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Reversal of the dipole vortex in a negative index of refraction material
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When a small particle is illuminated by a circularly polarized laser beam, the induced electric dipole
moment rotates in a plane. The flow lines of the emitted electromagnetic energy are the field lines of the
Poynting vector. When the particle is embedded in a dielectric, these field lines have a vortex structure,
and the rotation in the vortex has the same orientation as the rotation direction of the dipole. We show
that when the embedding medium is a negative index of refraction material, the direction of rotation in
the vortex is reversed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The electromagnetic response of a medium is accounted for by
the (relative) permittivity εr and the (relative) permeability μr.
Both εr and μr are in general complex, with a non-negative imag-
inary part, and they depend on the angular frequency ω of the
spectral component under consideration. The index of refraction n
of the medium is a solution of

n2 = εrμr, (1)

and for causality reasons (below) we should take the solution with

Im(n) � 0. (2)

For a dielectric far from resonances, εr is approximately real and
positive, μr ≈ 1, and the index of refraction is n = √

εrμr, which
is positive, apart from a very small positive imaginary part. For a
metal with ω below the plasmon frequency, the real part of εr is
negative, the imaginary part of εr is small, and μr ≈ 1. Therefore,
n is approximately positive imaginary.

Metamaterials are artificially structured composites, consisting
of arrays of sub-wavelength structures, and their electromagnetic
response may not be determined only by the material from which
they are constructed, but also by the geometry of the design. The
typical size of a unit cell of such a composite is well below the
wavelength of the radiation under consideration, and this justifies

* Corresponding author.
E-mail addresses: xl121@msstate.edu (X. Li), hfa1@msstate.edu (H.F. Arnoldus).

the description of the material as a continuum with permittivity εr
and permeability μr. Of particular interest are metamaterials for
which the real parts of both εr and μr are negative and the imagi-
nary parts of both are small, at a given frequency ω. It then follows
from Eqs. (1) and (2) that the real part of the index of refraction n
is negative, and such materials are called negative index of refrac-
tion materials, or NIM’s for short.

In the first experimental demonstration of a negative index of
refraction structure [1,2], the composite consisted of split-ring res-
onators, to obtain a negative μr, and a grid of thin metal wires,
needed to lower the plasma frequency to the desired range. It was
shown that this composite has a negative index of refraction in the
microwave range of the electromagnetic spectrum. Many variations
in the design structure of the composites have been studied, with
attempts to manipulate either the plasma frequency of the permit-
tivity of the metal or the permeability of the split-ring resonators
[3–13]. After the successful proof-of-concept demonstrations of the
experimental feasibility of constructing a NIM in the microwave
region, the quest was on to design composites that operate in
the visible region of the spectrum. The design with the split-ring
resonators does not scale down to smaller wavelengths, due to in-
crease of loss. New nanostructured materials have been developed,
and negative index of refraction has been reported in the THz and
near-infrared regions [14–22]. In 2005, the first NIM operating at
optical wavelengths was reported [23,24]. The latest designs in-
volve metal-dielectric nanostructures with unit cell widths as small
as 10 nm, lattices with coated dielectric spheres, or composites
with nanoclusters or nanowires [25–29]. At the present state-of-
the-art, loss in the material seems to be the main issue to be
addressed in future designs.
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Fig. 1. When a plane wave with wave vector k is incident upon an interface, it
partially reflects and partially transmits into the material. Due to the boundary con-
ditions at the interface, the wave vectors of all waves must have the same parallel
component k‖ with respect to the interface. For transmission into a dielectric, this
gives the familiar picture shown here.

Fig. 2. The same plane wave as in Fig. 1 is now incident upon a material with
negative εr and μr . In a NIM the energy propagates against the wave vector, and
therefore the wave vector km in the medium must be as shown here. As a result,
the propagation direction of the energy, indicated by the Poynting vector S, of the
transmitted wave is at the opposite side of the surface normal, as compared to
refraction into a dielectric.

