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Electric dipole radiation near a mirror
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The emission of radiation by a linearly oscillating electric dipole is drastically altered when the dipole is close
to the surface of a mirror. The energy is not emitted along optical rays, as for a free dipole, but as a set of four
optical vortices. The field lines of energy flow spiral around a set of two lines through the dipole. At a larger
distance from the dipole, singularities and isolated vortices appear. It is shown that these interference vortices are
due to the vanishing of the magnetic field at their centers. In the plane of the mirror there is a singular circle with
a diameter which is proportional to the distance between the dipole and the mirror. Inside this circle, all energy
flows to a singularity on the mirror surface.
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I. INTRODUCTION

When a small source of radiation is located near an
interface, the emitted light that propagates toward the surface
partially reflects and partially refracts at the boundary. We
consider the case where the medium is a perfect mirror, so that
all light reflects. The angle of reflection of an optical ray is
equal to the angle of incidence, and by considering the path
of two rays, as in Fig. 1(a), it appears that a virtual image
is formed below the mirror such that the distance between
the object and the mirror is equal to the distance between the
image and the mirror. Part of the emitted light travels directly
from the source to an observer, and the result is that both
the source and the image can be seen. Ray diagrams as in
Fig. 1(a) are justified in the geometrical optics limit of light
propagation [1] in which variations in the optical field on the
scale of a wavelength are neglected. It is furthermore assumed
that the source is incoherent, so that any interference between
optical rays washes out. In the geometrical optics limit, the
rays are the orthogonal trajectories of the wave fronts, and for
propagation in vacuum it can then be shown that the rays are
straight lines. The direction of energy flow in any radiation field
is determined by the direction of the electromagnetic Poynting
vector, and in the geometrical optics limit the field lines of
the Poynting vector coincide with the optical rays. Therefore,
in the geometrical optics limit, electromagnetic energy flows
along straight lines, which are the optical rays.

When the source of radiation is an atom, a molecule,
or a nanoparticle, for instance driven by a laser beam, the
radiation can no longer be considered incoherent and there
will be interference between the different paths of energy
propagation. When the source near a mirror is viewed from
the far field (many wavelengths away), an interference pattern
will be observed, and the source and its image can no longer
be distinguished. The ray diagram of Fig. 1(a) is still valid,
although its interpretation is then derived from an angular
spectrum representation of the source field and the reflected
field. In this approach, the radiated electric and magnetic fields
are represented by superpositions of traveling and evanescent
plane waves [2–5]. In the far field, only the plane waves
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survive, and it can be shown by asymptotic expansion of
the angular spectrum with the method of stationary phase
(Appendix III of Ref. [1]) that the interference pattern in the far
field is consistent with the ray diagram of Fig. 1(a). For a coher-
ent source, however, the rays in Fig. 1(a) are not the paths of en-
ergy propagation but rather visualizations of the wave vectors
of the traveling waves in an angular spectrum representation.

In near-field optics and nanophotonics, variations in the
optical field on the scale of a wavelength are of interest and
objects may be located at a subwavelength distance from
an interface. Then the geometrical optics limit breaks down,
whether the source is coherent or not. When measurements are
performed in the near field, an interpretation of the ray diagram
of Fig. 1(a) also loses its significance in terms of the angular
spectrum, since the near field is dominated by the evanescent
waves. In any case, when subwavelength phenomena are of
interest, the exact solution of Maxwell’s equations has to
be adopted. The paths of energy flow are the field lines of
the Poynting vector, and usually these field lines are curves
rather than straight lines. Field lines of any vector field cannot
cross, whereas the optical rays in Fig. 1(a) do cross. So
when considering the flow of energy out of a source near a
mirror, we expect a smooth flow pattern as in the sketch in
Fig. 1(b). Near the interface, the Poynting vector is tangential
to the boundary, as follows from the boundary conditions
of Maxwell’s equations, and therefore the field lines reflect
smoothly at the mirror. This is in contrast to the reflection in
the ray diagram in Fig. 1(a), where the rays make a sharp turn
at the interface.

For the construction of the image with a ray diagram, as in
Fig. 1(a), the details of the source are irrelevant, whereas for the
flow line diagram in Fig. 1(b), the details of the flow pattern
depend on the precise structure of the source. We consider
the emission of radiation by a harmonically oscillating linear
dipole near a mirror. It turns out that the flow line picture is
generally far more complicated than that suggested in Fig. 1(b),
and we also show that the process of emission of radiation is
drastically altered due to the presence of the mirror.

