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Detection of photons from electromagnetic radiation can be considered as the appearance of random events on the
time axis. When an attenuator is placed in front of the detector, which attenuates the intensity by a factor of α, the
statistical properties of the detected photons are altered.We show that simple relations exist between the statistical
functions of the photons detected from the attenuated field and the same functions for the photons that would be
detected from the unattenuated field. We also derive several recurrence relations for the statistical functions
involving their dependence on the parameter α. For photon detection from resonance fluorescence, the parameter
α appears naturally as the probability that an emitted photon is detected. In this case, there is no attenuator, but the
parameter α appears in the same way. We show that the probability for the emission (α � 1) of n photons in a given
time interval can easily be computed, and with the general theory we can then obtain the result for the detection of
n photons (α < 1). © 2013 Optical Society of America

OCIS codes: 270.5290, 040.5160, 040.5570, 230.5160, 250.0040.

1. INTRODUCTION
When light is detected with a photomultiplier tube, photo-
electric pulses are recorded, and these events are inter-
preted as observations of photons. Due to the quantum
mechanical nature of the interaction between the incoming
light and the sensitive part of the photomultiplier, photons
seem to appear randomly. Photon counts are considered to
be random events (point process) on the time axis, and
when the appearance of photons would be purely random,
this would be a Poisson process. The landmark experiment
of Hanbury Brown and Twiss [1–3] showed for the first
time that photons can be correlated. This implies that the
observation of one photon influences the probability for
the detection of a second photon at a later time. For a
Poisson process, photons appear independently, without a
memory to photon detections in the past. Photons in a laser
beam are independent, and the probability distribution is a
Poisson distribution. Photons in thermal light, or any other
source with a classical description, are bunched. This
means that the observation of the first photon enhances
the probability for the detection of a second photon immedi-
ately afterward [4]. Fluorescent photons emitted by a two-
state atom in a laser beam are antibunched [5,6], and the
probability for the detection of the second photon immedi-
ately after the first is zero. The corresponding statistics is
sub-Poissonian, with the variance in the photon count
smaller than the average [7,8].

The statistical properties of random events are most con-
veniently represented by the intensity correlation functions,
defined as [9]

Ik�t1;…; tk�dt1…dtk

� probability for an event in �t1; t1 � dt1�; and…and an

event in �tk; tk � dtk�; irrespective of events at other

times; and with t1 < � � � < tk: (1)

The function with k � 1 will usually be written as I, rather
than I1, and I�t� is called the intensity of the process. For in-
dependent events (Poisson process), the correlation functions
factor as

Ik�t1;…; tk� � I�t1�…I�tk�; (2)

indicating that the occurrence of an event at, say, t1 does not
influence the probabilities for the occurrence of events at
other times. For this case, all statistical properties of the ran-
dom process can be expressed in terms of the intensity I�t�.

When light is detected with a photomultiplier, the incident
electric field E�r; t� determines the response of the detector.
We shall assume that the field is polarized, and indicate by
E�t� the projection of E�r; t� onto the polarization direction,
and evaluation at the position of the detector. It can then
be shown that the photon intensity correlation functions
are given by [10,11]

Ik�t1;…; tk� � ζkhE�t1��−�…E�tk��−�E�tk����…E�t1����i (3)

and here ��� and �−� indicate the positive and negative
frequency parts of E�t�, respectively. Parameter ζ is an overall
constant, and h…i indicates an average. For an incident
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quantum field, this is a quantum expectation value, and for
an incident classical field this represents an average over pos-
sible stochastic fluctuations in the radiation. When the inci-
dent field is a classical, deterministic field, the right-hand side
of Eq. (3) becomes I�t1�…I�tk�, with I�t� � ζE�t��−�E�t����,
and therefore the photon detections are independent. For
quantum radiation, the 2k functions inside h…i are operators,
which will in general not commute. This gives rise to corre-
lations between the photons. Similarly, for a randomly fluctu-
ating classical field, the right-hand side of Eq. (3) will not
factor as in Eq. (2), and therefore the photon detections will
be correlated.

2. RANDOM EVENTS
The number of events in a time interval �ta; tb� is a random
number, and we indicate by Pn�ta; tb� the probability that n
events occur in �ta; tb�. The factorial moments of the process
are defined as

Sk�ta; tb� �
X∞
n�k

n!
�n − k�!Pn�ta; tb�; k � 0; 1; 2;…; (4)

and the generating function is defined as

G�x; ta; tb� �
X∞
n�0

xnPn�ta; tb�: (5)

When we expand G�x; ta; tb� in a Taylor series around x � 1
we find

G�x; ta; tb� �
X∞
k�0

�x − 1�k
k!