2. Negative index of refraction

We shall consider time-harmonic fields, oscillating at angular
frequency ω. The electric field can then be written as

E(r, t) = Re
[
E(r)e−iωt], (3)

with E(r) the complex amplitude, and the magnetic field B(r, t)
can be represented similarly. The time-averaged Poynting vector is
defined as

S(r) = Re

[
1

2μ
E(r)∗ × B(r)

]
, (4)

with μ = μoμr, and electromagnetic energy flows along the field
lines of this vector field. When both εr and μr are negative,
the material is transparent, just like an ordinary dielectric, and
Maxwell’s equations admit traveling plane-wave solutions. When
km is the wave vector of the plane wave, it can be shown easily
that in such a material (NIM) the Poynting vector is directed op-
posite to the wave vector. With the time dependence as in Eq. (3),
the phase velocity of the wave is into the direction of the wave
vector km. Therefore, the phase velocity is opposite to the direc-
tion of energy propagation, and such materials are said to have a
negative phase velocity. It was shown by Sivukhin [30] that the
group velocity has the same direction as the Poynting vector and
that materials with negative εr and μr have opposite group and
phase velocities. This property has interesting consequences when
an incident plane wave refracts at an interface with a NIM. Fig. 1
shows the refraction for an ordinary dielectric, and Fig. 2 illustrates

Fig. 3. The figure shows two field lines of the Poynting vector for the radiation emit-
ted by a rotating dipole moment embedded in a dielectric. We use dimensionless
variables x̄ = kox, ȳ = ko y and z̄ = ko z, so that 2π corresponds to one wavelength.
The x̄- and ȳ-axes have been lowered to improve the view. The direction of rotation
of the dipole moment is counterclockwise when viewed down the positive z-axis.
The field lines swirl around the z-axis while remaining on a cone. The direction
of rotation of the field lines is the same as the direction of rotation of the dipole
moment.

refraction into a material with negative εr and μr, e.g., a NIM.
The parallel components of all wave vectors have to be the same,
due to the boundary conditions. In the NIM, the energy propa-
gates against the wave vector, and since the energy transport has
to be away from the interface, the wave vector km of the refracted
wave must be as shown in Fig. 2. Consequently, the direction of
energy propagation in the negative index of refraction material is
into the direction indicated by the Poynting vector S in the fig-
ure. As compared to Fig. 1, the light bends to the other side of
the normal to the interface. It was shown for the first time by
Mandel’shtam [31] that a negative group velocity leads to negative
refraction, and Veselago [32] indicated that this property could be
used to construct a lens from a layer of material with negative εr
and μr.

Many other unusual properties have been predicted for NIM’s,
such as an inverse Doppler shift and Cerenkov effect [33], optical
cloacking and the possibility to construct a superlens with a layer
of negative index of refraction material [34]. A historical account of
negative index of refraction can be found in [35]. In this Letter we
wish to add another peculiar property to this list. When a small
(compared to a wavelength) particle is embedded in a dielectric
and irradiated by a circularly-polarized laser beam, the induced
electric dipole moment is a vector which rotates in a plane per-
pendicular to the propagation direction of the beam (taken to be
the z-axis). The field lines of the Poynting vector of the emitted
electric dipole radiation are curves which swirl around the z-axis
and each field line lies on a cone [36]. The field lines form a vortex
pattern, and two typical field lines are shown in Fig. 3. We shall
show that when the particle is embedded in a material with neg-
ative εr and μr, the field lines of energy flow of the same rotating
dipole moment wind again around the z-axis and each field line
lies on a cone, but the direction of rotation around the z-axis is
reversed as compared to the field lines for emission in a dielectric.
This is shown in Fig. 4.
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Fig. 4. Shown are energy flow field lines for emission of radiation by the same
dipole moment as in Fig. 3, but now the particle is embedded in a material with
negative εr and μr . The direction of rotation of the field lines around the z-axis is
reversed, as compared to the rotation of the field lines in Fig. 3.