II. ELECTRIC DIPOLE RADIATION

The radiation emitted in electronic transitions in atoms or
molecules is usually electric dipole radiation, and the scattered
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FIG. 1. (a) In the geometrical optics limit of light propagation,
the mirror image of an incoherent point source can be constructed
by considering the reflection of the optical rays. (b) For the exact
solution of Maxwell’s equations, the flow of energy is determined by
the field lines of the Poynting vector. In contrast to the optical rays,
these field lines are smooth curves.

light by a nanoparticle in a laser beam is in first approximation
electric dipole radiation. When light with angular frequency ω

is emitted, the electric field can be written as

E(r,t) = Re[E(r)e−iωt ], (1)

where E(r) is the complex amplitude, and the emitted magnetic
field B(r,t) can be represented similarly. A linear electric
dipole has a dipole moment of the form

d(t) = doε cos(ωt), (2)

where ε is a unit vector. This dipole moment oscillates with
amplitude do along an axis represented by vector ε. For a dipole
located at the origin of coordinates, the complex amplitudes
of the electric and magnetic fields are given by [6]

E(r) = k3
odo

4πεoq

{
ε− (ε · r̂)r̂ + [ε − 3(ε · r̂)r̂]

i

q

(
1 + i

q

)}
eiq,

(3)

B(r) = − k3
odo

4πεocq
ε × r̂

(
1 + i

q

)
eiq . (4)

Here, r̂ is the unit vector into the direction of observation,
ko = ω/c is the wave number in free space, and we have set
q = kor for the dimensionless distance between the dipole and
the field point. On this scale, a dimensionless distance of 2π

corresponds to one optical wavelength.
The energy flow in an electromagnetic field is determined

by the Poynting vector S(r,t). The direction of S is the
direction of energy flow, and the magnitude of S equals
the power through a unit area, perpendicular to S. For a
time-harmonic field, S(r,t) is independent of time and given by

S(r) = 1

2µo
Re[E(r) × B(r)∗]. (5)

This is the time-averaged Poynting vector, in which terms that
oscillate at twice the optical frequency have been dropped,
since these average to zero on the time scale of an optical
cycle. With expressions (3) and (4) we then obtain

S(r) = 3Po

8πr2
r̂ sin2 α, (6)

FIG. 2. Field lines of the Poynting vector for a linear dipole with
dipole moment d(t), and a polar plot of the power per unit solid angle.

where

Po = ck4
o

12πεo
d2

o (7)

equals the total radiated power by the dipole. Angle α in Eq. (6)
is the angle between vector ε and the observation direction r̂.
The Poynting vector is proportional to r̂ for all field points r,
and therefore the field lines of S(r) are straight lines which run
radially outward from the location of the dipole. The emitted
power per unit solid angle, dP/d�, is equal to r2S(r) · r̂, so that

dP

d�
= 3Po

8π
sin2 α. (8)

Figure 2 shows the field lines of the Poynting vector for a free
linear dipole, and a polar diagram of the power per unit solid
angle. No radiation is emitted along the dipole axis (α = 0),
and the field lines are drawn more densely in the directions
of the extrema of the lobes (α = π/2). In a three-dimensional
(3D) view, the diagram is rotationally symmetric around the
dipole axis.

III. DIPOLE RADIATION NEAR A MIRROR

We now consider the dipole located on the z axis, a distance
H above a mirror, and the surface of the mirror is taken as the
xy plane. The position vector of the dipole is given by Hez, and
when we let r1 be the location of a field point with respect to
the position of the dipole, then the position vector of that field
point with respect to the origin is given by r = Hez + r1. The
setup is illustrated in Fig. 3. The complex amplitudes E(r)s

and B(r)s of this source are given by Eqs. (3) and (4) with
the replacements r̂ → r̂1, the unit vector in the r1 direction,
and q → q1 = kor1, the dimensionless distance between the
dipole and the field point. The y axis is taken such that the
dipole vector ε is in the yz plane. The dipole axis makes an
angle γ with the z axis and, therefore, vector ε is

ε = ey sin γ + ez cos γ. (9)

The field reflected by the mirror is identical to the field of an
image dipole [7] located at −Hez and with dipole moment
doε

im cos(ωt), where

εim = −ey sin γ + ez cos γ. (10)

The complex amplitudes E(r)r and B(r)r of the reflected
field are as in Eqs. (3) and (4) with ε → εim, r̂ → r̂2, and
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FIG. 3. A dipole is located on the z axis, a distance H above a
mirror. The dipole oscillates along the direction indicated by vector
ε, which makes an angle γ with the z axis. The reflected field is
identical to the field of an image dipole, located at a distance H below
the mirror, and on the z axis. The image dipole oscillates along the
direction εim, which is also under angle γ with the z axis, but it
has its horizontal component reversed as compared to ε. Vector ε′ is
perpendicular to ε. A field point can be represented by vector r with
respect to the origin, or by vector r1 or r2 with respect to the dipole or
the image dipole, respectively. A field point can also be represented
by the spherical coordinates (r,θ,φ) with respect to the origin or the
spherical coordinates (r1,θ1,φ) with respect to the position of the
dipole.

q → q2 = kor2, and vector r2 is the position vector of the field
point with respect to the location of the image dipole, as shown
in Fig. 3. The total field in the region z > 0 is then the sum
E(r) = E(r)s + E(r)r, B(r) = B(r)s + B(r)r. It can be verified
explicitly that this field satisfies the boundary conditions for a
perfect conductor at z = 0; e.g., the parallel part of E(r) and
the perpendicular part of B(r) vanish.

