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When a circular electric dipole moment, rotating in the x–y plane, is embedded in a material with relative
permittivity εr and relative permeability μr , the field lines of energy flow of the emitted radiation are dramatically
influenced by the surroundingmaterial. For emission in free space, the field lines swirl around the z axis and lie on
a cone. The direction of rotation of the field lines around the z axis is the same as the direction of rotation of the
dipole moment. We found that when the real part of εr is negative, the rotation of the field lines changes direction,
and hence the energy counter-rotates the dipole moment. When there is damping in the material, due to an
imaginary part of εr , the cone turns into a funnel, and the density of the field lines diminishes near the location
of the source. In addition, all radiation is emitted along the z axis and the x–y plane, whereas for emission in free
space, the radiation is emitted in all directions. It is also shown that the displacement of the dipole image in the far
field depends on the material parameters and that the shift can be much larger than the shift of the image in free
space. © 2011 Optical Society of America

OCIS codes: 080.4865, 260.2110.

1. INTRODUCTION
In the geometric optics limit, the propagation of light from a
point source to an observer is represented by optical rays,
which are the orthogonal trajectories of the wavefronts. In
a linear isotropic homogeneous medium, these optical rays
are straight lines, emanating from the location of the source.
On the other hand, electromagnetic energy propagates along
the field lines of the Poynting vector. It can be shown [1] that
in the geometric optics limit, where variations in the radiation
field on the scale of a wavelength are neglected, the optical
rays coincide with the field lines of the Poynting vector for
light propagation in a linear isotropic homogeneous medium.
In nanophotonics, near-field optics, and any problem where
subwavelength resolution of the energy transport by the radia-
tion field is of interest, this concept of optical rays loses its
significance. Energy flows along the field lines of the Poynting
vector, and these field lines are, in general, curves rather than
straight lines. A prime example is the diffraction of a plane
wave of light around an edge of a screen. It was shown for
the first time by Braunbek and Laukien [2] that close to the
edge, as compared to a wavelength, the field lines of energy
transport curve around the edge, and optical vortices appear
close to the screen. Optical vortices have been found in nu-
merous other systems, and by far the most studied optical vor-
tices are the vortices in the field of a Laguerre–Gaussian laser
beam [3–6]. Recently, it was shown by us [7] that when an
electric dipole emits radiation near an interface, singularities
and vortices appear in the near field as a result of the inter-
ference between the dipole radiation and the light reflected by
the interface.

A vortex of a very different nature is the source vortex.
Radiation emitted by an electric or magnetic multipole of
the order of (ℓ;m), oscillating at angular frequency ω, exhibits

a vortex structure [8], except for m ¼ 0. The field lines of the
Poynting vector swirl around the multipole axis near the
source, thereby forming a vortex. The dimension of this multi-
pole vortex is of the order of a wavelength, and at larger dis-
tances from the source the field lines go asymptotically over in
straight lines. We shall consider electric dipole radiation with
m ¼ 1. Such radiation is emitted, for instance, during a spon-
taneous electronic transition in an atom when the magnetic
quantum number of the initial state is one higher than the
magnetic quantum number of the final state [9]. The corre-
sponding electric dipole moment is a vector that rotates coun-
terclockwise in the x–y plane, when viewed from the positive
z axis. Figure 1 shows two field lines of the Poynting vector
for the radiation emitted by this dipole. The wavenumber is
ko ¼ ω=c, and the dimensionless Cartesian coordinates are de-
fined as �x ¼ kox, etc., so 2π corresponds to one optical wave-
length. It can be shown that each field line lies on a cone
[10,11], and we see from the figure that the spatial extent
of this “dipole vortex” is much smaller than a wavelength.

Another mechanism for the bending of the field lines of en-
ergy flow is damping by an embedding medium. When a linear
electric dipole (m ¼ 0) emits radiation in free space, the field
lines of the Poynting vector are straight lines coming out of the
dipole. It was recently shown by us [12] that when this dipole
is embedded in an absorbing medium, the field lines become
curves, and some even form closed loops, starting at the
dipole and returning to the dipole. Therefore, damping in a
material may lead to a redistribution of the flow of electro-
magnetic energy rather than just absorption along the path
of propagation.

An even more dramatic effect of an embedding medium
was reported recently [13]. When the rotating dipole, for
which the field lines of emission in free space are shown in
Fig. 1, is embedded in a double-negative metamaterial, the
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direction of rotation of the field lines around the z axis
reverses. For such a material, the index of refraction is
negative [14].

