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Abstract 

The Magnetic Field Integral Equation is an integral equation for the current density 
induced on the surface of a perfect conductor by an incident electromagnetic field. For 
many scattering problems this equation can be solved for the current density, after which 
the scattered field can be obtained by integration. For scattering off a mirror, the 
Magnetic Field Integral Equation can be solved easily. The current density at a point on 
the mirror is determined in a simple way by the incident magnetic field at the same point. 
We show that for reflection and diffraction of electromagnetic radiation by a thin sheet of 
finite size and possibly with an aperture, application of the Magnetic Field Integral 
Equation yields a relation between the current densities at both sides of the thin sheet 
(illuminated and shadow sides). The resulting equation relates the current densities at 
opposites sides of the sheet, evaluated at the same point, to the incident magnetic field at 
that point. For an infinite sheet without an aperture the equation reduces to the result for a 
mirror. 

1. Introduction 

When electromagnetic radiation is incident upon a dielectric or metallic object, it induces 
a current density in the material. This current density generates electromagnetic radiation, 
which is observed as the scattered, diffracted or reflected field by the object. Inside the 
medium, this radiation from the current density adds to the incident field, giving the 
refracted field. One approach for solving several such scattering problems is the 
boundary condition method, which is also referred to as the differential equation method. 
For the material, a constitutive equation relates the current density to the local electric 
field. Maxwell's equations for the electric and magnetic fields then become 
homogeneous, and general solutions of these equations are constructed for the region 
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inside and the region outside the object. The arbitrary constants in the solution are then 
determined by applying the boundary conditions for the interface of the two media. This 
method has been proven successful for scattering of plane waves by a sphere or small 
particles [1-6]. An entirely different approach is the integral equation method. By 
manipulating Maxwell's equations, an integral equation for the electric or magnetic field 
is derived. The first integral equation appears to be Kirchhoff's integral theorem [7,8], 
which expresses the electric field at a given point in terms of its values and normal 
derivatives everywhere on a boundary surface. The Ewald-Oseen extinction theorem and 
variations on this theorem [9-14] also involve the values and the normal derivatives of the 
fields at the boundary, and these are assumed to be known.  

Kirchhoff's integral theorem and the various extinction theorems follow from 
applications of Green's theorem. In an alternative approach, the electric field is 
considered as generated by a current density in the material. The diffracted or reflected 
electric field can then be written as an integral over the unknown current density, 
involving the Green's function for the wave equation. An additional constitutive equation 
then relates the current density to the electric field, yielding an integral equation for the 
electric field which has the incident electric field as the inhomogeneous term. In a similar 
way an equation for the magnetic field can be derived, and there exist all kinds of 
variations on integral equations of this type [15,16]. A major advantage over relations 
derived from Green's theorem is that these integral equations do not require the 
knowledge of the fields and their normal derivatives on the boundary. Another advantage 
is that any solution automatically satisfies the boundary conditions at the interface [17].  
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Figure 1.  An electromagnetic field is incident upon a metallic object, assumed to have 
infinite conductivity.  The surface S of the material can be any shape, and either infinite 
in extend or closed.  The unit normal vector )(ˆ rn at point r is directed from the medium 
towards free space, and the origin of coordinates  can be chosen arbitrarily.  The 
Magnetic Field Integral Equation relates the surface current density )(ri to the values 

)'(ri  at all other points 'r . 
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Particularly interesting is the diffraction and reflection of radiation by a metallic 
object in the limit where the conductivity of the material is infinite. Such material is 
impenetrable for radiation, and therefore all induced current is confined to the surface of 
the material. This surface current density ),( tri  generates the scattered field, and inside 
the perfect conductor the field produced by ),( tri  cancels exactly the incident field. We 
shall assume a harmonic time dependence with angular frequency ω for the incident field. 
The magnetic component of this field will be written as 

 ( )tiet ω−= incinc )(Re),( rBrB  , (1) 

with inc)(rB  the complex amplitude, and all time dependent fields will have the same 
time dependence, in particular ),( tri . The incident field illuminates the material, as 
illustrated in Figure 1, and a current density )(ri  is induced in the surface at the point r. 
For this situation, an integral equation for )(ri  can be derived, which has inc)(rB  as 
inhomogeneous term. This integral equation (next section) is known as the Magnetic 
Field Integral Equation, although it is an equation for the surface current density. This 
equation has been widely applied to numerically solve scattering problems for objects of 
arbitrary shape and to the computation of the field reflected by a rough surface [18,19]. 
We shall consider the reflection and diffraction of incident radiation by a thin sheet with 
an aperture and of finite dimension. The current density )(ri  generates specular 
(reflected) radiation, and leads to diffraction around the edges. We shall show that 
application of the Magnetic Field Integral Equation on one hand yields an interesting 
result for the current density, but on the other hand does not provide a complete account 
of the scattering problem.  