With E(r) and B(r) constructed, the Poynting vector S(r)
from Eq. (5) can be computed. The expression is rather lengthy
and is given in Appendix A. The result for S(r) defines a vector
field in space, and a field line of S(r) is a curve for which, at
any point along the curve, the vector S(r) is on its tangent line.
First, we set

S(r) = 3Po

8πr2
1

σ (r) (11)

so that σ (r) is dimensionless. Since a field line is only
determined by the direction of S(r) and not its magnitude,
the field lines of σ (r) are the same as the field lines of
S(r). For a field point r we set q = kor for its dimensionless
representation. Let q(u) be a parametrization of a field line,
with u a dummy variable. The field lines q(u) are solutions of
the autonomous differential equation

dq
du

= σ (q). (12)

The field lines in the figures that follow are made by numerical
integration of Eq. (12).

At the surface of the mirror, E(r) is perpendicular to the
surface and B(r) is in the xy plane. It then follows from Eq. (5)

that S(r) is in the xy plane, and therefore any field line that
approaches the mirror is expected to bend smoothly away from
it, as suggested in Fig. 1(b).

IV. EMISSION OF RADIATION

For a free dipole the radiation is emitted in all directions,
as shown in Fig. 2, and the Poynting vector is radially outward
at any field point. We now consider the radiation field in close
vicinity of the dipole for a dipole located near a mirror. We use
spherical coordinates (r1,θ1,φ) with respect to the location of
the dipole, and we set q1 = kor1 for the dimensionless distance
between the dipole and the field point. Both the electric and
the magnetic fields of the source diverge when approaching
the dipole. The electric field diverges as O(1/q3

1 ) and the
magnetic field goes as O(1/q2

1 ), as follows from Eqs. (3) and
(4), respectively. The reflected field appears to come from the
image dipole, and close to the dipole both the electric and the
magnetic fields (amplitudes) of the image dipole are finite at
the location of the dipole. Therefore, the electric and magnetic
fields close to the dipole are dominated by the field emitted by
the source. One may therefore expect that close to the dipole
the field lines of the Poynting vector come out of the dipole,
as in Fig. 2, and at some distance from the dipole the reflected
field becomes comparable to the source field, and interference
sets in. This would then lead to a flow line pattern as sketched
in Fig. 1(b). We now show that this is not the case.

The Poynting vector σ (q) [with a factor split off as in
Eq. (11)] is given by Eq. (A11), and it has only γ and h, with
h = koH , as free parameters. The vector fields S(r) and σ (q)
have the same field lines, so we only need to consider the
vector fields σ (q). We consider the region close to the dipole,
such that q1 � 1 and q1 � h. In physical terms, this means
that we consider field points that are close to the dipole as
compared to a wavelength, and we assume that the distance
between the mirror and the dipole is much larger than the
distance between the dipole and the field point. The Poynting
vector σ (q) can be expanded in a series in q1, and it is shown
in Appendix B that the result is

σ (q) = sin γ

q1
v(h)[(3 cos2 α − 1)ε′ − 3 cos α(q̂1 · ε′)ε]

+ q̂1 sin2 α + O(1). (13)

Here we have introduced the function

v(h) = 1

2h

[
sin(2h)

2h
− cos(2h)

]
, (14)

and α is the angle between ε and the observation direction q̂1

(e.g., cos α = ε · q̂1), as in Eq. (6). Vector ε′ is defined as

ε′ = −ey cos γ + ez sin γ. (15)

This vector is perpendicular to ε and is directed as shown in
Fig. 3.

Without the mirror, the Poynting vector would be σ (q) =
q̂1 sin2 α, as in Eq. (6), and in Eq. (13) this is the second
term on the right-hand side. The corresponding field lines
would run straight out from the dipole if this were the leading
term at a close distance. In Eq. (13), however, the first term is
O(1/q1), and for small enough q1 this term dominates over the
free-dipole term q̂1 sin2 α. Since this term is due to interference
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between the source and the image field, we conclude that very
close to the dipole the power flow is determined by interference
rather than free emission. The term q̂1 sin2 α is O(1), as are the
remaining terms of the expansion, but it is split off explicitly
in Eq. (13) for the reasons below.

In the neighborhood of the dipole, the electric field is
O(1/q3

1 ) and the magnetic field is O(1/q2
1 ). When computing

the Poynting vector, this may seem to lead to S(r) = O(1/q5
1 ),

with Eq. (5), and for σ (q) this would be O(1/q3
1 ). However,

the high-order terms cancel exactly and we get σ (q) = O(1)
for a free dipole, which is the second term on the right-hand
side of Eq. (13). The cross term between the electric field of the
source, which is O(1/q3

1 ), and the magnetic field of the image,
which is O(1) at the location of the dipole, gives a contribution
of O(1/q1) to σ (q), and this is the first term on the right-hand
side of Eq. (13). Consequently, sufficiently close to the dipole
this interference term is larger than the source term q̂1 sin2 α.