2. LOCALIZED SOURCE IN A MEDIUM
The optical properties of a linear isotropic homogeneous
material can be accounted for by the relative permittivity εr
and the relative permeability μr , and both are complex in gen-
eral. Due to causality, the imaginary parts of εr and μr are non-
negative. The index of refraction n is the solution of n2 ¼ εrμr ,
and we take the solution with Imn ≥ 0. This leaves an ambi-
guity in the definition of n when n2 > 0, and this can only hap-
pen when εr and μr are both positive or both negative. These
cases should be considered as limiting cases where the ima-
ginary parts of εr and μr go to zero [15]. It then follows that we
should take n > 0 if εr and μr are both positive and n < 0 if εr
and μr are both negative.

We shall assume that a localized source, embedded in the
medium, oscillates harmonically at angular frequency ω. The
current density of the source can be written as jðr; tÞ ¼
Re½jðrÞ expð−iωtÞ�, with jðrÞ being the complex amplitude.
The emitted electric field will then have the form Eðr; tÞ ¼
Re½EðrÞ expð−iωtÞ�, and a similar expression holds for the
magnetic field Bðr; tÞ. The complex amplitude of the electric
field is a solution of

∇ × ½∇ × EðrÞ� − n2k2oEðrÞ ¼ iωμoμrjðrÞ; ð1Þ

and the complex amplitude of the magnetic field follows as

BðrÞ ¼ −
i
ω∇ × EðrÞ: ð2Þ

It can be shown by inspection that any solution of Eq. (1), with
BðrÞ given by Eq. (2), satisfies all four Maxwell equations.

The solution of Eq. (1) can be found in terms of the Green’s
function for the scalar Helmholtz equation:

gðrÞ ¼ einkor

r
: ð3Þ

With a similar derivation as in Ref. [16], we obtain

EðrÞ ¼ −
i

3εoεrω
jðrÞ þ iωμoμr

4π

Z
d3r0jðr0Þgðr − r0Þ

þ i
4πεoεrω

Z
d3r0½jðr0Þ ·∇�∇gðr − r0Þ; ð4Þ

BðrÞ ¼ −
μoμr
4π

Z
d3r0jðr0Þ ×∇gðr − r0Þ: ð5Þ

The first term on the right-hand side of Eq. (4) comes from
moving the differential operators in the third term under
the integral sign [17]. Once the complex amplitude of the cur-
rent density jðrÞ of the source is known, Eqs. (4) and (5) give
the complex amplitudes of the radiated electric and magnetic
fields by the source, embedded in an infinite medium with the
parameters εr and μr and the index of refraction n.

3. ELECTRIC DIPOLE RADIATION
For an electric dipole, located at the origin of the coordinates,
the complex amplitude of the current density is jðrÞ ¼
−iωdδðrÞ [18], with d being a fixed vector, which in general
is complex valued. The electric dipole moment of the source
is then

dðtÞ ¼ Reðde−iωtÞ: ð6Þ

Equations (4) and (5) simplify to

EðrÞ ¼ −
1

3εoεr
dδðrÞ þ μrk2o

4πεo

�
dgðrÞ þ 1

n2k2o
½d ·∇�∇gðrÞ

�
; ð7Þ

BðrÞ ¼ iωμoμr
4π d ×∇gðrÞ; ð8Þ

and working out the derivatives of the Green’s function yields

EðrÞ ¼ −
1

3εoεr
dδðrÞ þ μrk2o

4πεo

�
d − ðr̂ · dÞr̂

þ ½d − 3ðr̂ · dÞr̂� i
nkor

�
1þ i

nkor

��
gðrÞ; ð9Þ

BðrÞ ¼ nμrk2o
4πεoc

ðr̂ × dÞ
�
1þ i

nkor

�
gðrÞ: ð10Þ

Here, r̂ ¼ r=r is the unit vector in the radially outward direc-
tion from the location of the dipole to the field point r. The
term containing δðrÞ in Eq. (9) is the self field of the dipole.
This part of the electric field only exists inside the point di-
pole, and it will be suppressed from here on.

4. POYNTING VECTOR FOR DIPOLE
RADIATION
Energy in an electromagnetic field flows along the field lines
of the Poynting vector. For time-harmonic fields in a linear
isotropic homogeneous medium, this vector is defined as [19]

Fig. 1. Two field lines of the Poynting vector for the radiation
emitted by a rotating electric dipole moment in free space. The dipole
moment rotates counterclockwise in the x–y plane when viewed from
the positive z axis. The orientation of the rotation of the field lines
around the z axis is the same as the rotation direction of the dipole.
The �x and �y axes have been lowered for clarity.
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SðrÞ ¼ 1
2μo