2. The Magnetic Field Integral Equation 

Let an electromagnetic field with angular frequency ω be incident upon an object with a 
surface S of arbitrary shape, as in Figure 1. For perfectly-conducting material, all induced 
current is surface current )(ri . The magnetic field )(rB  at point r can then be written as 

 ∫ −∇×−= )'()'('d
4

)()( o
inc rrrirBrB gS

π
μ  ,    (r off S)  (2) 

with inc)(rB  the given, but further arbitrary, incident field. The second term on the right-
hand side equals the magnetic field generated by the current, with 
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the free-space Green's function for the Helmholtz equation. The integral in Eq. (2) runs 
over the surface S, and r' indicates a point in S. It is essential that the field point r is not 
in S, since )'( rr −∇g  has a singularity for rr →' .  

Let us now consider the field points +r  and −r , just outside and inside the material, 
respectively, and near the point r in S. With )(ˆ rn  the unit normal vector on S at r, 
directed from the medium into the vacuum, we can then write )(ˆ rnrr ε±=±  with ε 
small. As long as ε is finite, Eq. (2) applies with r replaced by ±r . For the integral over S, 
we leave out a circle with radius δ around r, and then let ε approach zero. In the limit 

0→ε , there is a finite contribution from the singularity at rr =' , and this contribution 
remains finite for 0→δ . The result of this procedure is [17] 

 ,)'()'('d
4

)(ˆ)()()( o
o2

1
inc ∫ −∇×−×±=± rrrirnrirBrB gSP

π
μ

μ  (r in S)  (4) 

expressing the total magnetic field just outside and inside the material as the sum of the 
incident field at r and the contribution from the current density )(ri . The integral over S 
is now a Cauchy Principal Value integral, and the second term on the right-hand side is 
the finite contribution from the singularity. Taking the difference between the plus and 
minus equations yields 

 )(ˆ)()()( o rnrirBrB ×=− −+ μ  , (5) 

which is the usual boundary condition for an interface carrying a surface current density 
)(ri .  
When the material is a perfect conductor, the electromagnetic field inside vanishes. 

In particular at the point −r  we have 0)( =−rB  and Eq. (4) with the lower sign becomes 

 ,)()(ˆ2)'()'('d)(ˆ
2
1)( inc

o
rBrnrrrirnri ×=−∇××+ ∫ μπ

gSP  (6) 

after taking the cross product with )(ˆ rn . This integral equation for the unknown current 
density )(ri  is the Magnetic Field Integral Equation, originally due to Maue [20]. After 
solving Eq. (6) for )(ri , if possible, the magnetic field at a field point r outside the 
material follows by integration from Eq. (2). For any r inside the medium, the term with 
the integral in Eq. (2) should cancel exactly the incident field inc)(rB  when )(ri  is a 
solution of Eq. (6). Equation (5) becomes )(ˆ)()( o rnrirB ×=+ μ  for a perfect conductor, 
and the cross product with )(ˆ rn  gives 

 )()(ˆ1)(
o

+×= rBrnri
μ

 , (7) 

since )(ri  is in the tangent plane of S at r.  
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3. Reflection off a Mirror 

A mirror is an infinite slab of perfect conductor with thickness LΔ , as shown in Figure 
2. Since the surface of the mirror is flat, the unit normal vector )(ˆ rn  is the same for all r, 
and points from the material to the vacuum. The gradient of the Green's function is 

 ( ) |'|
o3

o1|'|
|'|
')'( rrrr

rr
rrrr −−−

−

−
=−∇ ikeikg  , (8) 

which is proportional to 'rr − . In Eq. (6), both r and r' are in the surface of the mirror, 
and so is )'(ri . Therefore we see that )'()'( rrri −∇× g  is proportional to n̂ , and we have 