Sk�ta; tb�: (6)

The right-hand side of Eq. (5) is a Taylor series around x � 0,
and therefore

Pn�ta; tb� �
1
n!

∂n

∂xn
G�x; ta; tb�jx�0: (7)

Then we substitute G�x; ta; tb� from Eq. (6), and this yields

Pn�ta; tb� �
�−1�n
n!

X∞
k�n

�−1�k
�k − n�! Sk�ta; tb�; (8)

which is the inverse of the relation in Eq. (4).
The factorial moments can be found from the intensity cor-

relations in Eq. (1) as [12]

S0�ta; tb� � 1; (9)

S1�ta; tb� �
Z

tb

ta

dtI�t�; (10)

Sk�ta; tb� � k!
Z

tb

ta

dtk

Z
tk

ta

dtk−1…
Z

t2

ta

dt1Ik�t1;…; tk�;

k � 2; 3;…: (11)

Once the factorial moments are known, the probabilities
Pn�ta; tb� can be obtained from Eq. (8).

The average number of events, μ�ta; tb�, in �ta; tb� is

μ�ta; tb� �
X∞
n�0

nPn�ta; tb� � S1�ta; tb� (12)

and with Eq. (10) we then find

I�t� � ∂
∂t
μ�ta; t�: (13)

Therefore, the intensity of the process can be found from the
time dependence of the probabilities Pn�ta; tb�.

Let τn be the time at which the nth event occurs, after the
initial time ta. So, τn is the waiting time for the nth event. This
τn is a random variable, which has a probability density func-
tion wn�ta; t�. Therefore, we define

wn�ta; t�dt� probability that thenth event occurs in �t; t� dt�;
� probability forn − 1events in �ta; t�and an event

in �t; t� dt�: (14)

It can be shown [13] that these probability densities can be
found from the probabilities according to

wn�ta; t� � −

∂
∂t

Xn−1
m�0

Pm�ta; t�: (15)

Also of interest is the conditional probability for n events
in an observation time interval, after an event at the initial
time ta. This conditional probability is defined as

Pn�ta; tbjta� � probability forn events in �ta; tb�; after an
event in �ta − dta; ta�: (16)

It can then be shown that [13]

Pn�ta; tbjta� �
1

I�ta�
∂
∂ta

Xn
m�0

Pm�ta; tb�; (17)

where I�ta�dta equals the probability for an event in
�ta − dta; ta�. Similarly, the conditional probability densities
are defined as

wn�ta; tjta�dt � probability that the nth even to occurs in

�t; t� dt�; after an event in �ta − dta; ta�: (18)

We find that [13]

wn�ta; tjta� �
1

I�ta�
∂
∂ta

Xn
m�1

wm�ta; t�: (19)

3. SUM RULES
When we sum Eq. (8) over n, and change the order of sum-
mation, we find

X∞
n�0

Pn�ta; tb� � S0�ta; tb� � 1: (20)
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The left-hand side equals the probability to find any number of
events in �ta; tb�, so this must obviously equals unity. From
Eq. (8), however, it follows that the sum equals S0�ta; tb�,
and with Eq. (9) we have S0�ta; tb� � 1. Let us assume that
the intensity correlations Ik�t1;…; tk� are known. Then the fac-
torial moments Sk�ta; tb� follow from Eqs. (9)–(11), and sub-
sequently the probabilities Pn�ta; tb� can be obtained from
Eq. (8). We then see that the sum of the P0

ns equals unity be-
cause we set S0�ta; tb� � 1 in Eq. (9). Therefore, this sum rule
is automatically satisfied for any set of intensity correlation
functions Ik�t1;…; tk�.

When we set x � 0 in Eqs. (5) and (6) we find

X∞
k�0

�−1�k
k!

Sk�ta; tb� � P0�ta; tb�: (21)

This sum rule for the factorial moments is similar in form
to Eq. (20).

