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The energy flow pattern of the radiation emitted by an oscillating electric dipole near a mirror has a
complicated structure, including numerous singularities and vortices. We consider the flow lines of
energy in the plane through the surface normal and the oscillation direction of the dipole. It is shown
that the vortices are due to the vanishing of the magnetic field at their centers. The locations of the
vortices have the appearance of beads on strings, and there are four such strings. The rotation direction
of the energy flow for each vortex on a given string is the same. There are two strings with clockwise
rotation and two strings with counterclockwise rotation. Field lines of energy flow either start or end at
the center of a vortex. For a given string, field lines end at each vortex or field lines start at each vortex.
There are two strings on which field lines end at the centers of the vortices, and there are two strings on
which field lines start inside the vortices.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The first prediction of an optical vortex was made by Wolter in
1950 [1]. He considered the reflection of a finite width light beam
by an interface, and he showed that close to the interface a vortex
should appear. At the center of this vortex is a singularity, where
the direction of energy flow becomes undefined, and near the
vortex the electromagnetic energy swirls around the singularity.
Shortly afterward, Braunbek and Laukien [2] considered a half-
infinite conducting sheet (the Sommerfeld half-plane), illuminated
by a monochromatic plane wave under normal incidence. They
found numerically that an optical vortex in the field lines of energy
flow should appear at the illuminated side of the half-plane,
somewhere near the edge. Singularities and vortices are sub-
wavelength phenomena. In macroscopic optics (with incoherent
sources), light appears to propagate along straight lines, which are
the optical rays. On a sub-wavelength scale, however, light does
not necessarily travel along straight lines. Energy flows along the
field lines of the Poynting vector, and these field lines are in
general curves. When light diffracts around an edge or scatters off
a nanoscale object, the field line pattern of energy flow can have a
very intricate structure in the vicinity of the object.

Singular optics originally focused on wavefront dislocations
[3,4]. The most interesting type of singularity is a singularity at the
center of an optical vortex in the energy flow pattern, and these
Poynting vector vortices have been studied extensively [5-10].
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Vortices around singular points have been predicted in the field
diffracted through a sub-wavelength slit in a screen [11,12], in
interference patterns between three plane waves [13] and in the
focal plane of a lens [14-17]. By far the most studied optical
vortices are the vortices in the field of a Laguerre-Gaussian laser
beam [18-21]. Also, optical vortices, loops and knots can be
generated in the laboratory by means of interference of light
beams [22], and the existence of vortices can be experimentally
verified with interference techniques [23-26]. A vortex of a
different nature appears when there is some sort of rotation in
the source. When an atom decays spontaneously in a Am= +1
electronic transition, the induced dipole moment rotates. As a
result, the light is emitted in a vortex structure [27-31], with the
field lines winding around an axis which is perpendicular to the
circle that is traced out by the rotating dipole moment. Radiation
emitted by higher-order multipoles has a similar vortex structure
[32]. Also, when a small particle is irradiated by a circularly
polarized laser beam, it emits radiation in a vortex pattern, and
this has been observed experimentally by a measurement in the
far field [33].

2. Electric dipole near a mirror

We consider an electric dipole, located on the z axis, and a
distance H above the xy plane. The region z<0 is a perfect
conductor, so the xy plane is the surface of a mirror. The dipole
oscillates harmonically with angular frequency w, so the electric
dipole moment is

d(t) = doecos(wt). (1)
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Fig. 1. The figure shows the setup of the electric dipole near a mirror, and the
location and oscillation direction of the image dipole.