Re

�
1
μr

EðrÞ� × BðrÞ
�
: ð11Þ

Terms that oscillate at twice the optical frequency have been
dropped (time-averaged Poynting vector), and this makes SðrÞ
independent of time. We first write vector d as d ¼ dou, with
u · u� ¼ 1, and we introduce

Po ¼
cd2ok4o
12πεo

; ð12Þ

which equals the power that would be emitted by the same
dipole in free space. Then we set q ¼ kor, and therefore q ¼
kor is the dimensionless distance between the dipole and the
field point. In terms of the variable q, a distance of 2π corre-
sponds to one free-space wavelength. The field lines of the
Poynting vector are determined by the direction of SðrÞ at
the field point r, and not by its magnitude. So if we set

SðrÞ ¼ 3Po

8πr2 jμr j
2e−2qImnσðqÞ; ð13Þ

then the field lines of σðqÞ are the same as the field lines of
SðrÞ, because the factor that is split off is positive. Vector σðqÞ
is dimensionless and only depends on the dimensionless
representation q of the field point. We then obtain

σðqÞ ¼ ½1 − ðr̂ · uÞðr̂ · u�Þ�Re
�
n
μr

�
1þ i

nq

��
r̂þ 1

qjnj2
����1þ i

nq

����2
× f½1 − 3ðr̂ · uÞðr̂ · u�Þ�ImðεrÞr̂þ 2Im½εrðr̂ · u�Þu�g: ð14Þ

In order to see the significance of the various terms in
Eq. (14), we first consider the far field. When the distance
to the dipole is much larger than a wavelength, we have
q ≫ 1, and Eq. (14) becomes

σðqÞ ≈ ½1 − ðr̂ · uÞðr̂ · u�Þ�Re
�
n
μr

�
r̂: ð15Þ

The factor in square brackets is nonnegative, and it can be
shown that Reðn=μrÞ is positive [15]. The limiting case where
n=μr is purely imaginary will not be considered here. There-
fore, σðqÞ is approximately proportional to the radially out-
ward unit vector r̂, and consequently the field lines of the
Poynting vector in the far field run approximately radially out-
ward. This also implies that any curving of the field lines can
only occur in the near field, e.g., within a distance of about a
wavelength from the dipole.

Furthermore, all terms in σðqÞ are proportional to r̂, except
for the term containing the factor 2Im½εrðr̂ · u�Þu�. Therefore,
any curving of the field lines is due to this term. As a function
of q, this term is Oð1=qÞ in the far field, as compared to the
leading term, which is Oð1Þ and given by Eq. (15). In the near
field, however, the term containing 2Im½εrðr̂ · u�Þu� is Oð1=q3Þ,
and the term containing the factor in braces in Eq. (14) is
dominant in the near field. If 2Im½εrðr̂ · u�Þu� is nonzero, we
may expect a significant curving of the field lines near the
source. For instance, for a linear dipole, the vector u is real,
and this factor is proportional to Imεr . Because the imaginary
part of εr represents damping in the material, the curving of

the field lines near the source is a result of absorption in the
medium [12].

5. POYNTING VECTOR FOR A CIRCULAR
DIPOLE
When the vector u is taken as u ¼ −ðex þ ieyÞ=

ffiffiffi
2

p
, then the

dipole moment of Eq. (6) becomes

dðtÞ ¼ −
doffiffiffi
2

p ½ex cosðωtÞ þ ey sinðωtÞ�: ð16Þ

This dipole moment is a rotating vector in the x–y plane, and
the direction of rotation is counterclockwise when viewed
from the positive z axis. In the remainder of this paper we
shall consider the field lines of energy transport in the radia-
tion emitted by this rotating dipole.

Equation (14) becomes

σðqÞ ¼
�
1 −

1
2
sin2 θ

�
Re

�
n
μr

�
1þ i

nq

��
r̂þ 1

qjnj2
����1þ i

nq

����2

×

���
1 −

1
2
sin2 θ

�
r̂þ 1

2
sinð2θÞeθ

�
Imεr

þ eϕðsin θÞReεr
�
; ð17Þ

where ðr; θ;ϕÞ are the spherical coordinates; q ¼ kor; and r̂,
eθ, and eϕ are the associated unit vectors. It is easy to show
that

Re

�
n
μr

�
1þ i

nq

��
> 0; ð18Þ

and therefore the first term on the right-hand side is in the
radially outward direction. If this would be the only term in
σðqÞ, the field lines would be straight lines, coming out of
the dipole. The second term on the right-hand side has a part
proportional to eϕðsin θÞReεr , and if the imaginary part of εr is
zero, this is the only additional term. For a given field point r,
this gives σðqÞ a component in the ϕ direction, which is the
rotation direction around the z axis. For a small q, this term
is Oð1=q3Þ, and this is large in the near field. This term gives
the field lines a rotation around the z axis, and the resulting
field lines are shown in Fig. 1 for εr ¼ 1 (free space). Because
σðqÞ has no θ component for εr real, each field line lies on a
cone with its axis as the z axis.