With Eq. (20), Eq. (15) can also be written as

wn�ta; t� �
∂
∂t

X∞
m�n

Pm�ta; t�: (22)

Summing over n and changing the order of summation
yields

X∞
n�1

wn�ta; t� �
∂
∂t

X∞
m�0

mPm�ta; t�: (23)

With Eq. (13), this is

X∞
n�1

wn�ta; t� � I�t�; (24)

which is the sum rule for wn�ta; t�. When we multiply the left-
hand side by dt, this equals the probability to find any number
of events in �ta; t� and an event in �t; t� dt�, and according to
Eq. (1) this is I�t�dt.

The sum rule for the conditional probabilities Pn�ta; tbjta�
can be obtained along similar lines, and we find

X∞
n�0

Pn�ta; tbjta� � 1: (25)

This should be so, because the conditional probabilities
are probabilities. In order to obtain the sum rule for the
conditional probability densities wn�ta; tjta�, we note that
wn�ta; tjta�I�ta�dtadt equals the probability for an event in
�ta − dta; ta�, an event in �t; t� dt�, and n − 1 events in �ta; tb�.
When we sum this over n, this yields I2�ta; t�dtadt, and
therefore

X∞
n�1

wn�ta; tjta� �
I2�ta; t�
I�ta�

: (26)

4. PHOTON COUNTING AND
ATTENUATION
When light is detected with a photomultiplier tube, photons
appear as random events on the time axis. The incident
electric field determines the intensity correlation functions,

according to Eq. (3). Once these functions are known, the
probabilities and probability densities, both conditional and
unconditional, can then be obtained, as outlined in Section 2.
Now let us assume that an attenuator is placed in front of
the photomultiplier. This could be, for instance, an absorbing
slab of dielectric material. The attenuated field then has a pos-
itive frequency part βE�t����, with β a complex number, and
jβj ≤ 1. The negative frequency part of the electric field picks
up a factor β�, and therefore the intensity correlation func-
tions acquire an overall factor of αk, with α � jβj2. We shall
compare the counting statistics of the attenuated field to
the counting statistics of the unattenuated field (α � 1),
and show that these are related in a rather simple way. From
here on we shall display explicitly the α dependence of the
various statistical quantities. So, for instance, Pn�ta; tb; α� is
the probability to observe n photons in �ta; tb�, when the field
is attenuated by a factor α. For the intensity correlations we
have the obvious relation

Ik�t1;…; tk; α� � αkIk�t1;…; tk; 1�: (27)

For the intensity of the process we have I�t; α� � αI�t; 1�. If
the process with α � 1 is a Poisson process, then the process
with α ≠ 1 is also a Poisson process, as follows immediately
from Eq. (2).

With Eqs. (9)–(11) we find

Sk�ta; tb; α� � αkSk�ta; tb; 1�: (28)

The α dependence of the generating function follows from
Eqs. (6) and (28), which gives

G�x; ta; tb; α� � G�α�x − 1� � 1; ta; tb; 1�: (29)

So, if the x dependence of G�x; ta; tb; 1� is known, we
replace x by α�x − 1� � 1 in this function, which then yields
G�x; ta; tb; α�.

The probabilities Pn�ta; tb; α� are given by Eq. (8), where we
use Eq. (28) for the factorial moments. Then, for Sk�ta; tb; 1�
we substitute Eq. (1), which leads to a double sum. When
we change the order of summation, then the inner sum has
the form of Newton’s binomium. We thus obtain

Pn�ta; tb; α� �
X∞
m�n

�
m

n

�
αn�1 − α�m−nPm�ta; tb; 1�: (30)

This expression is sometimes referred to as a Bernoulli
convolution. We can interpret this result as follows. Let α
be the probability that a photon which is incident on the
attenuator will be transmitted. Then 1 − α is the probability
that an incident photon is not transmitted. So αn�1 − α�m−n

is the probability that a particular set of n photons will be
transmitted, if there are m incident photons. The binomial
coefficient equals the number of ways we can pick n out of
m. Such an argument relies on the interpretation that the in-
cident field can be viewed as a stream of photons, and that
these photons are independent. Apparently, Eq. (30) holds
in general for the statistics of photon detection.

When we sum both sides of Eq. (30) over n, we get a double
sum on the right-hand side. Changing the order of summation
yields
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X∞
n�0

Pn�ta; tb; α� �
X∞
m�0

Pm�ta; tb; 1�: (31)

Therefore, the sum rule (20) is preserved upon
attenuation.