Here, d, is the amplitude of the oscillation and e is a unit vector.
We take ¢ in the yz plane, and under an angle y with the z axis, so
that

€=e,siny + e,Cos y. 2)

The setup is shown in Fig. 1. The oscillating dipole emits radiation,
which is reflected by the surface of the mirror. The reflected field is
identical to the field emitted by an image dipole, located on the z
axis, and a distance H below the mirror. The dipole moment of the
image dipole is [34]

d(t)™ = dye™cos(wt), 3)
with
™ — _e,sin y 4 e,cos 7. 4)

3. Electric and magnetic fields

Since the dipole oscillates with angular frequency », so does
the electric field and the magnetic field. The electric field can be
written as

E(r, t) = Re[E(r)e~!], (5)
with E(r) the complex amplitude. We then have

E(r) = E(r); + E(r),, (6)
with E(r); the field emitted by the dipole (source), and E(r), the
reflected field, which equals the field by the image dipole. Similar
relations hold for the magnetic field B(r). Vector r represents the
field point where we wish to compute the fields. It is convenient to
introduce a vector r;, as shown in Fig. 1, which represents the

same field point, but with respect to the location of the dipole. So
we have

r; =r—He,. (7)
We shall use the wave number k,=w/c to go to dimensionless
coordinates, so we set X = koX, ¥ = koy and Z = k,z. On this scale, a

distance of 2z corresponds to one optical wavelength. Similarly,
we set q;=Kkor;, and the magnitude of this vector is

41 =\/¥* +¥* + @-hy?, ®)

with h=k,H. The field point with respect to the image dipole is
r, =r + He,, 9)

and with qy=k.r, we have

G =\ +¥* +@+h? (10)

for the dimensionless distance between the image dipole and the
field point.

The complex amplitudes of the electric and magnetic fields of
an oscillating electric dipole are well known [35]. The complex
amplitude of the electric field of the dipole is
dok?

e b0+ Te=3(e - Fi] (14 L) Leia
dred {s (e T1)F1 + [e=3(e - T)F4 ] 0 (1 + )}e 1

E(r), =
(T)s @

1)

with £; =r;/r; the unit vector from the dipole to the field point.
This is the same as ©; =q;/q,. The magnetic field complex
amplitude is

B(r); =

dok? . i\ g
4reqCq, * .€)<1 +E>e B 12
The complex amplitudes of the electric and magnetic fields of the
image dipole are the same in form. We substitute £™, g, and
I, =r/1; for e, q; and 1y, respectively, in Egs. (11) and (12).

4. Poynting vector

At a field point r, electromagnetic energy flows into the
direction of the Poynting vector S. For a time-harmonic field we
consider the time-averaged Poynting vector, in which terms that
oscillate at twice the optical frequency are discarded. These terms
average to zero on a time scale of an optical cycle. This time-
averaged Poynting vector is

S(r)= %Re [E(r) x B(r)*]. (13)
Ho

With the above expressions for the complex amplitudes of the
electric and magnetic fields, this vector S(r) can be computed, but
the result is cumbersome [36]. Electromagnetic radiation flows
along the field lines of the vector field S(r). Let r(u) be a point on a
field line, and here u is a variable which parametrizes the field line.
Then a field line is the solution of

dr

3 =S, (14)

with f{r) a non-negative function of r. We can choose this function
arbitrarily, since field lines are determined by the direction of S(r),
and not by its magnitude. This function can be chosen such as to
optimize the step size in numerical integration. Eq. (14) deter-
mines the field line that goes through an initial point (x,,y0.2,). The
field lines in the figures in this paper are obtained by numerically
solving Eq. (14). We use, of course, the dimensionless representa-
tion q(u)=kor(u) for the figures.

5. Field lines in the yz plane

Vectors € and £™ are in the yz plane. When the field point r is in
the yz plane, then so are £; and f», and therefore E(r) is in the yz
plane, B(r) is along the x axis and the Poynting vector is in the yz
plane. Consequently, a field line through a point in the yz plane lies
entirely in the yz plane, whereas in general a field line is a three
dimensional curve. We shall consider field lines in the yz plane.
The field line pattern for h=2r and y=x/4 is shown in Fig. 2. There
appears to be a rich structure in the flow lines for the region
shown in the figure. To the right of the dipole and above the dipole
the field lines are more or less smooth, so these regions are not
included in the figure. Two large vortices, labeled a and b, can be
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Fig. 2. The figure shows field lines of the Poynting vector for h=2z and the dipole
oscillating under 45° with the z axis (y=xz/4). There are many singularities and
three vortices in this flow pattern.
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Fig. 3. Shown are field lines of the Poynting vector for h=8z and y=x/4. The bold
field lines start or end at a vortex.