3. The Green’s function and the index of refraction

The electric and magnetic fields of the radiation emitted by a
particle embedded in an infinite medium with permittivity εr and
permeability μr are solutions of Maxwell’s equations. These solu-
tions can be expressed in terms of the Green’s function g(r) for
the scalar Helmholtz equation. This function is the solution of

(∇2 + n2k2
o

)
g(r) = −4πδ(r), (5)

with ko = ω/c and n2 is given by Eq. (1). A solution of Eq. (5) is

g(r) = einkor

r
. (6)

This solution involves the index of refraction n. However, Eq. (1)
only determines n2, given εr and μr, and this leaves an ambiguity
for the choice of n. In general, εr and μr are complex, and there-
fore also n and n2 are complex. The two solutions of Eq. (1) differ
by a minus sign, and are each others reflection in the origin of the
complex plane. The Green’s function represents a spherical wave,
centered at the origin of coordinates, and causality requires that
such a wave cannot grow exponentially in amplitude with increas-
ing r. It then follows from (6) that we need to take the solution n
for which Im(n) � 0. A moment of thought then shows that this
still leaves an ambiguity for the choice of n when the product εrμr
is positive. Causality requires that the imaginary parts of εr and μr
are non-negative and we then see that we can only have εrμr > 0
if εr and μr are both positive or both negative. In order to resolve
this ambiguity, we note that both εr and μr will still have a very
small positive imaginary part, representing damping in the mate-
rial. By taking the limit where these imaginary parts vanish, we
find that for εrμr > 0 the solution of Eq. (1) should be taken as

n = √
εrμr, εr and μr positive (dielectric), (7)

n = −√
εrμr, εr and μr negative (NIM). (8)

When a time dependence as in Eq. (3) is considered, the
Green’s function leads to spherical waves of the form exp[i(nkor −

ωt)]/r. For a dielectric we have n > 0, and such a wave is an outgo-
ing wave with phase velocity c/n. For Re(n) < 0 this is an incoming
wave rather than an outgoing wave and therefore the phase veloc-
ity is inward, or negative. This situation is reminiscent of the case
for a plane wave, as shown in Fig. 2, where the energy propagates
against the wave vector.

4. Electric dipole radiation

The induced electric dipole moment of a particle can be written
as

d(t) = Re
(
de−iωt), (9)

with d the complex amplitude. When this dipole is located at the
origin of coordinates, the complex amplitude of the current density
is j(r) = −iωdδ(r), and the solution of Maxwell’s equations for the
radiation field emitted by this dipole, embedded in a medium, can
be represented as

E(r) = μr
k2

o

4πεo

[
dg(r) + 1

n2k2
o
(d · ∇)∇g(r)

]
, (10)

B(r) = iωμ

4π
d × ∇g(r), (11)

in terms of the Green’s function g(r). With expression (6) for g(r)
the derivatives of the Green’s function can be worked out, and this
yields

E(r) = μr
k2

o

4πεo

{
d − (r̂ · d)r̂

+ [
d − 3(r̂ · d)r̂

] i

nkor

(
1 + i

nkor

)}
g(r), (12)

B(r) = nμr

c

k2
o

4πεo
(r̂ × d)

(
1 + i

nkor

)
g(r). (13)

With expressions (12) and (13) for the electric and magnetic
field amplitudes, the Poynting vector S(r) can be constructed. Let
us first consider the far field, for which kor � 1. Then only the
O(1/r) terms in E(r) and B(r) survive, and we obtain

S(r) ≈ r̂|μr|2 ck4
o

32π2εor2
e−2kor Imn

× [
d∗ · d − (r̂ · d∗)(r̂ · d)

]
Re

(
n

μr

)
. (14)

In the far field, the Poynting vector is proportional to r̂. It can be
shown from the discussion above that [37]

Re

(
n

μr

)
� 0, (15)

and since every other term on the right-hand side of Eq. (14) is
positive, it follows that the power flow is in the radially outward
direction in the far field. For a material with Re(n) < 0 the electric
and magnetic fields are spherical incoming waves, but the power
flow is in the outward direction, as it should be.