5. PROBABILITY DENSITIES OF THE
ATTENUATED FIELD
The probability densities are determined by the probabilities
as in Eq. (22):

wn�ta; t; α� �
∂
∂t

X∞
m�n

Pm�ta; t; α�: (32)

Here, the α dependence is shown explicitly. For Pm�ta; t; α�,
we substitute the right-hand side of Eq. (30), and change
the order of summation. This yields

wn�ta; t; α� �
∂
∂t

X∞
m�n

an;m�α�Pm�ta; t; 1�: (33)

The combinatorial functions an;m�α� are defined as

an;m�α� �
Xm
k�n

�
m

k

�
αk�1 − α�m−k; m ≥ n ≥ 0: (34)

Comparison of Eqs. (32) and (33) shows that the α depend-
ence is effectively factored out of Pm�ta; t; α� as an;m�α�.
For α � 1 we have

an;m�1� � 1: (35)

In order to express wn�ta; t; α� in terms of wn�ta; t; 1�,
we use

∂
∂t
Pm�ta; t; 1� � wm�ta; t; 1� −wm�1�ta; t; 1�; m ≥ 1; (36)

as can be verified from Eq. (15). Then Eq. (33) becomes

wn�ta; t; α� � αnwn�ta; t; 1�

�
X∞

m�n�1

�an;m�α� − an;m−1�α��wm�ta; t; 1�; (37)

and here we have used

an;n�α� � αn: (38)

The right-hand side of Eq. (37) can be simplified. To this
end, we introduce a generating function in m for an;m�α� as

gn�y; α� �
X∞
m�n

an;m�α�ym; n ≥ 0: (39)

We substitute the right-hand side of Eq. (34) for an;m�α�, and
change the order of summation. The inner sum is of the form

X∞
m�k

m!
�m − k�!u

m � k!uk

�1 − u�k�1 ; (40)

and after this, the remaining series is a geometric series. We
thus find

gn�y; α� �
1

1 − y

�
αy

1 − y� αy

�
n

: (41)

Then we differentiate both sides with respect to y, and com-
pare the coefficients of ym on both sides. This yields the re-
currence relation

an;n�1�α� � �1� �1 − α�n�an;n�α�; (42)

�m − n�an;m�α� � ��α − 1��m − 1� � n −m�an;m−1�α�
� �1 − α��m − 1�an;m−2 � 0; m ≥ n� 2: (43)

This is a three-term recurrence relation in m, for n fixed,
and the initial value is given by Eq. (38). We can also write
Eq. (43) as

�m − n��an;m�α� − an;m−1�α�� � �1 − α��m − 1��an;m−1�α�
− an;m−2�α��; m ≥ n� 2; (44)

and this is a two-term recurrence relation for
an;m�α� − an;m−1�α�. Solving by iteration gives

an;m�α�−an;m−1�α�� �1−α�m−n−1 �m−1�!
n!�m−n�! �an;n�1�α�−an;n�α��;

(45)

and with Eqs. (38) and (42) we find

an;n�1�α� − an;n�α� � n�1 − α�αn: (46)

This finally gives

an;m�α� − an;m−1�α� �
�
m − 1
n − 1

�
αn�1 − α�m−n; m ≥ n� 1:

(47)

With Eq. (47), Eq. (37) becomes

wn�ta; t; α� �
X∞
m�n

�
m − 1
n − 1

�
αn�1 − α�m−nwm�ta; t; 1�; (48)

which is the desired expression for wn�ta; t; α� in terms of
wn�ta; t; 1�. When we sum both sides over n, we obtain the
relation

X∞
n�1

wn�ta; t; α� � α
X∞
m�1

wm�ta; t; 1�: (49)

According to Eq. (24), the left-hand side is I�t; α� and the right-
hand side is αI�t; 1�. So Eq. (49) expresses the relation

I�t; α� � αI�t; 1�; (50)

which is Eq. (27) with k � 1.
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6. CONDITIONAL PROBABILITIES AND
PROBABILITY DENSITIES OF THE
ATTENUATED FIELD
The conditional probabilities for photon detection from
the attenuated field can be obtained as follows. We write
Eq. (17) as

Pn�ta; tbjta; α� � −

1
I�ta; α�

∂
∂ta

X∞
m�n�1

Pm�ta; tb; α�; (51)

where we have used that the Pm’s sum to unity. With Eq. (30)
we have

Pm�ta; tb; α� �
X∞
k�m

�
k

m

�
αm�1 − α�k−mPk�ta; tb; 1�: (52)