seen, and a very small vortex, labeled c, is present near the
location of the dipole. Near vortex a, the field lines swirl around
the singularity at its center in the counterclockwise direction,
whereas for vortices b and c the rotation is clockwise. At vortex a,
field lines come out of the center of the vortex, whereas at vortices
b and c the field lines end at the centers of the vortices.
Interestingly, some field lines start at the center of vortex a and
end at the center of vortex b. Energy flowing along these field lines
does not seem to originate from the location of the dipole, but it
appears as if vortex a is the source of the energy. This is somewhat
misleading, since the divergence of S is zero. The vector field S
does not have a source other than the dipole, and it does not have
sinks. The energy that seemingly comes out of the center of vortex
a comes from field lines off the yz plane, running toward the
vortex. Similarly, energy flowing along field lines that end at
vortices b and c flows away off the yz plane.

Many singularities of a different type can be seen in the figure.
For instance, near point e the field lines run into different
directions and this can only happen in the neighborhood of a
singular point. Singularity d is of particular interest, as we shall see
below. In Fig. 2, it seems that the field lines jump over this point. It
can be shown that this point is a point on a singular circle in the xy
plane [36,37].

Fig. 3 shows the energy flow pattern for h=8z and y==x/4. The
bold field lines start or end at a vortex. There appears to be a row
of vortices on the left where all field lines rotate counterclockwise
around the singularity at the center and the field lines start at the
singularity. Fig. 4 shows an enlargement of one of these vortices.
Below the vortex, field lines split, and therefore there must be a

Fig. 4. The figure shows an enlargement of one of the vortices on the left in Fig. 3.
The white circle is a singularity.
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Fig. 5. The figure shows an enlargement of one of the vortices on the right in Fig. 3,
and the white circle is a singularity.

singularity in this neighborhood. This point is indicated with a
white circle. Near the vortices on the right, the field lines swirl
around the singularity in a clockwise direction and the field lines
end at the singularity. An enlargement of one of these vortices is
shown in Fig. 5.

6. Location of the vortices

At a singularity, the Poynting vector vanishes. This can be either
a result of E(r)=0 or B(r)=0 or E(r) x B(r)* imaginary. At the vor-
tices a, b and c in Fig. 2, and at point d, we have B(r)=0, as we
have determined numerically. At the other singularities we have
E(r) x B(r)* imaginary. The location of the vortices in Fig. 2 seems
somewhat arbitrary, but in Fig. 3 a pattern seems to emerge. We
now show that the vortices in Fig. 3 are a result of the magnetic
field vanishing at the singularities at the centers of these vortices.
The magnetic field at the field point r is

3 iq, : iq i .
Br)— Loko {L (1 +i>f1 x s+eq—2 (1 +qi>f2 x e""}, (15)

4reoC | G4 aq 2 2

with g; and g, given by Egs. (8) and (10), respectively. Vectors &
and ¢™ are given by Eqs. (2) and (4), respectively, and for a field
point in the yz plane we have X = 0. The magnetic field only has an
x component in the yz plane, and working out the right-hand side
of Eq. (15) yields

dok> [ el o _ .
By(r) = p— E(fh + i) [ycos y + (h-2)siny]
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iq;
+ eq—3(q2 +1)[ycos y + (h + Z)sin y] } (16)
2