The emission pattern of the radiation is determined by
the energy flow lines in the immediate neighborhood of the
source. In order to determine the structure of this pattern,
we first consider a field point q1 in a plane through the
dipole, which is perpendicular to vector ε′. For such a field
point we have q̂1 · ε′ = 0, and therefore the O(1/q1) term
in Eq. (13) is proportional to ε′. Consequently, in this plane
the Poynting vector σ (q) is perpendicular to the plane, and
the corresponding field lines cross the plane under a 90◦
angle. The factor of 3 cos2 α − 1, multiplying ε′, becomes
zero when cos α = ±1/

√
3. Since α is the angle between ε

and q̂1, the condition cos α = ±1/
√

3 defines two lines in the
plane on which the O(1/q1) contribution to the Poynting vector
vanishes. These lines are under 54.7◦ with the ε axis and are
indicated by 	+ and 	− in Fig. 4. Across these semisingular
lines, the Poynting vector changes direction, leading to a
rotation of the field lines around these lines in the plane. The
orientation of the Poynting vector in this plane is shown in
Figs. 4 and 5 shows several field lines resulting from this
rotation. Apparently, when an oscillating electric dipole is
located near a mirror, the radiation is emitted in a pattern of
four vortices. Each field line swirls around one of the lines 	+
and 	− in the plane. Two vortices are in front of the yz plane, as
shown in Fig. 5, and two are in the back. The Poynting vector
is proportional to v(h), which depends on the distance between
the dipole and the surface of the mirror. When h changes, this
function may change sign, and in that case the orientation of
the rotation of the field lines around the semisingular lines
reverses.

In Eq. (B4) of Appendix B, the O(1) term of Eq. (13) is
given explicitly, and we see that this term vanishes as ∼1/h

for h large, except for the free-dipole part q̂1 sin2 α, which is
independent of h. Therefore, for a field point on a semisingular
line the Poynting vector is approximately equal to (2/3)q̂1, for
h not too small. On these lines the O(1/q1) term vanishes, but
the Poynting vector is finite, and radially outward. From the
diagram in Fig. 4 we can easily derive parameter equations for
the lines 	+ and 	−. The result, in matrix form, is

	± :

⎛
⎜⎝

x̄

ȳ

z̄

⎞
⎟⎠ =

⎛
⎜⎝

0

0

h

⎞
⎟⎠ + t

⎛
⎜⎝

±√
2

sin γ

cos γ

⎞
⎟⎠ , −∞ < t < ∞, (16)

ε

xe

−l

+l

⊗
⊗

⊗

⊗
⊗

⊗

⊗

⊗
⊗
⊗

⊗
⊗

⊗
⊗ ⊗

⊗⊗

⊗

⊗
⊗

⊗

⊗

⊗

⊗⊗

⊗⊗

⊗

⊗
⊗

FIG. 4. The plane through the dipole, which is perpendicular to
ε′. It follows from Fig. 3 that the plane is spanned by vectors ε and
ex , and the view is such that ε′ is out of the page. The Poynting vector
in this plane is perpendicular to the plane, indicated by ⊗ and 
.
The Poynting vector σ (q) has an overall factor of v(h) sin γ , and the
orientation is shown for the case where this factor is negative (as in
Fig. 5). The Poynting vector changes direction across the lines 	+
and 	−, and this gives rise to a rotation of the field lines around these
semisingular lines. This is shown schematically for the 	+ line. For a
field point on the ε′ axis we have cos α = 0, and it then follows from
Eq. (13) that σ (q) is in the ε′ direction for v(h) sin γ < 0. Therefore,
at the origin of the plane, the Poynting vector is out of the page.

where x̄ = kox, ȳ = koy, and z̄ = k0z are the dimensionless
Cartesian coordinates of points on the lines.

V. EMISSION IN THE yz PLANE

The field lines of the Poynting vector are generally curves
in three dimensions. For a field point in the yz plane, however,
the Poynting vector is in the yz plane, and therefore the field
lines are 2D curves in the yz plane. The vortices from Fig. 5
become closed loops when in the yz plane, as shown by the
dashed curves in Fig. 5. Figure 6 shows field lines in the yz
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FIG. 5. The field lines of the Poynting vector for electric dipole
radiation emitted near a mirror exhibit a vortex structure. Field lines
are shown for γ = π/4 and h = 2π . In the region x > 0, the field
lines (solid curves) swirl around the semisingular lines of Fig. 4. The
dashed field lines are in the yz plane, and they are closed loops.
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FIG. 6. Field lines of the Poynting vector for a dipole oscillating
under 45◦ with the z axis and located at a distance h = 2π above the
mirror. The z axis is up and the y axis is to the right. Very close to
the dipole the field lines are closed loops, and just below the dipole a
singularity appears.

plane (obtained with the exact solution of Appendix A) on a
larger scale. The inner two loops are the same as the dashed
loops of Fig. 5. Vector ε (not shown) is under 45◦ with the z
axis, and we see that in the neighborhood of the dipole all field
lines cross the ε axis under 90◦ and run in the same direction,
as expected from Fig. 4. All field lines along the ε axis in
Fig. 4 go into the page, except for the field line through the
origin, which comes out of the page. The result is that in Fig. 6
all field lines come out of the dipole along the ε′ axis. In the
yz plane, all radiation is emitted in the same direction, which
is the direction perpendicular to the direction of oscillation of
the dipole. This in sharp contrast to emission in free space for
which radiation is emitted in all directions (except along the
dipole axis).