When there is damping in the material due to the imaginary
part of the permittivity, a term containing ð1 − 1

2 sin
2 θÞr̂

appears, and this term adds to the radially outgoing term.
In addition, in the near field, the vector σðqÞ now has a θ com-
ponent due to the term containing sinð2θÞeθ. This will lead to a
redirection of the field lines, and hence the field lines will not
lie on a cone anymore. In other words, the flow of energy will
be redistributed due to the damping.

6. FIELD LINES OF THE POYNTING
VECTOR
Let qðuÞ be a parameterization of a field line of σðqÞ, with u
being a dummy variable. Because at any point q on a field line
the vector σðqÞ is on the tangent line, the field lines are a
solution of
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dq
du

¼ σðqÞ: ð19Þ

One field line goes through every point in space, so given an
initial point qi on a field line, Eq. (19) determines the field line
through that point. The field line pictures in this paper are
made by numerically solving Eq. (19).

In spherical coordinates ðq; θ;ϕÞ, Eq. (19) becomes

dq
du

¼ σðqÞ · r̂; ð20Þ

q
dθ
du

¼ σðqÞ · eθ; ð21Þ

q sin θ dϕ
du

¼ σðqÞ · eϕ; ð22Þ

and the right-hand sides can be found from Eq. (17). This
yields the set of equations

dq
du

¼ gðq; θÞ; ð23Þ

dθ
du

¼ 1

2q2jnj2
����1þ i

nq

����2sinð2θÞImεr; ð24Þ

dϕ
du

¼ 1

q2jnj2
����1þ i

nq

����2Reεr; ð25Þ

with

gðq; θÞ ¼
�
1 −

1
2
sin2 θ

��
Re

�
n
μr

�
1þ i

nq

��

þ 1

qjnj2
����1þ i

nq

����2Imεr
�
: ð26Þ

A field line runs into thedirectionof increasingu. FromEq. (18)
and Imεr ≥ 0, it follows that the function gðq; θÞ is positive.
FromEq. (23)we then see that q increasesmonotonically along
a field line, and because the function gðq; θÞ is larger than
Reðn=μrÞ=2, the value of q increases without bounds along a
field line. This implies that field lines start at the dipole
(q ¼ 0), and run away from the dipole to the far field. Far away
from the dipole, q is large, and the right-hand sides of Eqs. (24)
and (25) go to zero. Therefore, in the far field, the values of θ
and ϕ approach constants, say θo and ϕo. These are the asymp-
totic values of θ and ϕ for a large q. Consequently, in the far
field, a field line asymptotically approaches a straight line,
which runs into the direction (θo;ϕo).

7. ROTATION OF THE FIELD LINES
Angle ϕ is the angle around the z axis, and we see from
Eq. (25) that dϕ=du is positive when Reεr is positive. There-
fore, ϕ increases along a field line, and the field line swirls
around the z axis in the positive direction, as in Fig. 1.
The rotation direction of the field lines around the z axis is
the same as the rotation direction of the dipole moment in
the x–y plane. However, when Reεr is negative, angle ϕ de-

creases along a field line, and the field line rotates around
the z axis opposite to the rotation direction of the dipole mo-
ment. We conclude that the vortex reverses its direction of
rotation, as compared to the direction of rotation of the di-
pole, when the real part of the permittivity is negative.

Because q increases monotonically along a field line, we
can consider q as the independent variable, rather than u.
From Eqs. (23)–(25) we then obtain

dθ
dq

¼ 1
gðq; θÞ

1

2q2jnj2
����1þ i

nq

����2sinð2θÞImεr; ð27Þ

dϕ
dq

¼ 1
gðq; θÞ

1

q2jnj2
����1þ i

nq

����2Reεr: ð28Þ

We now consider the solution for a small q. When Imεr ¼ 0,
we see from Eq. (27) that θ is constant along a field line, and
therefore a field line lies on a cone, as in Fig. 1. Then we ex-
pand the right-hand side of Eq. (28) in the neighborhood of
q ¼ 0, and we integrate to obtain ϕðqÞ. This yields

ϕðqÞ ¼

8>><
>>:

O
	

1
q3



; Imμr ¼ 0

O
	

1
q2



; Imμr ≠ 0

: ð29Þ

For q → 0, the value of ϕðqÞ goes to ∞ or −∞ rapidly, and this
leads to a large number of rotations of a field line around the z
axis. Close to the dipole, the number of rotations is so large
that the separate turns cannot be distinguished anymore in the
neighborhood of the dipole. This can be seen in Fig. 1. When
Imεr ≠ 0, Eq. (28) becomes

dϕ
dq

≈
1

1 − 1
2 sin

2 θ
1
αq ; ð30Þ

for a small q. Here we have set

α ¼ Imεr
Reεr

: ð31Þ

In Eq. (30), θ still depends on q. From Eq. (27) we can find θ
for a small q (Section 8), and this yields

ϕðqÞ ¼
(

1
α ln qþ Oð1Þ; z ≠ 0
2
α ln qþ Oð1Þ z ¼ 0

: ð32Þ

For q → 0, the value of ϕðqÞ goes to −∞ for α > 0, so Reεr > 0,
and to ∞ for Reεr < 0. This is the same as for the case
Imεr ¼ 0. However, the approach of ϕðqÞ to �∞ is now loga-
rithmic, which is much slower than for Imεr ¼ 0. Therefore,
the very dense windings around the z axis become much thin-
ner, and this is shown in Figs. 2 and 3. Due to the damping, it
appears as if the field lines rotate around the z axis only a
few times.

8. FUNNEL VORTEX
When Imεr ¼ 0, field lines lie on a cone, as in Fig. 1, and they
are very dense near the location of the dipole. We see from
Figs. 2 and 3 that when Imεr ≠ 0 the field lines are not only

Li et al. Vol. 28, No. 5 / May 2011 / J. Opt. Soc. Am. A 781



less dense near the source, but they also do not lie on a cone
anymore. It follows from Eq. (25) that ϕ increases or de-
creases monotonically along a field line. We shall now see
ϕ as the independent parameter, and we consider angle θ
as a function of ϕ. From Eqs. (27) and (28) we then obtain

dθ
dϕ ¼ 1

2
α sinð2θÞ: ð33Þ

The solution of this equation is

tan θ ¼ eαðϕ−ϕiÞ tan θi; ð34Þ

with (θi;ϕi) the spherical coordinate angles of the initial
point. We now consider again the behavior of a field line close
to the dipole, so the limit q → 0. It follows from the previous
section that ϕ → −∞ for α > 0, and to ∞ for α < 0, in the limit
q → 0. Therefore, αϕ → −∞, and tan θ goes to zero for q → 0. If

the initial point is in the region z > 0, so 0 < θi < π=2, this im-
plies that θ → 0 for q → 0. On the other hand, if the initial point
is in the region z < 0, so π=2 < θi < π, we have θ → π. For an
initial point in the x–y plane, we have θi ¼ π=2. It follows from
Eq. (17) that at any point in the x–y plane, the Poynting vector
is in the x–y plane. Therefore, a field line through a point in the
x–y plane lies entirely in the x–y plane. So, if θi ¼ π=2, then
θ ¼ π=2 for the entire field line. It follows from Eqs. (32) and
(34) that tan θ ¼ OðqÞ for α ≠ 0 and θi ≠ π=2. Therefore, we
have for q → 0

θðqÞ ¼
8<
:

OðqÞ; z > 0
π=2; z ¼ 0

π þ OðqÞ; z < 0
; ð35Þ

when Imεr ≠ 0. This result can also be derived by expanding
the right-hand side of Eq. (27) in a Taylor series in q.

It follows from Eq. (35) that we have θ ¼ 0, θ ¼ π=2, or θ ¼
π for q → 0, when the imaginary part of εr is finite. Because the
radiated energy is emitted along a field line, we come to the
remarkable conclusion that due to the damping, all energy is
emitted along the z axis or along the x–y plane. This is in sharp
contrast to the situation for Imεr ¼ 0, because then the field
lines lie on any cone around the z axis. Furthermore, as a re-
sult of the damping, the field lines now swirl around on a fun-
nel surface rather than a cone. This funnel shape can clearly
be seen in Figs. 2 and 3. Figure 4 illustrates that energy is only
emitted along the z axis or along the x–y plane.

9. DISPLACEMENT IN THE FAR FIELD
The solution of Eq. (27) gives θ as a function of the distance q
to the dipole. Figure 5 shows graphs of θðqÞ for several initial
values of (qi; θi). We see that for θi < π=2, θðqÞ goes to zero for
q → 0, and for θi > π=2, the value of θðqÞ goes to π, in agree-
ment with Eq. (35). For large q, e.g., in the far field, each curve
levels off to a constant θo. Similarly, the function ϕðqÞ diverges

Fig. 2. Two field lines of the Poynting vector for the same dipole as in
Fig. 1, but now the dipole is embedded in a medium with εr ¼
1þ 0:07i and μr ¼ 1. Due to the damping, the rotations of the field
lines near the dipole are much less dense, as compared to Fig. 1,
and the cone shapes of Fig. 1 become funnels.