Then we substitute this in the right-hand side of Eq. (51), and
change the order of summation. This yields

Pn�ta; tbjta; α� � −

1
αI�ta; 1�

∂
∂ta

X∞
m�n�1

an�1;m�α�Pm�ta; tb; 1�;

(53)

where we have used Eq. (50) and the definition in Eq. (34) of
an;m�α�. It can be shown from Eq. (17) that

1
I�ta; 1�

∂
∂ta

Pm�ta; tb; 1� � Pm�ta; tbjta; 1� − Pm−1�ta; tbjta; 1�;

m ≥ 1; (54)

and with this, Eq. (53) becomes

Pn�ta;tbjta;α��αnPn�ta;tbjta;1�

�1
α

X∞
m�n�1

�an�1;m�1�α�−an�1;m�α��Pm�ta;tbjta;1�:

(55)

Here we have used Eq. (38). With Eq. (47) we then obtain the
final result

Pn�ta; tbjta; α� �
X∞
m�n

�
m

n

�
αn�1 − α�m−nPn�ta; tbjta; 1�: (56)

This expression is identical in form to the relation for the
probabilities, Eq. (30).

The conditional probability densities are given by Eq. (19).
With the sum rule (24), this can also be written as

wn�ta; tjta; α� �
1

I�ta; α�
∂
∂ta

�
I�t; α� −

X∞
m�n�1

wm�ta; t; α�
�
; (57)

and with Eq. (50) this is

wn�ta; tjta; α� � −

1
αI�ta; 1�

∂
∂ta

X∞
m�n�1

wm�ta; t; α�: (58)

Then we use Eq. (48) for wm�ta; t; α� and change the order of
summation. We then obtain

wn�ta; tjta; α� � −

1
I�ta; 1�

∂
∂ta

X∞
m�n�1

an;m−1�α�wm�ta; t; α�: (59)

From Eq. (19) we derive

1
I�ta; 1�

∂
∂ta

wm�ta; t; 1� � wm�ta; tjta; 1� −wm−1�ta; tjta; 1�;

m ≥ 2: (60)

Along the same lines as in the previous section we then find

wn�ta; tjta; α� �
X∞
m�n

�
m − 1
n − 1

�
αn�1 − α�m−nwm�ta; tjta; 1� (61)

for wn�ta; tjta; α� in terms of wm�ta; tjta; 1�. The result is
identical in form to Eq. (48) for the unconditional probability
densities.

7. RECURRENCE RELATIONS
Equation (30) with n � 0 reads

P0�ta; tb; α� �
X∞
m�0

�1 − α�mPm�ta; tb; 1�: (62)

Differentiating n times with respect to α yields

∂n

∂αn
P0�ta; tb; α� � �−1�n

X∞
m�n

m!
�m − n�! �1 − α�m−nPm�ta; tb; 1�;

(63)

and with Eq. (30) this gives

Pn�ta; tb; α� �
�−α�n
n!

∂n

∂αn
P0�ta; tb; α�: (64)

Therefore, the probability to detect n photons in �ta; tb� can be
found from the α dependence of the probability to detect zero
photons in �ta; tb�. This relation has been found before in [14].
We can also write Eq. (64) as

Pn�1�ta; tb; α� � −

αn�1

n� 1
∂
∂α

�
Pn�ta; tb; α�

αn

�
(65)

and this is also

�n� 1�Pn�1�ta; tb; α� � nPn�ta; tb; α� − α
∂
∂α

Pn�ta; tb; α�: (66)

Apparently, the probabilities Pn�ta; tb; α� satisfy a three-term
recurrence relation. Equation (56) for the conditional proba-
bilities has the same form as Eq. (30), and therefore the rela-
tions in Eqs. (62)–(66) also hold for Pn�ta; tbjta; α�.

In the same way, we derive from Eq. (48)

1
α
wn�ta; t; α� �

�−α�n−1
�n − 1�!

∂n−1

∂αn−1

�
1
α
w1�ta; t; α�

�
: (67)

This can also be written as a recurrence relation

wn�1�ta; t; α� � −

αn�1

n

∂
∂α

�
wn�ta; t; α�

αn

�
; (68)
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or

nwn�1�ta; t; α� � nwn�ta; t; α� − α
∂
∂α

wn�ta; t; α�; (69)

and the same relations hold for the conditional probability
densities wn�ta; tjta; α�.