The field lines near the dipole form closed loops. This
means that the energy propagating along these field lines
returns to the dipole at the other side. The closed loops do
not contribute to the overall emitted power, but they give a
circulation of power in the near field. This situation is remi-
niscent of the case of two oscillating dipoles close together,
where energy is emitted by one dipole and subsequently this
energy is absorbed by the other dipole [8]. For that case, field
lines run from one dipole to the other, and this mechanism
does not contribute to the overall emitted power either.

At a larger distance from the dipole, the free-dipole term
q̂1 sin2 α will eventually become larger than the O(1/q1) term,
and the field lines will run outward. Since just below the
dipole in Fig. 6 the field lines run into the dipole, we expect a
singularity along the ε′ axis in this area. For a field point on
the ε′ axis we have α = π/2. The Poynting vector of Eq. (13)
becomes

σ (q) = q̂1 − sin γ

q1
v(h)ε′ + O(1), (17)

where the first term, q̂1, is the free-dipole term. At a singularity,
the Poynting vector vanishes, and when neglecting the O(1)
term, this occurs at the field point

q1 = ε′v(h) sin γ. (18)

-0.2

0

0.2

0.4

0 5 10h

v(h)

FIG. 7. The leading term of the Poynting vector in the near field
is proportional to the function v(h) from Eq. (14), which is shown in
this graph. This function determines the dependence of this term on
the distance between the dipole and the mirror.

This point is on the ε′ axis and indicated by a little circle in
Fig. 6. Equation (18) gives the distance between the singularity
and the dipole as |v(h) sin γ |. We can view this distance as a
measure for the spatial extent of the loops in the very near
field of the dipole. For γ = 0 this distance is zero, because
the O(1/q1) term is absent. So for a dipole oscillating along
the z axis there are no loops. For γ �= 0, the size of the loops
is determined by the function v(h) of Eq. (14), and the graph
of this function is shown in Fig. 7. For large h, this function
falls of as ∼1/h; therefore, the radial extension of the loops is
about q1 <∼ 1/h. Consequently, when the distance between the
dipole and the mirror increases, the loops diminish in size. At
a root of v(h) the loops vanish, and when v(h) reverses sign,
the field lines of the loops reverse direction. In that case, the
singularity appears at the top side of the dipole, rather than
below it as in Fig. 6.

For small h we have

v(h) = 2h

3
+ O(h3), (19)

so for h → 0 this function goes to zero. The O(1/q1) term,
which is responsible for the loops, is proportional to v(h), and
therefore the loops disappear when the distance h between the
dipole and the mirror vanishes. In the limit h → 0, the exact
solution of Appendix A can be simplified, and the result is

σ (q) = 4q̂ cos2 γ cos2 θ, (20)

which holds in three dimensions. The Poynting vector is
proportional to the radial unit vector q̂ at all distances;
therefore, the field lines are straight lines. For h → 0, the
loops and the singularity disappear, and the four vortices from
the previous section are not present either.

VI. FIELD LINES IN THE yz PLANE

The pattern of energy emission in the yz plane is illustrated
in Fig. 6, showing that the field lines either form closed loops
or bend somewhat and then run away from the dipole. It can
be seen from the scale in the figure that this pattern is of a very
subwavelength nature. Figure 8 shows a larger view of the
field lines of energy transport near the mirror. The details of
the flow lines of Fig. 6 cannot be resolved on the scale of Fig. 8.
Field lines that run downward from the dipole approach the
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FIG. 8. Field lines of the Poynting vector in the yz plane for
a dipole located at a distance of one wavelength from the mirror
(h = 2π ), oscillating under an angle of 45◦ with the z axis (γ = π/4).
We observe a complex flow line pattern with singularities and vortices.

mirror (the xy plane), and an intricate field line pattern appears
due to interference between the source field and the reflected
field. We observe numerous singularities and three vortices
for the parameters chosen for the figure (γ = π/4,h = 2π ).
To the right of the z axis and above the dipole (not shown), the
field lines are typically smooth curves without any interesting
structure, although exceptions are possible. The existence of
optical vortices resulting from interference between radiation
and its reflection at a surface was predicted for the first time by
Braunbek and Laukien for the reflection of a plane wave by the
Sommerfeld half-plane [9]. The most common optical vortices
are vortices in Laguerre-Gaussian laser beams [10–13], and
their structure is related to the angular momentum carried by
the beam. Another type of optical vortex is the rotation in the
field lines of the Poynting vector of a multipole field [14,15].
These vortices are due to the emission mechanism of the source
rather than interference.