Fig. 3. Same as Fig. 2, but now with εr ¼ 1þ 0:2i and μr ¼ 1. We see
that due to the increased damping, there are hardly any rotations of
the field lines around the z axis left. In the far field, a field line asymp-
totically approaches a straight line, which is the dashed line ℓ. This
line is determined by the observation angles (θo;ϕo). The intersection
of ℓ with the x–y plane is indicated by qd, which is the virtual dis-
placement vector of the dipole.

Fig. 4. Three field lines of the Poynting vector for εr ¼ −1þ 0:1i and
μr ¼ 1, and for the same dipole as in Fig. 1. Because Reεr < 0, the field
lines rotate clockwise in the x–y plane (reversal of the vortex). This
figure illustrates that energy is only emitted along the z axis or along
the x–y plane.
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near the source, and it goes to a constant, ϕo, in the far field. At
a large distance from the dipole, each field line approaches
asymptotically a straight line ℓ, which runs into the direction
(θo;ϕo). This is shown in Fig. 3. Due to the rotation of a field
line near the source, this line does not go through the origin of
coordinates, and this gives rise to a virtual displacement of the
location of the dipole when viewed from the far field [20].

In order to determine line ℓ, we make an asymptotic expan-
sion of θðqÞ for a large q, and for the given observation angles
(θo;ϕo). We write θðqÞ ¼ θo þ Oð1=qÞ, and we expand the
right-hand sides of Eqs. (27) and (28) up to the leading order
in q. Upon integration, we then obtain

θðqÞ ¼ θo − ZðθoÞ
1
2q

sinð2θoÞImεr þ :::; ð36Þ

ϕðqÞ ¼ ϕo − ZðθoÞ
1
q
Reεr þ :::; ð37Þ

where we have set

ZðθoÞ ¼
1

jnj2Reðn=μrÞ
�
1 − 1

2 sin
2 θo

� : ð38Þ

The Cartesian coordinates then follow as �x ¼
q sin θðqÞ cosϕðqÞ, etc. For the field line that runs asymptoti-
cally into the direction (θo;ϕo), we then find

�x ¼ q sin θo cosϕo þ sin θo sinϕoZðθoÞReεr
− cos θo cosϕoZðθoÞ

1
2
sinð2θoÞImεr þ :::; ð39Þ

for the �x coordinate of a point on this field line, and similar
expressions hold for the �y and �z coordinates. The parameter
equation for line ℓ then follows by omitting the ellipses and
replacing q by a new parameter t (because this parameter
does not represent the distance to the origin anymore).

The resulting equation for line ℓ can be written in a trans-
parent form by adopting a vector notation. The radial unit vec-
tor in the direction (θo;ϕo) is

r̂o ¼ ðex cosϕo þ ey sinϕoÞ sin θo þ ez cos θo; ð40Þ

and the other two unit vectors associated with the spherical
coordinate system are

eθo ¼ ðex cosϕo þ ey sinϕoÞ cos θo − ez sin θo; ð41Þ

eϕo
¼ −ex sinϕo þ ey cosϕo: ð42Þ

A point on line ℓ is represented by vector q ¼ �xex þ �yey þ �zez.
We then find

q ¼ tr̂o þ qf ð43Þ

as the parameter representation of line ℓ. Here we have
introduced the vector

qf ¼ − sin θoZðθoÞ½eϕo
ReðεrÞ þ eθo cos θoImðεrÞ�: ð44Þ

Equation (43) has a simple interpretation, as illustrated in
Fig. 6. Vector tr̂o is a radially outward unit vector. The vectors
eθo and eϕo

are perpendicular to tr̂o, and they can be consid-
ered to span a plane perpendicular to tr̂o, with the end point of
tr̂o as the origin O0 in the plane, as shown in Fig. 6. In other
words, the plane is the tangent plane of a sphere with radius t
around the dipole and at the location represented by the di-
rections (θo;ϕo). It follows from Eq. (44) that qf lies in this
plane. Therefore, if qf is drawn from O0 as in the figure, then
line ℓ intersects this plane under a 90° angle at the end point of
vector qf . Parameter t equals the distance between O0 and the
dipole. When the plane shown in the figure is in the far field,
then line ℓ approximately coincides with the field line that
runs into the (θo;ϕo) direction. Therefore, in the far field this
field line crosses the plane at location qf and under a 90° an-
gle. Consequently, vector qf represents the displacement of
this field line as compared to the radially outward direction.
This displacement is a result of the rotation of the field line
near the source, and as such, this near-field phenomenon
should be observable in the far field. The plane in Fig. 6 could
be considered the observation plane for the image of the di-
pole. Although the image of the dipole is a continuous inten-
sity distribution over this plane, the vector qf gives a good
indication as to where the maximum of the intensity distribu-
tion is located [21]. In a recent experiment [22], this shift of the
intensity distribution was measured for a dipole in free space.