8. PHOTON DETECTION OF RESONANCE
FLUORESCENCE
An interesting example is photon detection from resonance
fluorescence radiation. When a two-state atom is irradiated
by a laser beam on resonance with the electronic transition,
photons will be absorbed from and emitted into the laser field
(stimulated transitions), and fluorescent photons will be emit-
ted in all directions as electric dipole radiation (spontaneous
transitions). These fluorescent photons can be observed by a
detector, placed outside the laser beam. Assuming that the
atom is in the steady state, the intensity I of the photon
detection random event process is

I�α� � αAne; (70)

which is independent of time. Here, A is the Einstein coeffi-
cient for spontaneous decay, and ne is the steady-state popu-
lation of the excited state. The constant α depends on the
properties of the detector, its location in the field, and its aper-
ture. However, the number of emitted photons per unit of time
by the atom is Ane, as can be shown from energy considera-
tions, and therefore parameter α can be interpreted as the
probability that an emitted photon is detected. The intensity
correlation functions for k � 2; 3;… are [15,16]

Ik�t1;…; tk; α� � �αA�kf �tk − tk−1�…f �t2 − t1�ne: (71)

The function f �t� equals the population of the excited state at
time t, under the condition that the atom is in the ground state
at time zero. Obviously,

f �0� � 0; (72)

and therefore Ik�t1;…; tk; α� � 0 when two consecutive times
are equal. This is the celebrated antibunching in fluorescence.
For t → ∞ we have f �∞� � ne. We notice that the α depend-
ence of the intensity correlation functions is an overall factor
of αk, just as in Eq. (27) for the intensity correlations of the
attenuated field. Here, this parameter α appears as the relation
between the statistics of the emitted photons and the statistics
of the detected photons. In a typical experiment, this param-
eter can be as small as α ∼ 10−3.

With Ω the Rabi frequency, the population of the excited
state is

ne �
Ω̂2

1� 2Ω̂2 ; (73)

and here we have set Ω̂ � Ω∕A for the Rabi frequency in units
of A. The function f �t� is found to be [17]

f �t� � ne

�
1 − e−

3
4t̂

�
3
4ρ

sinh�ρt̂� � cosh�ρt̂�
��

; (74)

with t̂ � At, and

ρ �
�����������������
1
16

− Ω̂2

r
: (75)

For Ω̂ < 1∕4, the function f �t� has an exponential behavior. For
Ω̂ > 1∕4, the parameter ρ is positive imaginary, and f �t� is os-
cillatory. Figure 1 shows some examples of f �t�.

9. PHOTON PROBABILITIES OF
RESONANCE FLUORESCENCE
For the atom in the steady state, the photon detection random
process is stationary, and the probabilities Pn�ta; tb; α� only
depend on ta and tb through T � tb − ta, so we consider
Pn�0; T ; α�. The intensity correlations [Eq. (71)] determine
the factorial moments with Eqs. (9)–(11). The multiple inte-
grals are most conveniently dealt with by adopting a Laplace
transform in T . We set

~Sk�0; s; α� �
Z

∞

0
e−sTSk�0; T ; α�dT; (76)

and similarly for other time dependent functions. Then we
obtain

~S0�0; s; α� �
1
s
; (77)

~Sk�0; s; α� � I�α� k!
s2

�αA~f �s��k−1; k � 1; 2;…; (78)

in terms of the Laplace transform ~f �s� of f �t�. With Eq. (8), we
find the Laplace transforms of the probabilities:

~P0�0; s; α� �
1
s
−

I�α�
s2

1

1� αA~f �s�
; (79)

~Pn�0; s; α� �
I�α�
s2

�αA~f �s��n−1
�1� αA~f �s��n�1 ; n � 1; 2;…: (80)

We notice that the α dependence in Eqs. (79) and (80) is non-
trivial. However, it can be checked by inspection that
Pn�0; T ; 1� and Pn�0; T ; α� are related as in Eq. (30).

