, for α large we have
Db = T ≈ (−4/δ2

μ)exp(−α�), so these functions decay exponen-
tially with α.

Fig. 4 shows the exact value of |R| and its NIM limit of Eq. (20).
For α < n1 we have R = 0 in the NIM limit. The deviation near
α = n1 comes from the fact that δμ is finite (0.01i for the figure).
For α > n1, also the approximation that x is small breaks down
near α = n1. For α → n1 we have R → 0 in the NIM limit, whereas
for δμ finite we have |R| → 1. Figs. 5, 6 and 7 show the exact
values of |Da|, |Db| and |T |, respectively, and their NIM limits. We
notice that the agreement is excellent for α > n1, and moderate for
α < n1. For all cases, the agreement improves with decreasing δμ .
In the limit δμ → 0, the NIM limits of all Fresnel coefficients co-
incide with the exact values, and at α = n1 we have in general a
point of discontinuity.
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Fig. 6. The graph shows |Db | and its NIM limit for the same parameters as in Fig. 4,
but with δμ = 0.2i.

Fig. 7. The graph shows |T | and its NIM limit for the same parameters as in Fig. 4,
but with δμ = 0.1i. For traveling waves, α < 2, the approximation is not very good
due to the relative large value of δμ . For smaller δμ , the solid curve quickly ap-
proaches the dashed curve for α < 2, and for α > 2 the dashed and solid curves
become indistinguishable.

5. Conclusions

Radiation emitted by a source can be represented by an angular
spectrum. When this radiation is emitted near a layer of material,
as in Fig. 1, then each partial wave can be considered separately,
and reflection and transmission of radiation is determined by the
Fresnel coefficients for plane waves. The variable in this represen-
tation is α = k‖/ko, and the partial wave is traveling for α < n1 and
evanescent for α > n1, with n1 the index of refraction surround-
ing the source. Exact expressions for these Fresnel coefficients are
given by Eqs. (6)–(9), for s polarization.

For a negative index of refraction material we would ideally
have ε2 = −ε1 and μ2 = −μ1. When we substitute these values
into Eqs. (6) and (9) we find R = 0 and T = exp(−iv1�). For trav-
eling waves, this is correct, but for evanescent waves this leads
to inconsistencies, as can be seen from Fig. 2. The solution R = 0
would imply that evanescent waves do not reflect, whereas from
the exact solution we see that the reflection is large. The transmis-
sion coefficient T would grow exponentially with α, but we see
from the figure that it vanishes for α large. For evanescent waves
we need to consider the limit ε2 → −ε1 and μ2 → −μ1. In this
NIM limit, the Fresnel coefficients are given by Eqs. (20) and (21).
It is illustrated in Figs. 4–7 that this NIM limit agrees with the
exact solution, except for α ≈ n1 where we have a singularity. Fi-
nally, for p polarization, the NIM limits of the Fresnel coefficients
are identical in form as for the s polarization considered here. We
simply have to switch the values of δμ and δε .
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