The positive and negative z axes are field lines, correspond-
ing to the observation directions θo ¼ 0 and π. Due to the over-
all factor sin θo in Eq. (44), the displacement in these

Fig. 5. Graphs of θ as a function q for various initial points (qi; θi),
and for εr ¼ 1þ 0:08i, μr ¼ 1. The initial points for each curve are
indicated by a black dot. For a large q, each curve approaches a con-
stant θo, representing the value of θ in the far field. The line at θ ¼ π=2
represents field lines that lie in the x–y plane.

Fig. 6. The observation plane in the direction (θo;ϕo) is perpendicu-
lar to tr̂o and spanned by the vectors eθo and eϕo

. The asymptote ℓ of
the corresponding field line intersects the plane at the location of the
displacement vector qf . Vector qf is oriented as shown when the real
part of εr is positive and 0 < θo < π=2.
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directions is zero, as it should be. We also notice that qf is
independent of the observation angle ϕo, as could be expected
for a circular dipole. Without damping, so Imεr ¼ 0, vector qf
is in the ϕ direction. Because ZðθoÞ is positive, the displace-
ment is in the negative ϕ direction for Reεr > 0 and in the po-
sitive ϕ direction for Reεr < 0. This is consistent with the fact
that the dipole vortex changes direction with the sign of Reεr .
Due to the damping, there is also a displacement in the θ di-
rection. Because Imεr ≥ 0, the displacement of the field line is
in the negative θ direction for z > 0 and in the positive θ di-
rection for z < 0. Or we could say that the displacement in the
θ direction is away from the x–y plane. It can be checked that
the maximum displacement in the ϕ direction occurs for
θo ¼ π=2, e.g., for observation in the x–y plane. The displace-
ment in the θ direction is zero for θo ¼ 0, π=2 and π, and it is
maximum for θo ¼ 54:7° and 125:3° (cos 2θo ¼ −1=3).

10. APPARENT LOCATION OF THE DIPOLE
IN THE x–y PLANE
The dipole is located at the origin of coordinates in the x–y
plane, but when viewed from the far field, it appears as if
its position is displaced, as illustrated in Fig. 3. The apparent
position of the dipole is at the intersection of line ℓ and the x–y
plane. We represent this position by a vector qd in the x–y
plane, and this vector is found to be

qd ¼ − sin θoZðθoÞ½eϕo
ReðεrÞ þ eρo ImðεrÞ�; ð45Þ

where eρo ¼ ex cosϕo þ ey sinϕo is the radially outward unit
vector in the x–y plane. Vector qd gives the virtual displace-
ment of the dipole in the x–y plane. The magnitude of the dis-
placement is qd ¼ sin θoZðθoÞjεr j, and this is

qd ¼ sin θo
jμr jReðn=μrÞ

�
1 − 1

2 sin
2 θo

� : ð46Þ

This displacement is of the same order of magnitude as the
spatial extent of the vortex, and typically this is of sub-
wavelength dimension, as can be seen in Figs. 1–4. However,
the factor Reðn=μrÞ in the numerator may become small for
certain materials, in which case the displacement may be-
come much larger than a wavelength. This would be the case,
for instance, for μr ¼ 1, εr approximately negative. Then n is
approximately positive imaginary, and the displacement is
very large.

11. CONCLUSIONS
The field lines of the Poynting vector for the radiation emitted
in free space by a circular electric dipole, rotating in the x–y
plane, are curves that wind around the z axis, and each field
line lies on a cone around the z axis. These flow lines of
energy swirl around the z axis in the same direction as the
rotation direction of the dipole moment. When the dipole is
embedded in a medium with relative permittivity εr and rela-
tive permeability μr , the flow pattern of energy changes dra-
matically. It is shown that when the real part of εr is negative,
the rotation of the field lines around the z axis changes direc-
tion, and therefore the rotation direction of the energy is op-
posite to the rotation direction of the dipole moment.