 0)]'()'([ˆ =−∇×× rrrin g  . (9) 
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Figure 2.  A mirror is a (flat) layer of perfectly-conducting material, infinite in extend, 
and with thickness LΔ .  The incident field induces a current density )(ri  on the surface, 
and this vector field can be visualized by its field line pattern, as schematically indicated 
by the curves.   
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The Magnetic Field Integral Equation for a mirror thus reduces to [21] 

 inc
o

)(ˆ2)( rBnri ×=
μ

 , (10) 

which is also the solution )(ri  of this equation. We find that the surface current density 
in a mirror at position r on its surface is determined by the incident magnetic field at the 
same position. It is interesting to compare this result to the boundary condition (7), which 
holds for any surface. In Eq. (7), the field )( +rB  is the total magnetic field just outside 
the conductor, which includes the magnetic field generated by the current everywhere on 
the surface. The field )( +rB  in Eq. (7) is unknown, whereas the field inc)(rB  in Eq. (10) 
is given.  

inc 
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Figure 3.  A field is incident upon a perfectly-conducting thin sheet of finite size, and 
possibly with an aperture.  The z-direction is taken as in Figure 2. so that the unit normal 
vectors n̂  are ze  and ze− , for the illuminated and shadow sides, respectively 

4. Scattering off a Thin Sheet 

The current density on the surface of a mirror, given by Eq. (10), is independent of the 
thickness LΔ  of the conductor, and holds therefore also in the limit 0→Δ L . We shall 
now consider a (flat) sheet of perfectly-conducting material with thickness LΔ , as in 
Figure 3. The sheet may be finite in extend and may have an opening (aperture) in it. The  
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Figure 4.  The figure illustrates the geometry for the contribution of the current density at 
point 'r  at the b-side to the current density at point r at the a-side in the Magnetic Field 
Integral Equation.   

incident field will then pass through the aperture and continue past the edges. It will also 
diffract around the edges of the screen and the aperture. We shall call the illuminated side 
the a side and the shadow side the b side, as in the figure. For the mirror, all current 
density was at the a side, but now radiation can appear at the b side as well, and this will 
induce a current density at this shadow side. We shall indicate the respective current 
densities by ai  and bi , and consider the limit 0→Δ L . For a thin sheet without edges or 
an aperture (mirror) we have 0b =i , and ai  is given by Eq. (10).  

Let the a side of the material be the xy-plane, with the unit normal for this surface 
equal to ze . Then the b side has the same shape as the a side, is displaced over a distance 

LΔ  in the negative z-direction, and has ze−  as its unit normal. Let the fixed point r in 
the Magnetic Field Integral Equation be in the a side, so that the first term on the left-
hand side of Eq. (6) is )(a ri . The integral in Eq. (6) runs over both the a- and the b-
surface, and for 0→Δ L  there is no contribution from the edges. For any point r' in 
surface a, the integrand vanishes for the same reason as in Sec. 3. Therefore, the integral 
in Eq. (6) only has a contribution from the b-surface. Then the P in front of the integral 
can be omitted, and with zern =)(ˆ , a vector identity and 0)'(b =⋅ zeri , the theorem 
becomes 

  
[ ] inc

o
ba )(2)'()'('d

2
1)( rBerreriri ×=−∇⋅+ ∫ zz gS

μπ
 , (11) 

for 0→Δ L . Let us now consider the contribution from bi  at r' for a given r. When the 
sheet thickness LΔ  approaches zero, angle θ in Figure 4 goes to 2/π . Since )'( rr −∇g  
is proportional to 'rr −  we see that )'( rre −∇⋅ gz  vanishes for 0→Δ L . Or with 

Lz Δ=−⋅ )'( rre  we have from Eq. (8) 
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Δ=−∇⋅ ik
z eikLg  , (12) 

for any LΔ , and this goes to zero for 0→Δ L . The only possible exception would be 
when 'rr −  would go to zero as well in the limit 0→Δ L .  