Since the right-hand side of Eq. (16) is complex, the magnetic field
vanishes when the real and the imaginary parts vanish simulta-
neously. For ReBy(r) = 0 this gives

qlcoscz;ﬂ [ycos y + (h-Z)siny]
1

€0Sq,—Sin
+Qz a2 q>

e [ycosy + (h+Z)siny] =0, 17)
2

and for ImBy(r) = 0 we have

gising, + Cosq,
af
n qpsing, ;F €osq,
a3
Given h and y, Eq. (17) defines a set of curves in the yz plane,
and so does Eq. (18). At intersections of these curves, the magnetic
field vanishes, and we have a singularity. The solid curves in Fig. 6
are the solutions of Eq. (17) and the dashed curves are the
solutions of Eq. (18), and the parameters are the same as for
Fig. 3. The intersections are highlighted with black dots, and we
see indeed that these dots correspond to the locations of the
vortices in Fig. 3. The two rows of vortices in Fig. 6 appear as beads
on a string, and we shall call these the “vortex strings”. The row on
the left will be indicated as the A string and the row on the right as
the B string.
Egs. (17) and (18) are solved numerically. However, we can see
one solution immediately

S:y=-htany , z=0. (19)

[ycos y + (h-Z)sin y]

[ycosy + (h+Z)siny] =0. (18)

This is point S at the surface of the mirror in Figs. 3 and 6, and this
is point d in Fig. 2. At this point, the magnetic field vanishes, but
there is no vortex. We see from Fig. 6 that it is the endpoint of the
A string. So, the A string runs from the dipole to point S, and the B
string is in between the A string and the z axis. For a vertical dipole
(y=0), point S is at the origin of coordinates, and both strings
coincide with the z axis. It follows from symmetry considerations
that in this case there are no vortices on the z axis. Or, the spatial
dimension of the vortices shrinks to zero in this limit. The location
of point S has a simple geometrical construction, as shown in
Fig. 7.

[/ 1il7/,7
.
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Fig. 6. The solid curves are the solutions of ReBy(r) = 0 and the dashed curves are
the solutions of ImBy(r) = 0. The intersections are shown as black dots, and these
points are the locations of vortices. The parameters for the figure are h=8z and
y=x/4. Point S is located at y =-htany=-25.1, and there are 15 vortices in the
figure for these parameters.

S hElTl v

Fig. 7. The figure illustrates the construction to find point S on the surface of the
mirror. The dipole oscillates along vector e. When we extend this line of oscillation,
it intersects the mirror at point S.
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Fig. 8. The solid curve is the solution of Eq. (21) and the dashed curves are the
solutions of Eq. (22), for h=8r and y=~x/4. Vortices are located at the intersections,
and these points are indicated by black dots.

7. Vortex strings

Vortices appear when B,(r)=0, with B,(r) given by Eq. (16).
Rather than considering the real and imaginary parts of this
equation, we first multiply by q3(q;-i)exp(-iq,). This gives

(@1=D)(G + ) [ycos y + (h + Dsin y] ==
3
+ <g_2> (q} + 1)[ycos y + (h-Z)sin y] =0. (20)
1

The left-hand side is complex. Setting the real and imaginary parts
equal to zero gives

[(@192 + 1)cos(@2—q1) + (G2—q1)Sin(@r—q1)] [ycos y + (h + Z)sin y]

3
+ <Z—2> @ +1 [ycos y + (h-Z)siny] =0, 21)
1
and
(4192 + Dsin(qz—q1) = (q2—41)c0s(q>~q1), (22)
respectively.

Egs. (21) and (22) define two sets of curves, and the intersections
indicate the locations of the vortices. There is a great advantage in
using Eqgs. (21) and (22) instead of Egs. (17) and (18). The solid curve
in Fig. 8 is the solution of Eq. (21) for h=8x and y=x/4, and the set of
dashed curves are the solutions of Eq. (22). As compared to Fig. 6, for
which we have the same parameters, it is now much more clear
where the vortices appear. Eq. (22) is independent of the orientation
y of the dipole. So, when we vary y, then the solid curve in Fig. 8
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changes with it, but the dashed curves remain the same. At the
location of the dipole, we have y =0,z = h, g; =0 and g,=2h. We see
that this is a solution of Eq. (21), so the solid curve goes through the
dipole. From Eq. (22) we see the solution g, =4, and this is the y axis.
When we set gx=q; in Eq. (21), we find ¥ = —htany, and this is point
S. Therefore, the solid curve in the figure runs from the dipole to
point S on the mirror.