The imaginary parts of εr and μr give rise to absorption in
the surrounding material. It appears that the absorption does
not only give rise to a damping of the energy upon propagation
but also to a redistribution of the energy flow. When the ima-
ginary part of εr is nonzero, the field lines do not lie on a cone
anymore, but they swirl around on a funnel-shaped surface.
Furthermore, the number of rotations of a field line around
the z axis decreases considerably due to the damping, as is
most obvious from comparing Figs. 1 and 2. In addition, when
Imεr ≠ 0 all radiation is emitted along the z axis or in the x–y
plane, whereas for a dipole in free space radiation is emitted in
all directions.

Far away from the dipole, a field line approaches asympto-
tically a straight line. Due to the rotation of a field line near the
source, this line does not go through the origin of the coordi-
nates. As a result, when viewed from the far field, the field line
is displaced as compared to the radially outward direction,
and therefore the image of the dipole in the far field is shifted
with respect to the radial direction. This displacement is af-
fected by εr and μr , and the explicit expression for qf is given
by Eq. (44). In free space, the maximum value of the magni-
tude of the displacement is qf ¼ 2, which occurs for θo ¼ π=2,
but when the dipole is embedded in a material medium, this
can be much larger.

References
1. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon,

1980), Chap. 3.
2. W. Braunbek and G. Laukien, “Einzelheiten zur Halbebenen-

Beugung,” Optik 9, 174–179 (1952).
3. M. Vasnetsov and K. Staliunas eds. Optical Vortices, Horizons in

World Physics (Nova Science, 1999), Vol. 228.
4. A. V. Volyar, V. G. Shvedov, and T. A. Fadeeva, “The structure of

a nonparaxial Gaussian beam near the focus: II. optical vor-
tices,” Opt. Spectrosc. 90, 93–100 (2001).

5. V. A. Pas’ko, M. S. Soskin, and M. V. Vasnetsov, “Transversal
optical vortex,” Opt. Commun. 198, 49–56 (2001).

6. A. V. Volyar, T. A. Fadeeva, and V. G. Shvedov, “Optical vortex
generation and Jones vector formalism,” Opt. Spectrosc. 93,
267–272 (2002).

7. X. Li and H. F. Arnoldus, “Electric dipole radiation near a mir-
ror,” Phys. Rev. A 81, 053844 (2010).

8. H. F. Arnoldus, “Vortices in multipole radiation,” Opt. Commun.
252, 253–261 (2005).

9. C. T. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum
Mechanics (Wiley, 1977), Vol. 1, p. 838.

10. H. F. Arnoldus and J. T. Foley, “The dipole vortex,” Opt.
Commun. 231, 115–128 (2004).

11. J. Shu, X. Li, and H. F. Arnoldus, “Energy flow lines for the ra-
diation emitted by a dipole,” J. Mod. Opt. 55, 2457–2471 (2008).

12. X. Li, D. M. Pierce, and H. F. Arnoldus, “Redistribution of energy
flow in a material due to damping,” Opt. Lett. 36, 349–351
(2011).

13. X. Li and H. F. Arnoldus, “Reversal of the dipole vortex in a
negative index of refraction material,” Phys. Lett. A 374,
4479–4482 (2010).

14. V. G. Veselago, “The electrodynamics of substances with simul-
taneously negative values of ε and μ,” Sov. Phys. Uspekhi 10,
509–514 (1968).

15. M. W. McCall, A. Lakhtakia, and W. S. Weiglhofer, “The negative
index of refraction demystified,” Eur. J. Phys. 23, 353–359
(2002).

16. H. F. Arnoldus, “Evanescent waves in the near and the far field,”
in Advances in Imaging and Electron Physics, P. W. Hawkes,
ed. (Elsevier, 2004), Vol. 132, pp. 1–67.

17. J. van Kranendonk and J. E. Sipe, “Foundations of the
macroscopic electromagnetic theory of dielectric media,” Pro-
gress in Optics, E. Wolf, ed. (North-Holland, 1977), Vol. 15,
pp. 247–350.

784 J. Opt. Soc. Am. A / Vol. 28, No. 5 / May 2011 Li et al.



18. J. van Bladel, Singular Electromagnetic Fields and Sources
(Clarendon, 1991), p. 40.

19. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley,
1998), p. 265.

20. H. F. Arnoldus, X. Li, and J. Shu, “Sub-wavelength displacement
of the far-field image of a radiating dipole,” Opt. Lett. 33,
1446–1448 (2008).

21. J. Shu, X. Li, and H. F. Arnoldus, “Nanoscale shift of the intensity
distribution of dipole radiation,” J. Opt. Soc. Am. A 26,
395–402 (2009).

22. D. Haefner, S. Sukhov, and A. Dogariu, “Spin–Hall effect of
light in spherical geometry,” Phys. Rev. Lett. 102, 123903
(2009).

Li et al. Vol. 28, No. 5 / May 2011 / J. Opt. Soc. Am. A 785


