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Conditional probability densities for photon emission in resonance fluorescence
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A two-state atom in a laser beam, near resonance with the atomic transition, emits fluorescent photons.
We have obtained the probability density for the emission time of the nth photon, after the emission
of an initial photon at time zero. It is shown that the behavior of these probability densities depends
strongly on the laser power. For low irradiation, the functions have a single peak with a long tail, but for
higher power oscillations are present. The probability density for the first photon has strong oscillations,
whereas for subsequent photons the probability density oscillates moderately on a smooth background.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

When a two-state atom is irradiated by a laser beam, near
resonance with the atomic transition, the atom will absorb and
emit laser photons in stimulated transitions, and emit fluorescent
photons in spontaneous transitions from the excited state to the
ground state. The fluorescence is electric dipole radiation, emit-
ted in all directions, and is amenable to observation by a photon
counter outside the laser beam. The detection of photons is a ran-
dom process due to the quantum nature of the interaction between
the light and the detector, and also due to possible randomness in
the light being measured [1,2]. Usually, in such experiments al-
kali atoms like sodium or cesium are used, and the laser operates
in the visible range of the spectrum. Only moderate laser power
is needed to observe a sufficient number of photons for the de-
termination of their statistical properties. In typical experiments,
correlations between pairs of photons and photon probability dis-
tributions are measured. Also of interest is the variance of counting
distributions, and their deviation from what would be expected
for uncorrelated events (Poisson process). When all the fluorescent
light emitted by an atom would be detected by a photon counter,
then the counting statistics is the same as the statistics of the
emitted photons, and this is the case we shall consider here.

Photons emitted in resonance fluorescence are correlated. After
the emission of a fluorescent photon, the atom is in the ground
state, and it takes a finite time for the atom to reach the ex-
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cited state again (by means of stimulated absorption). Since flu-
orescent photons are emitted during spontaneous decay from the
excited state to the ground state, the probability to detect a sec-
ond photon immediately after the first is zero. This phenomenon is
called antibunching, and has been observed experimentally [3–5].
As a direct consequence, the photon statistics for small counting
times is sub-poissonian (variance smaller than the average) and
the statistics for long counting times is sub-poissonian if photons
are antibunched on average over time. Sub-Poisson statistics for
long counting times has been observed experimentally for reso-
nance fluorescence [6–10].

A complete account of all statistical properties of the emitted
photons (or any random event process [11,12]) is given by the in-
tensity correlation functions, defined as

Ik(t1, t2, . . . , tk)dt1 dt2 · · · dtk

= probability for a photon emission in [t1, t1 + dt1], and . . .

and a photon emission in [tk, tk + dtk],
irrespective of emissions at other times,

and with t1 < t2 < · · · < tk. (1)

Antibunching of photons is expressed as I2(t1, t1) = 0 and the
variance of the photon counts in a given time interval can be
expressed in terms of I2(t1, t2). Therefore, antibunching and sub-
Poisson statistics only involve the second order correlation func-
tion. We shall consider the conditional probability densities for the
emission times of the photons, and these quantities involve the in-
tensity correlation functions for all k.

http://dx.doi.org/10.1016/j.physleta.2012.06.038
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:hfa1@msstate.edu
mailto:rar102@ra.msstate.edu
http://dx.doi.org/10.1016/j.physleta.2012.06.038


H.F. Arnoldus, R.A. Riehle / Physics Letters A 376 (2012) 2584–2587 2585
Fig. 1. Shown are graphs of the function f (t), given by Eq. (4), for Ω̂ = 0.8 (dashed
curve) and Ω̂ = 8 (solid curve).

2. Resonance fluorescence

For resonance fluorescence by an atom in the steady state, the
intensity correlations are given by [13,14]

Ik(t1, . . . , tk) = Ak f (tk − tk−1) · · · f (t2 − t1)ne, k = 2,3, . . . .