5. The Poynting vector for a dielectric and a NIM

The expression for the Poynting vector for arbitrary εr and μr
is cumbersome, so here we shall only give the result relevant to
the present topic. These are the cases shown in Eqs. (7) and (8).
For εr,μr and n positive we have a dielectric and for εr,μr and n
negative we have a NIM. We set d = dou, with u · u∗ = 1, for the
dipole moment, and we introduce q = kor as the dimensionless
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distance between the dipole and the field point r. The Poynting
vector then becomes

S(r) = 3Po

8πr2

{
μrn

[
1 − (

r̂ · u∗)(r̂ · u)
]
r̂

+ 2μr

q

(
1 + 1

n2q2

)
Im

(
r̂ · u∗)u

}
, (16)

where

Po = ck4
od2

o

12πεo
, (17)

equals the power emitted by the dipole in free space.
When u is real we have a linear dipole oscillating back and

forth along the vector u, as can be seen from Eq. (9). Then Im(r̂ ·
u∗)u = 0, and S(r) is in the radial outward direction (since μrn > 0
for both cases). The field lines of S(r) are straight lines coming
out of the dipole. We now consider the more interesting case of a
rotating dipole moment. When we take

u = − 1√
2
(ex + iey), (18)

then it can be verified from Eq. (9) that d(t) is a vector which
rotates counterclockwise in the xy-plane, when viewed down the
z-axis. The Poynting vector becomes

S(r) = 3Po

8πr2

[
μrn

(
1 − 1

2 sin2 θ

)
r̂ +

(
1 + 1

n2q2

)
μr sin θ

q
eφ

]
,

(19)

with θ the polar angle with the z-axis, and eφ is the unit vec-
tor into the direction of increasing φ (angle around the z-axis in
the counterclockwise direction). Apart from the radial component,
the Poynting vector now has a contribution proportional to eφ ,
and this gives a rotation of the field lines around the z-axis. For
a dielectric we have μr > 0, and this rotation is in the counter-
clockwise direction, which is the same orientation as the rotation
of the dipole moment. For a negative index of refraction material
we have μr < 0, and the field lines swirl around the z-axis in the
opposite direction as the rotation direction of the dipole moment.
Figs. 3 and 4 show two field lines each for this rotating dipole mo-
ment.

6. Conclusions

The complex amplitudes of the electric and magnetic fields for
the radiation emitted by an electric dipole embedded in a medium
with arbitrary values of εr and μr are given by Eqs. (12) and (13).
The Poynting vector can then be obtained by substitution of these
expressions into the right-hand side of Eq. (4). For the case where
both εr and μr are positive (dielectric) or where both are nega-
tive (NIM), the result is given by Eq. (16). For a linear dipole the
field lines of S(r) are straight lines, coming out of the dipole. When
the embedding medium is a material with negative εr and μr, the
spherical waves are incoming, whereas the energy flow is outward.
This is very similar to the case of a plane wave, as shown in Fig. 2,
where the direction of energy flow is opposite to the wave vec-
tor. For a rotating dipole moment embedded in a material with
negative εr and μr, we found that the direction of rotation of the
field lines around the z-axis is opposite to the direction of rota-
tion of the dipole moment, whereas for a dielectric both the field

lines and the dipole moment have the same orientation in their
rotation.

In order to set the dipole moment in rotation, it has to be
driven by a circularly polarized laser beam inside the material. It
can be shown that when a circularly polarized beam is incident
upon the interface between vacuum and a material (dielectric or
NIM), the transmitted beam in the material has the same helicity
as the incident beam. The induced dipole moment has the same
direction of rotation as the direction of rotation of the electric field
of the beam. Therefore, the field lines of the Poynting vector have
the same orientation in their rotation as the helicity of the driving
beam when the medium is a dielectric, but for a NIM the direc-
tion of rotation of the field lines of energy flow is opposite to the
direction of rotation of the electric field of the incident beam.
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