0

0.5

1

0 3 6

)(tf

t̂

a

b

c

Fig. 1. Function f �t� for various values of the parameter Ω̂. Curves a,
b, and c correspond to Ω̂ � 0.4, 2, and 8, respectively.
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From Eq. (74) we find

~f �s� � 1
2s

Ω2�
s� A

	�
s� 1

2A

	
�Ω2

; (81)

and this gives

~P0�0; s; α� �
1
s
−

αAne

s

�s� A�
�
s� 1

2A

	
�Ω2

s�s� A�
�
s� 1

2A

	
�Ω2

�
s� 1

2 αA
	 :
(82)

In order to find the Laplace inverse, we need to know the
poles of this function in the complex s plane, so we need
to factor the denominator. This is a third degree polynomial
in s. For α � 1, however, a factor of s� A∕2 can be split off,
and the remaining polynomial is of second degree. This gives

~P0�0; s; 1� �
1
s
−

Ane

s

1

s� 1
2A

�s� A�
�
s� 1

2A

	
� Ω2�

s� 1
2A

	
2
− �γA�2

; (83)

where we have set

γ �
��������������
1
4
− Ω̂2

r
: (84)

From Eq. (80) we find

~Pn�0;s;1��Ane

�
1
2
AΩ2

�
n−1

h
�s�A�

�
s� 1

2A

	
�Ω2

i
2

�
s� 1

2A

	
n�1

h�
s� 1

2A

	
2
−�γA�2

i
n�1 ;

n�1;2;…: (85)

Therefore, for the computation of Pn�0; T ; α� is facilitated by
computing Pn�0; T ; 1� first. Then, the α dependence of
Pn�0; T ; α� follows from Eq. (30).

10. EVALUATION OF THE PROBABILITIES
FOR α � 1
The Laplace inverse of Eq. (83) is most easily obtained by
using the Bromwich inversion integral [18]. We find

P0�0; T ; 1� �
1
8γ2

1

1� 2Ω̂2 e
−

1
2T̂

�
−16Ω̂4 � 4γ sinh�γT̂�

� �1� 4γ2� cosh�γT̂�
�
; (86)

with T̂ � AT . This result has been obtained before [13] in a
different way. In order to obtain the inverse of Eq. (85), we
first use the attenuation theorem:

Pn�0; T ; 1� � Ane

�
1
2
AΩ2

�
n−1

e−
1
2T̂

−ℒ−1

(

s
�
s� 1

2A
��Ω2



2

sn�1�s2 − �γA�2�n�1

)
:

(87)

The remaining inverse is computed with the Bromwich inte-
gral, and this yields

Pn�0; T ; 1� �
Ω̂2n

1� 2Ω̂2

8

�2γ�3n�2 e
−

1
2T̂
Xn
k�0

Xn−k
r�0

�γT̂�n−k−r
�n − k − r�!

×
�
1
2
��−1�kzr�γ�eγT̂ � zr�−γ�e−γT̂ �An;k − zr�0�Bn;k

�
;

n� 1;2;… (88)

with

z0�x� �
�
x

�
x� 1

2

�
� Ω̂2

�
2
; (89)

z1�x� � γ�4x� 1�
�
x

�
x� 1

2

�
� Ω̂2

�
; (90)

z2�x� � γ2
�
6x2 � 3x� 1

4
� 2Ω̂2

�
; (91)

z3�x� � γ3�4x� 1�; (92)

z4�x� � γ4; (93)

zr�x� � 0; r > 4. (94)

The coefficients An;k and Bn;k are defined as

An;k �
Xk
m�0

�
n�m

n

��
n� k −m

n

�
2n−m; n; k � 0; 1; 2;…;

(95)

Bn;k � 0; k � 1; 3;…; (96)

Bn;2m � �−1�n22n
�
n�m

n

�
; m � 0; 1;…: (97)

The same coefficients appear in the expression for the condi-
tional probability densities wn�0; tj0�, which were obtained
elsewhere [19]. Tables 1 and 2 list several values of An;k

and Bn;k.

Table 1. Several Values of Ank

n∕k 0 1 2 3

0 1 3∕2 7∕4 15∕8
1 2 6 23∕2 18
2 4 18 48 99
3 8 48 164 420

Table 2. Several Values of Bnk

n∕k 0 1 2 3

0 1 0 1 0
1 −4 0 −8 0
2 16 0 48 0
3 −64 0 −256 0
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11. COMPARISON TO POISSON STATISTICS
If the function f �t�would be a constant, e.g., f �t� � f �∞� � ne,
then the intensity correlation functions would be
Ik�t1;…; tk; α� � �αAne�k, and the detection process would
be a stationary Poisson process with intensity I � αAne.
The probabilities would then be

Pn�0; T ; α� �
�IT�n
n!

e−IT : (98)

For resonance fluorescence, the functions Pn�0; T ; 1� are
given in the previous section, but the resulting expressions
are rather formidable. We now compare graphically the func-
tions Pn�0; T ; 1� for resonance fluorescence with the corre-
sponding functions for a Poisson process with the same
intensity.