(2)

Here, A is the Einstein coefficient for spontaneous decay, which
equals the inverse lifetime of the excited state, and f (t) is the pop-
ulation of the excited state at time t under the condition that the
atom is in the ground state at time zero. The intensity of emission
is I1(t1), and for the steady state this is independent of time. We
shall write I1(t1) = I , and we have I = Ane with ne the population
of the excited state. We shall assume that the laser frequency is on
resonance with the atomic transition, and indicate by Ω the Rabi
frequency of the driven atom. We have

ne = Ω̂2

1 + 2Ω̂2
, (3)

where we have set Ω̂ = Ω/A for the Rabi frequency in units of A.
The function f (t) is [15]

f (t) = ne

{
1 − e− 3

4 t̂
[

3

4ρ
sinh(ρt̂) + cosh(ρt̂)

]}
, (4)

with t̂ = At and ρ =
√

1/16 − Ω̂2. For Ω̂ > 1/4, the hyperbolic
functions become trigonometric functions, and we get oscillations,
as illustrated in Fig. 1.

3. Probability densities for photon emission

Let τn be the random variable representing the emission time
for the nth photon, measured from an initial time t = 0. The prob-
ability density for τn is defined as

wn(t)dt = probability that τn lies in [t, t + dt], (5)

and the conditional probability density for τn is

wn(t|0)dt = probability that τn lies in [t, t + dt]
after an emission in [−dt,0]. (6)

With Pn(t) the probability for n emissions in [0, t], we have [16]

wn(t) = − d

dt

n−1∑
Pm(t), (7)
m=0
and similarly

wn(t|0) = −1

I

d

dt

n∑
m=1

wm(t). (8)

We shall consider the conditional probability densities wn(t|0),
since for these functions the initial time is well defined: At t = 0
the first photon is emitted, and then we consider the arrival time
of the nth photon after this initial photon. This function was ob-
tained theoretically for n = 1 in Ref. [17]. We shall generalize this
result by obtaining wn(t|0) for all n.

The probabilities Pn(t) are determined by the intensity corre-
lation functions through Mandel’s photon counting formula [18].
This yields wn(t) with Eq. (7) and then wn(t|0) with Eq. (8). The
computation of wn(t|0) is greatly facilitated by adopting a Laplace
transform. We set

w̃n(s|0) =
∞∫

0

e−st wn(t|0)dt, (9)

and following the steps outlined above then yields

w̃n(s|0) =
(

A f̃ (s)

1 + A f̃ (s)

)n

, (10)

in terms of the Laplace transform f̃ (s) of f (t).

4. Computation of wn(t|0)

In order to obtain wn(t|0), we need to evaluate the Laplace in-
verse of the right-hand side of Eq. (10). To this end, we first note
that the Laplace transform of f (t) is

f̃ (s) = Ω2

2s

1

(A + s)( 1
2 A + s) + Ω2

, (11)

and this gives

w̃n(s|0) =
( 1

2 AΩ2

(s + 1
2 A)[(s + 1

2 A)2 − (Aγ )2]
)n

, (12)

with γ =
√

1/4 − Ω̂2. Therefore,

wn(t|0) =
(

1

2
AΩ2

)n

e− 1
2 AtL−1

(
1

sn[s2 − (Aγ )2]n

)
. (13)

The remaining inverse can be evaluated with the Bromwich inte-
gral [19], with result

wn(t|0) = A
2Ω̂2n

(2γ )3n−1
e− 1

2 t̂
n−1∑
k=0

(γ t̂)n−1−k

(n − 1 − k)!

×
{

1

2

[
(−1)keγ t̂ + e−γ t̂]An−1,k − Bn−1,k

}
. (14)

The universal functions An,k and Bn,k are defined as

An,k =
k∑

m=0

(
n + m

n

)(
n + k − m

n

)
2n−m, (15)

Bn,k = 22n
k∑

m=0

(
n + m

n

)(
n + k − m

n

)
(−1)n−m, (16)

for n,k = 0,1,2, . . . . Expression (14) for wn(t|0) is the main result
of this Letter. It gives the conditional probability density for the
emission of the nth photon, after an emission at t = 0.
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Fig. 2. The figure shows wn(t|0) for n = 1,2 and 3, and for Ω̂ = 0.75.

Fig. 3. Shown are graphs of wn(t|0) for Ω̂ = 5.