The intersections between the solid curve and the dashed
curves in Fig. 8 are the locations of the vortices. The intersections
at the left side of the solid curve form the A string, and a vortex on
this string has the appearance as in Fig. 4. The intersections on the
right lie on the B string, and a typical vortex is shown in Fig. 5. We
notice from Fig. 8 that the solid curve runs through the dipole and
continues into the region z > h. Fig. 9 shows a larger view, and we
see that far away from the dipole there are also intersections
between the solid curve and the dashed curves. These intersec-
tions also correspond to vortices in the energy flow pattern, and
we shall call this series of vortices the C string. For vortices on the
C string, field lines end at the vortex, and the field lines wind
around the singular point in the counterclockwise direction.

Fig. 10 shows the location of the vortices for h=4x and y=60°.
Point S is located at y =-htan y =-21.7. Here, y is larger than in
Fig. 9, and we see that the vortices on the C string come closer to
the location of the dipole. There are three vortices on the A string,
four on the B string, and four on the C string. Fig. 11 shows the
energy flow pattern for the same parameters as in Fig. 10.

When we increase y, with h fixed, point S moves to the left, and for
y—90° this point drifts off to infinity. For y=90°, the figure should be
symmetric between left and right, so then the C string is the reflection
in the z axis of the B string. Fig. 12 shows the vortex strings for y=90°
and h=30z. We notice that, although point S moves to infinity, the A
string is still present. Its reflection in the z axis is a series of vortices on
the right, and we shall call this the D string. Near these vortices, the
field lines rotate clockwise, and they start at the singularity at the
center. For smaller values of h, the B and the C strings come relatively
closer to the z axis, and vortices on the A and the D strings move
further away from the dipole.

Fig. 9. The figure shows a larger view of the picture in Fig. 8. We see that the solid
curve intersects the dashed curves at large distances from the dipole. The
corresponding vortices form the C string.

-30 S -15 0 15 30

Fig. 10. For this figure we have h=4x and y=x/3. We see that the vortices to the
right of the z axis are closer to the dipole than in Fig. 9, which is due to the fact that
y is larger.

-30 -20 -10 0 10 20 30
Fig. 11. The figure shows the field line pattern of energy flow for h=4z and y=z/3,
and these parameters are the same as for Fig. 10. Vortices b, c and d lie on the A
string and vortices e, fand g are on the B string. Vortex a is very close to the dipole,

and we see from Fig. 10 that we should assign this vortex to the B string. The
vortices h, i, j and k on the right are on the C string.
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Fig. 12. The figure shows the location of the vortices for y=z/2 and h=30z. There
are four vortex strings, labeled A, B, C and D.

The vortices in the energy flow of radiation emitted by an
electric dipole near a mirror lie on four strings. When the dipole
oscillates parallel to the mirror surface (y=90°), we have the
situation as shown in Fig. 12. The flow pattern is reflection
symmetric with respect to the z axis, and there are two strings
at each side of the z axis. For smaller y, the A string moves down,
and ends at point S on the mirror surface. Since the B string is in
between the A string and the z axis, this string moves closer to the
z axis. The C and the D strings move upward, and the D string
moves out of the picture quickly, as can be seen in Figs. 9 and 10.
For even smaller y, the vortices on the C string are far away from
the dipole, and move out of the picture. Then only the vortices on
the A and B strings remain near the dipole, and the situation is as
in Fig. 8. For y— 0, point S moves to y = 0, and both the A and the B
strings coincide with the z axis below the dipole.