The solid curve in Fig. 2 shows P0�0; T ; 1� for fluorescent
photons, with Ω̂ � 0.4, and the dashed curve is the corre-
sponding function for independent photons. The behavior
of both functions is very similar for this value of Ω̂. For larger
values of Ω̂, the curves become even closer, and any differ-
ence with an independent event process disappears. For Ω̂
large, the function f �t� oscillates rapidly, as can be seen in
Fig. 1, but these oscillations do not appear in the probability
P0�0; T ; 1�.

Figure 3 shows P1�0; T ; 1�, the probability for the emission
of one photon in �0; T �, for Ω̂ � 0.4. We notice that the differ-
ence with Poisson statistics is much greater than in Fig. 2

(same value of Ω̂). Figure 4 shows P1�0; T ; 1� for Ω̂ � 2,
and here we see some oscillations, due to the oscillations
in the function f �t� (curve b in Fig. 1). For Ω̂ � 8, the function
f �t� is curve c in Fig. 1, and this function oscillates rapidly.
The probability P1�0; T ; 1� for this value of Ω̂ is shown in Fig. 5,
and we see that the probability for the detection of a fluores-
cent photon in �0; T � is almost indistinguishable from the
corresponding Poissonian result. The solid curve has a tiny
oscillation near its peak, but apparently the large oscillations
in f �t� do not appear in the probability P1�0; T ; 1�.

12. CONCLUSIONS
The detection of photons by a photomultiplier can be consid-
ered as a random event process. The statistical properties of
such a process can be represented by a variety of functions.
The most fundamental representation is in terms of intensity
correlation functions. From these functions, the probability
for the detection of n photons in a time interval �ta; tb� can
be obtained, as well as the probability density function for
the detection of the nth photon at time t, after an initial time
ta. Also, the conditional probabilities and the conditional
probability densities can be found. The condition here is
the detection of a photon in the time interval �ta − dta; ta�.

We consider an attenuator being placed in front of the
detector, which reduces the intensity by a factor α, and we
compare the statistical functions for photon detection from
the attenuated field to the statistical functions for photon de-
tection from the original field. It appears that these functions
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Fig. 2. Solid curve is the probability for the detection of zero photons
in �0; T � from resonance fluorescence radiation, for Ω̂ � 0.4 and α � 1.
The dashed curve is the corresponding function for an independent
event process with the same intensity.
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Fig. 3. Graph compares the probability for the detection of one pho-
ton from resonance fluorescence (solid curve), with Ω̂ � 0.4, to the
same probability for a Poisson process with the same intensity.
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Fig. 4. Solid curve is the probability to detect one photon in �0; T � for
resonance fluorescence, with Ω̂ � 2 and α � 1. The dashed curve is
the corresponding probability for a Poisson process.
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Fig. 5. Graph illustrates that for high laser power (Ω̂ large, and Ω̂ � 8
for the graph), photon detection from resonance fluorescence be-
comes indistinguishable from a Poisson process.
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are related in simple ways. The statistical functions for α < 1
can be expressed in terms of the same functions for α � 1.
Therefore, the photon statistics for the attenuated field are
known as soon as the photon statistics for the original field
are known [and vice versa: the relations can be inverted, as
is most easily seen from Eq. (27)]. We have also derived some
interesting recurrence relations involving the α dependence of
the various functions.

When photons are detected from resonance fluorescence,
emitted by a two-state atom in a laser beam, then an overall
factor of αk appears in the intensity correlations for the de-
tected photons. The parameter α appears here as the proba-
bility that an emitted photon is detected, rather than resulting
from attenuation of the field. It is shown that the probability
for the detection of n photons can be obtained for α � 1, and
with Eq. (30) we can then, in principle, find the probabilities
for α < 1. If we would attempt to compute the probabilities for
α < 1 directly, we would need to factor a cubic equation.
For α � 1, we only get a quadratic equation to be factored,
and the result for the probabilities is given in Section 10.
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