Points a, b, and c in Fig. 8 are singularities at the centers
of vortices, and the other named points, except for point d,
are regular singularities where field lines abruptly change
direction. Interestingly, there are field lines that start at vortex
a and end at vortex b. These field lines represent a local energy
flow where the energy does not directly originate from the
location of the dipole. Field lines emanating from vortex a
either end in vortex b or they run to the far field, and field
lines ending at vortex b either come from vortex a or from
the dipole. Other field lines coming from the dipole swing
around either vortex a or vortex b and then run to the far field.
At point e, some of these field lines seem to collide, and this
leads to the singularity at point e. At the singularities f and g,
field lines split in two directions. An enlargement of the very
small vortex at point c is shown in Fig. 9. Since the field lines
split just above the vortex, there has to be a singularity in that
region, which is point h.

For other parameter values a similar pattern is observed, and
typically the number of singularities and vortices increases
with h. An exception is γ = 0, for which there are no
singularities except for the point directly below the dipole,

FIG. 9. Enlargement of the vortex c of Fig. 8. At the center of the
vortex is a singularity, and very nearby is the singularity labeled h.

at the mirror surface. For this case of a perpendicular dipole,
all field lines more or less bend at the mirror as in Fig. 1(b),
and this is illustrated in Fig. 10. The field line pattern for a
parallel dipole (γ = π/2) is shown in Fig. 11, and we see that
there are fewer singularities than in Fig. 8, where the dipole
oscillates under 45◦ with the z axis.

At a singularity the Poynting vector is zero. This can be a
result of E(r) = 0, B(r) = 0, or E(r) × B(r)∗ imaginary. Since
ε and εim are in the yz plane, it follows from Eq. (4) that B(r)
only has an x component for a field point r in the yz plane. The
amplitude B(r) is complex, so for B(r) to vanish it has to hold
that both the real and the imaginary parts of the x component
have to vanish simultaneously. Working out the expression for
Bx(r) gives

sin q1 − q1 cos q1

q3
1

[ȳ + (h − z̄) tan γ ]

+ sin q2 − q2 cos q2

q3
2

[ȳ + (h + z̄) tan γ ] = 0 (21)

-10 -5 0

z

y

FIG. 10. Field line pattern for a dipole oscillating perpendicular to
the plane of the mirror at a distance h = 2π . For this case, there are no
vortices or singularities, except for the point directly below the dipole
at the mirror surface. The field line pattern is reflection-symmetric
with respect to the z axis.
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FIG. 11. For a dipole oscillating parallel to the surface at a
distance h = 2π , several singularities appear and they are indicated
by small open circles. The energy flow pattern is reflection-symmetric
with respect to the z axis.

for ReBx(r) = 0 and

cos q1 + q1 sin q1

q3
1

[ȳ + (h − z̄) tan γ ]

+ cos q2 + q2 sin q2

q3
2

[ȳ + (h + z̄) tan γ ] = 0 (22)

for ImBx(r) = 0, and here q1 =
√

ȳ2 + (z̄ − h)2 and q2 =√
ȳ2 + (z̄ + h)2. Equations (21) and (22) define two sets of

curves in the yz plane, and at any intersection the magnetic
field is zero. These curves are shown in Fig. 12, and we see
that the curves intersect at the location of the three vortices in
Fig. 8. Therefore, the vortices are due to the disappearance of
the magnetic field at these points. We have verified numerically
that at the other singularities E(r) × B(r)∗ is imaginary, except
for point d, where we again have B(r) = 0.
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FIG. 12. The solutions of ReBx = 0 and ImBx = 0 are indicated
by the solid and dashed curves, respectively, and the parameters for
this graph are the same as for Fig. 8. At an intersection the Poynting
vector is zero, and the intersections a, b, and c correspond to the three
vortices in Fig. 8.

VII. FIELD LINES IN THE PLANE OF THE MIRROR

Singularity d in Fig. 8 appears to be of a different nature
than the other singularities. There is no vortex at this point,
no splitting of the field lines, and no collision between field
lines running in different directions (such as at singularity e).
Point d is in the surface of the mirror, and field lines in the
neighborhood have the appearance of jumping over a bump.
Singularity g in Fig. 8 is also in the plane of the mirror,
and it can be verified easily from the explicit expressions in
Appendix A that σ (q) = 0 at the origin of coordinates. For a
point in the plane of the mirror, the Poynting vector is in the
xy plane and, therefore, field lines through any point in the
mirror surface are 2D curves in the mirror plane. In the plane
of the mirror we have q1 = q2, and expression (A11) for σ (q)
simplifies considerably. When we introduce the vector

v = −eyh tan γ, (23)

the Poynting vector at the point in the xy plane with position
vector q can be expressed as

σ (q) = 4 cos γ

q1

(
cos γ + h

q1
cos α

)
(q − v). (24)

Vector v represents a point on the negative y axis (for
tan γ > 0), and for q = v this gives σ (q) = 0. Therefore,
the singularity d in Fig. 8 has v as position vector, and so
the ȳ coordinate of this point equals −h tan γ . The Poynting
vector is proportional to q − v, which is the position vector
q with respect to the singular point v. So the Poynting vector
everywhere in the xy plane is straight out from point v and,
therefore, the field lines are straight lines coming out of or
running toward point v.