8. Distance between vortices on a string

Fig. 12 shows that the vortices along the B and the C strings are
approximately equally spaced. From Fig. 8 we observe that the
vortices along the A string are spaced by about the same distance
as the vortices along the B string for the value of y used for the
figure. When a string extends to the region above the dipole, as for
A and D in Fig. 12, and for C in Fig. 9, the separation between the
vortices along a string is considerably larger. We shall consider the
separation of vortices along a string in the region below the dipole,
and make an approximation for this distance. Vortices are located
on the intersections of the solid and dashed curves in the figures.
When we follow a solid curve, as for instance in Fig. 8, the vortices
along the solid curve alternate between the A and the B strings.
The dashed curves are more or less equally spaced, and therefore
the distance between vortices along a string is about twice the
separation of the dashed curves. To find the separation between
the dashed curves, we consider their intersections with the Z axis.
The dashed curves are the solutions of Eq. (22), with g; and ¢,
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tan(24)

-1

Fig. 13. The intersections between the solid curve and the dashed curves corre-
spond to a solution of Eq. (22) on the Z axis.

given by Eqgs. (8) and (10), respectively. In the yz plane we have
X =0, and on the z axis we have y =0. So we have

h-z , 0<z<h 23
N"=\z-h , z=h - @3
G, =Z+h (24

Eq. (22) becomes
2z tan(2z), 0<z<h (25)
1+ h*-2* oo

2h _
————— =tan(2h), Zz>h. 26
1-h* +7° @ @)

The left-hand sides of Egs. (25) and (26) are the solid curves in
Fig. 13, and the right-hand sides are the dashed curves. At a value
of Z where the curves intersect, we have a solution of Eq. (22). The
solid curve in Fig. 13 is continuous at z= h, and the height of the
peak is 2h. For Z < h, the intersections are approximately the zeros
of tan(2z), and these are z/2 apart. Therefore, the vortices on a
string are about z apart. In dimensionless coordinates, 2z corre-
sponds to an optical wavelength, and so the vortices along a string
are about half a wavelength apart. We also see from the figure that
for Z> h there is at most one solution. This is consistent with
Figs. 8-10 and 12, where we see that there are no dashed curves
intersecting the Z axis for z > h.

9. Conclusions

When an oscillating electric dipole is located near the surface of
a mirror, the emitted radiation interferes with the radiation
reflected by the surface. This results in the appearance of numer-
ous singularities and vortices in the energy flow pattern, as can be
seen from Fig. 2. The problem has only two free parameters: the
dimensionless distance h between the dipole and the mirror
surface, and the angle between the surface normal and the
oscillation direction of the dipole (y). We consider flow lines of
energy in the plane through the surface normal and the oscillation
direction of the dipole, as illustrated in Fig. 1.

At the center of a vortex is a singularity, and it is shown that
these singularities are due to the vanishing magnetic field at these
points. Despite the complicated flow pattern of energy, it was
found that the location of the vortices in the flow pattern has a
very simple structure. Vortices appear as beads on strings, and
there are four such strings, as is most easily seen from Fig. 12. The
string named A runs from the dipole to point S on the surface, with

the coordinates of S given by Eq. (19). String B is in between string
A and the z axis. String C runs from the dipole to the surface of the
mirror, but it is much further away from the z axis than the B
string. A fourth string, D, starts at the dipole and runs away to the
upper right in the figures. Vortices on this string are very far away
from the dipole, and cannot be seen in the figures, except in
Fig. 12. The vortices along a string are separated by about half a
wavelength, except for the vortices that are far away from the
dipole.

The direction of rotation in the energy flow near a vortex can be
counterclockwise, as in Fig. 4, or clockwise, as in Fig. 5. And, the
circulating energy near a vortex can come out of the vortex, as in
Fig. 4, or end in the vortex, as in Fig. 5. It was found that the
direction of rotation in vortices on the A and the C strings is
counterclockwise, and for the B and the D strings the rotation is
clockwise. On the A and the D string, the energy comes out of the
vortex, and on the B and the C string the energy ends in the vortex.
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