From the argument in the previous paragraph it follows that the integral over the b-
side in Eq. (11) can only have a possible contribution from the current density )'(b ri  if r' 
is in the immediate neighborhood of r. Let  be the projection of point r onto the b-side, 
as in Figure 5, so that the distance between r and  equals LΔ . Then we consider a 
circle with a small radius δ around . Since the surface integral can only have a 
contibution from this small circle, we can take )'(b ri  in Eq. (11) out of the integral as 

)(b ri , and compute the remaining integral of )'( rre −∇⋅ gz , given by Eq. (12), over the 
small circle. When we adopt polar coordinates ),( φρ  around , we have φρρ dd'd =S . 
The integral over φ yields π2 , and for the integral over ρ we make the substitution 

22 )( Lt Δ+= ρ , so that in Eq. (12) we have t=− |'| rr . Then the variable t is small for 
all r' on the circle, and we can expand the integrand in a Taylor series around t = 0. The 
integral can then be evaluated, with result 

δ 

r

r'

r−r'

ρ 
 

b

 

Figure 5.  Given point r at the a-side, the integral in Eq. (11) only acquires a contribution 
from the immediate neighborhood of the projection  of r onto the b-side.  The integral 
is evaluated over a circle around , using polar coordinates ),( φρ  for the point 'r .  In 
the limit 0→Δ L , the integral is independent of the radius δ  of the circle.   
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22
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The ellipses indicate terms that go to zero for 0→Δ L , 0→δ . In the limit of a very 
thin sheet, 0→Δ L , the first term on the right-hand side of Eq. (13) vanishes for all δ, 
and when we subsequently let δ approach zero, the only remaining term on the right-hand 
side is “-1”. The Magnetic Field Integral Equation for a thin sheet thus becomes 

 inc
o

ba )(2)()( rBeriri ×=− zμ
 . (14) 

This result shows that the current densities at the a-side and b-side are related, given 
the incident field. In other words, if the current density at point r at the a-side is known, 
so is the current density at the same point r at the b-side, and vice versa. On the other 
hand, since the Magnetic Field Integral Equation for a thin sheet reduces to Eq. (14), we 
find that this equation relates the current densities at the two sides, but it does not yield an 
equation for either )(a ri  or )(b ri .  

5. The Current Densities in a Thin Sheet 

The Magnetic Field Integral Equation, Eq. (6), reduces to Eq. (14) when applied to a thin 
sheet. Since Eq. (14) only relates the current densities at both sides, an additional 
technique has to be employed to obtain the separate current densities. To this end we note 
that the current densities generate a magnetic field, given by Eq. (2), where )(ri  has a 
contribution from both )(a ri  and )(b ri . However, for 0→Δ L  the current density at 
point r is effectively the sum 

 )()()( bas ririri +=  , (15) 

which is known as the sheet current density [22]. For the generation of the scattered field 
only )(s ri  is relevant, as illustrated in Figure 6. Then in Eq. (2) the current density )(ri  
is simply )(s ri , and the surface integral runs over the sheet. The requirement that the 
normal component of the total magnetic field vanishes just outside the medium gives an 
integral equation for )(s ri . Alternatively, we could require that the tangential component 
of the corresponding electric field is zero, an approach which works particularly well for 
the Sommerfeld half-plane [23]. Once the sheet current density )(s ri  is found, Eq. (15) 
gives the sum ba ii +  and the Magnetic Field Integral Equation (14) gives the difference 

ba ii − . Combining both then yields 
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 inc
o

s2
1

a )(1)()( rBeriri ×+= zμ
 , (16) 

 inc
o

s2
1

b )(1)()( rBeriri ×−= zμ
 , (17) 

in terms of )(s ri  and the incident magnetic field. Therefore, the current densities at the 
a- and b-sides are known as soon as the sheet current density is found. By adding )(2 b ri  
to Eq. (14) we can also write 

 )(2)(2)( binc
o

s rirBeri +×= zμ
 . (18) 

The first term on the right-hand side equals the current density that would be induced in 
an infinite sheet without openings (mirror, Eq. (10)), and the term )(2 b ri  accounts for 
the effect of the edges.  
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Figure 6.  The scattered field is effectively generated by the sheet current density si , 
which is the sum of ai  and bi .  Equations (15)-(18) show the various relations between 
these three current densities, indicating that when one of them is known, so are the other 
two.   
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6. Conclusions 

Electromagnetic radiation incident upon a thin sheet induces a current density at both 
sides. It is shown that for an arbitrary incident field the Magnetic Field Integral Equation 
relates the current densities at the two sides, and therefore only one of these can be 
considered as an independent unknown. Alternatively, the total sheet current )(s ri  
determines uniquely the current densities at both sides of the sheet, as shown in Eqs. (16) 
and (17).  
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