With some manipulations of the expressions in Appendix A,
we find

cos α = cos γ

q1
(ey · q tan γ − h), (25)

and combination with Eq. (24) yields the expression

σ (q) = 4 cos2 γ

q3
1

[q · (q − v)](q − v) (26)

for the Poynting vector. In this form we see immediately
that σ (q) vanishes at the origin of coordinates, and this is
singularity g from Fig. 8. Furthermore, the factor q · (q − v)
is zero when vector q is perpendicular to vector q − v. As can
be seen most easily from Fig. 13, this defines a circle in the xy
plane. For any q on this circle, we have σ (q) = 0; therefore,
this is a singular circle. Across this circle, the Poynting vector
changes sign and the field lines change direction. All field
lines are straight and go through point v on the y axis. Outside
the singular circle, the angle between q and q − v is less than
90◦, so q · (q − v) > 0, and therefore σ (q) is in the outward
direction. Consequently, inside the circle the field lines run
from the circle toward the singularity at point v, and this gives
the field line diagram shown in Fig. 14.

For a dipole oscillating along the z axis, we have γ = 0,
and the circle shrinks to a point at the origin of the coordinates.
Then all field lines run radially outward from the origin. For
a dipole oscillating along the y axis, we have γ → π/2, and
the radius of the circle goes to infinity. Vector v becomes
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v

qvq −

x

y

FIG. 13. A field point in the xy plane is represented by the position
vector q with respect to the origin of coordinates. Vector v is a fixed
vector, directed along the y axis, and the same field point can be
represented by the position vector q − v with respect to the end
point of vector v. The set of all field points that satisfy the equation
q · (q − v) = 0 then form the circle that is shown, since this equation
implies that the angle between q and q − v is 90◦.

undefined, and this limit has to be considered more carefully.
We find

σ (q) = 4h2

q3
1

ȳey. (27)

The field lines are parallel to the y axis and the x axis is a singu-
lar line. All field lines start at a point on the x axis and run paral-
lel to the y axis to the left and right. This is the limit of Fig. 14,
where the circle stretches out so that it becomes the x axis.

-10

-10 5
y

10
x

FIG. 14. Field lines in the plane of the mirror (for tan γ > 0). The
two black dots on the y axis are the singularities d and g from Fig. 8,
which are located at point v and the origin, respectively. In the xy
plane, these singularities appear to be the intersections of a singular
circle with the y axis. The diameter of the circle is the magnitude of
vector v, which is h| tan γ |. When viewed from outside the circle, all
field lines appear to come from the singularity at point v, but inside
the circle all field lines run toward the singularity. For tan γ < 0, the
circle is located in the region ȳ > 0.

The inside of the circle becomes the region y < 0, and all field
lines run to the point v, which is now at y = −∞ on the y axis.

VIII. CONCLUSIONS

When an oscillating electric dipole emits radiation in
the vicinity of a mirror, the pattern of energy emission is
determined by interference between the electric field of the
dipole and the magnetic field of the reflected radiation. The
field lines of energy flow form a set of four optical vortices,
two of which are shown in Fig. 5. The field lines spiral around
two semisingular lines through the dipole, and these lines are
oriented as shown in Fig. 4. Their directions are determined by
angle γ , which is the angle between the oscillation direction
of the dipole and the z axis. The pattern is symmetric under
reflection in the yz plane. In the yz plane, these vortices reduce
to closed loops, as shown in Fig. 6. It is also found that for
emission in the yz plane all energy is emitted in a single
direction, which is perpendicular to the dipole. This is in
contrast to the emission in free space, where energy is emitted
in all directions. Some of the emitted energy propagates along
a closed loop, and so it returns to the dipole. Since at a larger
distance all energy radiates away from the source, there has
to be a singular point near the dipole, as shown in Fig. 6. The
location of this point is approximately given by Eq. (18). The
function v(h) in this equation goes to zero with increasing h,
so when the distance between the dipole and the surface of
the mirror becomes larger, the singularity moves closer to the
dipole and, hence, the dimension of the loops becomes smaller.

Figure 8 shows the field line pattern in the yz plane from
a larger view. We find that numerous singularities are present
in the flow line pattern and there are three vortices (for the
parameters in the figure). The vortices are due to the vanishing
of the magnetic field at the centers of the vortices. Of particular
interest is singularity d in the figure. It was shown that this
singularity is a point on a singular circle in the plane of the
mirror. Inside this circle, the field lines run from a point on
the circle to singularity d, and outside the circle they run from
a point on the circle to the far field, such that the field lines
appear to come from singularity d. Also, in the plane of the
mirror, all field lines are straight, as follows from Eq. (24).