5. Results

The conditional probability for the first photon follows from
Eq. (14) with n = 1. With Eqs. (15) and (16) we have A0,0 =
B0,0 = 1, so that

w1(t|0) = A
Ω̂2

2γ 2
e− 1

2 t̂[cosh(γ t̂) − 1
]
, (17)

in agreement with Ref. [17]. For n = 2 we have A1,0 = 2, B1,0 = −4,
A1,1 = 6 and B1,1 = 0. This gives

w2(t|0) = A

(
Ω̂2

2γ 2

)2

e− 1
2 t̂

{
t̂

[
1 + 1

2
cosh(γ t̂)

]
− 3

2γ
sinh(γ t̂)

}
,

(18)

and so on. Fig. 2 shows wn(t|0) for n = 1,2 and 3, and for Ω̂ =
0.75. Each distribution has a peak and the positions of the peaks
increase with n, as it should be. We also see that wn(0|0) = 0,
which reflects the antibunching between the first photon and the
conditional photon at t = 0. Fig. 3 shows the same functions, but
for Ω̂ = 5, corresponding to a much higher intensity of the driving
laser than in Fig. 2. The functions are now oscillatory, with no clear
peak anymore. We also notice that the functions have a long tail at
the high t end. Fig. 4 shows wn(t|0) for n = 1 and 3, with Ω̂ = 15.
The function w1(t|0) has very fast oscillations with a large am-
plitude, and it has numerous zeros (where cosh(γ t̂) = 1, and here
γ is positive imaginary). The oscillations in w3(t|0) are also fast,
but very small in amplitude.
Fig. 4. The figure shows w1(t|0) and w3(t|0) for Ω̂ = 15, corresponding to very
strong illumination of the atom.

6. The functions An,k and Bn,k

Eqs. (15) and (16) define the functions An,k and Bn,k that ap-
pear in the solution for wn(t|0). In this section we shall derive
some properties of these functions. First, for k = 0 there is only
one term, and we get immediately

An,0 = 2n, Bn,0 = (−1)n22n. (19)

If we make the substitution m′ = k − m in Eq. (16) we get Bn,k =
(−1)k Bn,k and therefore

Bn,k = 0, k odd. (20)

We now construct generating functions in k, for fixed n. From
Eqs. (15) and (16) we derive

∞∑
k=0

An,k yk = 22n+1

[(1 − y)(2 − y)]n+1
, (21)

∞∑
k=0

Bn,k yk = (−1)n22n

(1 − y2)n+1
, (22)

both convergent around y = 0. Then we differentiate Eq. (21) with
respect to y, regroup, and then equate equal powers of y. This
yields a three-term recursion relation between An,k ’s with differ-
ent k:

2kAn,k = 3(n + k)An,k−1 − (2n + k)An,k−2, k = 2,3, . . . . (23)

The initial values are An,0 = 2n and

An,1 = 3(n + 1)2n−1. (24)

In the same way we find from Eq. (22)

Bn,k = 2n + k

k
Bn,k−2, k = 2,3, . . . . (25)

For k odd we have Bn,k = 0, and for k even, the solution of Eq. (25)
is

Bn,2m = (−1)n22n
(

n + m

n

)
, m = 0,1, . . . . (26)

Many other relations for the functions An,k and Bn,k can be
found. For instance, A0,k = 2 − 2−k . With considerable more ef-
fort, various sum rules for the function An,k can be derived. We
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mention without proof:

1

2

[
(−1)n + (−1)p] p∑

�=0

(−1)�
(

p

�

)
An,n−� = Bn,n−p,

p = 0,1, . . . ,n, (27)

[
(−1)n + (−1)p] n∑

�=0

(−1)�
(

p

�

)
An,n−� = 0,

p = n + 1,n + 2, . . . ,3n + 1, (28)
n∑

�=0

(−1)n−�

(
3n + 2

�

)
An,n−� = 22n. (29)

Setting p = 0 in Eq. (27) yields

An,n = Bn,n, n even. (30)

7. Conclusions

The dynamics of a two-state atom in a laser beam is arguably
the most important problem in quantum optics. We have studied
the conditional probability densities wn(t|0) for emissions of fluo-
rescent photons by this atom. The initial observation time t = 0 is
set by the emission of the first photon, and then wn(t|0) gives the
probability density for the emission of the nth photon after the ini-
tial one. Eq. (14) gives the explicit result for wn(t|0), and Figs. 2–4
illustrate the behavior of these functions. For small to moderate
laser power, these functions simply have a peak, as shown in Fig. 2.
For higher power, oscillations set in, and w1(t|0) has persisting os-
cillations with a large amplitude. For larger n there only appear
small oscillations on a smooth background, as seen in Fig. 4.
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