When subwavelength resolution of the energy flow is taken
into consideration, the interference pattern between the dipole
radiation and its own reflection from a mirror is far from trivial.
A ray diagram as in Fig. 1(a) or an educated guess as in
Fig. 1(b) are not even close to the intricate pattern of energy
flow that appears in this simple system. Particularly fascinating
is the fact that for a linear dipole the radiation is emitted as a
set of four vortices, except when the dipole oscillates exactly
perpendicular to the mirror. For a realistic metal surface, rather
than an ideal mirror, this emission pattern will be very similar
since the effect is due to interference between the radiation
emitted by the dipole and the reflected field. The field reflected
by the mirror is finite at the location of the dipole; therefore,
the four-vortex structure will be present in the emission pattern
near any reflecting surface.

APPENDIX A

The Poynting vector for electric dipole radiation near a
mirror can be evaluated explicitly, as outlined in Sec. III. In
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terms of the parameters

a = ε · q̂1, (A1)

a′ = εim · q̂1, (A2)

b = εim · q̂2, (A3)

b′ = ε · q̂2, (A4)

c = q̂1 · q̂2, (A5)

c′ = ε · εim, (A6)

and the functions

f1 =
[

1 − i

q1

(
1 − i

q1

)] (
1 + i

q2

)
, (A7)

g1 =
[

1 − 3i

q1

(
1 − i

q1

)](
1 + i

q2

)
, (A8)

f2 =
[

1 + i

q2

(
1 + i

q2

)] (
1 − i

q1

)
, (A9)

g2 =
[

1 + 3i

q2

(
1 + i

q2

)](
1 − i

q1

)
, (A10)

the Poynting vector takes the form

σ (q) = (1 − a2)q̂1 +
(

q1

q2

)2

(1 − b2)q̂2 + q1

q2
Re[ei(q2−q1)Z],

(A11)

with

Z = (c′q̂2 − b′εim)f1 + a(cεim − a′q̂2)g1

+ (c′q̂1 − a′ε)f2 + b(cε − b′q̂1)g2. (A12)

The first term on the right-hand side of Eq. (A11), proportional
to q̂1, is the Poynting vector for a free dipole (no mirror) and
the second term, proportional to q̂2, would be the Poynting
vector of the mirror dipole, if it were a free dipole. The third
term in Eq. (A11) is the interference term, involving cross
terms between the source field and the reflected field.

The parameters given by Eqs. (A1)–(A6) can be worked
out further by using expressions (9) and (10) for ε and εim,
respectively. In terms of the polar angles (θ1,φ) with respect
to the position of the dipole (Fig. 3), we have

q̂1 = eρ sin θ1 + ez cos θ1, (A13)

where

eρ = ex cos φ + ey sin φ (A14)

is the radial unit vector in the xy plane, and it can be seen from
Fig. 3 that

q̂2 = q1

q2

(
q̂1 + ez

2h

q1

)
, (A15)

with h = koH . We then obtain

a = sin θ1 sin φ sin γ + cos θ1 cos γ, (A16)

a′ = − sin θ1 sin φ sin γ + cos θ1 cos γ, (A17)

b = 1

q2
(a′q1 + 2h cos γ ), (A18)

b′ = 1

q2
(aq1 + 2h cos γ ), (A19)

c = 1

q2
(q1 + 2h cos θ1), (A20)

c′ = cos(2γ ). (A21)

From Eq. (A1) it follows that we also have a = cos α, where
α is the angle between ε and q̂1.

APPENDIX B

Close to the dipole, the parameter q1 is small, and the
expressions from Appendix A can be simplified. We assume
that q1 � 1 and q1 � h. It follows from Eqs. (A15) and (A13)
that the magnitude of vector q2 is

q2 =
√

q2
1 + 4hq1 cos θ1 + 4h2, (B1)

and, therefore,

q2 = 2h + q1 cos θ1 + O
(
q2

1

)
. (B2)

This function of q1 appears in f1, g1, f2, and g2 of Eqs. (A7)–
(A10), in the parameters b, b′, and c of Eqs. (A18)–(A20), and
in the interference term in Eq. (A11). The unit vector in the
q2 direction, appearing on the right-hand side of Eq. (A12),
becomes

q̂2 = ez + q1

2h
eρ sin θ1 + O

(
q2

1

)
. (B3)

A systematic expansion in orders of q1 then yields for the
Poynting vector in the near field

σ (q) = q̂1 sin2 α + sin γ

[
v(h)

q1
+ w(h) cos θ1

]

× [(3a2 − 1)ε′ − 3a(q̂1 · ε′)ε]

+ sin γ
sin(2h)

2h
(ε sin θ1 sin φ − q̂1 sin γ )

+ v(h)

2h
[eρ(c′ − 3aa′) sin θ1 − q̂1(c′ − 3 cos2 γ )

+ εim(3a sin θ1 − sin γ sin φ) sin θ1

− ε(3 cos γ cos θ1 − a′)] + O(q1). (B4)

Here, v(h) and ε′ are defined in Sec. IV, and in addition we
introduce the function

w(h) = 1

2h2
cos(2h) + 1

2h

(
1 − 1

2h2

)
sin(2h). (B5)
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