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Macroscopic far-field observation of the sub-wavelength near-field dipole vortex
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The energy flow lines of the radiation emitted by a rotating electric dipole moment have a vortex
structure near the source. The spatial extend of this vortex is well below an optical wavelength. This
near-field vortex has a macroscopic effect which could be observed in the far field.
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1. Introduction

When a small object (atom, molecule, nano-particle) is placed
in an external electromagnetic field (laser beam), oscillating with
angular frequency ω, a current density will be induced in the par-
ticle which also oscillates harmonically with angular frequency ω.
In a multipole expansion of the current density [1] the leading
term is the electric dipole moment, and we shall assume that this
contribution dominates the remaining terms. The induced dipole
moment can be written as

d(t) = d0 Re
(
εe−iωt), (1)

with d0 a constant (real) and ε a complex-valued unit vector, nor-
malized as ε ·ε∗ = 1. The oscillating dipole moment emits electro-
magnetic radiation. The emitted electric field has the form

E(r, t) = Re
[
E(r)e−iωt], (2)

with E(r) the complex amplitude, and the magnetic field B(r, t)
can be represented similarly. The flow of energy in the radiation
field is determined by the Poynting vector S(r, t): the direction
of the vector S(r, t) at the field point r is the direction of en-
ergy flow, and the magnitude of S(r, t) at this point is the power
transport through a unit area into the direction of S(r, t). For a
time-harmonic field, the Poynting vector can be expressed in terms
of the complex amplitudes of the electric and magnetic fields as

S(r) = 1

2μ0
Re

[
E(r) × B(r)∗

]
. (3)
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Here, terms that oscillate at twice the optical frequency have been
dropped, since they average to zero on a time scale of an optical
cycle, and this makes the Poynting vector independent of time. The
Poynting vector S(r) defines a vector field in space, and its field
lines are the trajectories of energy flow.

In the geometrical optics limit of light propagation [2], where
variations in the optical field on a sub-wavelength scale are ne-
glected, the field lines of the Poynting vector of the radiation emit-
ted by any localized source are straight lines. These optical rays run
radially outward from the (point) source to the far field. Further-
more, at a large distance from any localized source, as compared
to the wavelength, the field lines of the Poynting vector asymptot-
ically approach straight lines. Therefore, any curving in the energy
flow lines can only occur close to a source (the near field) and the
flow pattern must have a sub-wavelength structure. In this Letter
we shall show that such a nanoscopic energy flow pattern in the
near field can have an observable, macroscopic effect in the far
field.

2. The Poynting vector

The complex amplitudes E(r) and B(r) for the radiation emitted
by an electric dipole are well known [3], and the Poynting vector
can easily be constructed. The result for a dipole located at the
origin of coordinates is [4]

S(r) = 3P0

8πr2

{[
1 − (r̂ · ε)

(
r̂ · ε∗)]r̂

− 2
(

1 + 1
2

)
Im

[
(r̂ · ε)ε∗]}, (4)
q q
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where P0 is the total emitted power and r̂ is the radial unit vector
into the observation direction. We shall use dimensionless coor-
dinates with the wave number k0 = ω/c as scale factor. In this
way, a dimensionless distance of 2π corresponds to one optical
wavelength. In Eq. (4) we have set q = k0r for the dimensionless
distance between the dipole and the field point.

When an atom or other small particle is irradiated by a lin-
early polarized laser beam, vector ε is real, and along the polar-
ization direction of the incident field. Then the dipole moment
is d(t) = d0ε cos(ωt), and it oscillates linearly along the ε direc-
tion. The term Im[(r̂ · ε)ε∗] in the Poynting vector vanishes and
S(r) is proportional to r̂. Therefore, the field lines run radially out-
ward from the location of the dipole, and they are straight at all
distances. For a circularly polarized laser, the dipole moment d(t)
rotates along a circle. In the most general state of oscillation, the
dipole moment d(t) traces out an ellipse in a plane [5,6]. We take
this plane as the xy-plane, and let the axes of the ellipse coincide
with the coordinate axes. A convenient parametrization of vector
ε is then

ε = − 1√
β2 + 1

(βex + iey), (5)

with β real, and this gives for the dipole moment

d(t) = − d0√
β2 + 1

[
βex cos(ωt) + ey sin(ωt)

]
. (6)

Vector d(t) rotates counterclockwise in the xy-plane for β > 0, and
when the sign of β is reversed it rotates clockwise along the same
ellipse. For β = ±1 the ellipse reduces to a circle, and for β = 0
and β → ±∞ the oscillation becomes linear along the y- and x-
axis, respectively.

With ε given by Eq. (5), the Poynting vector becomes

S(r) = 3P0

8πr2

{
1 − 1

2
sin2 θ

[
1 + β2 − 1

β2 + 1
cos(2φ)

]}
r̂

+ 3P0

8πr2

2

q

(
1 + 1

q2

)
β

β2 + 1
sin θeφ, (7)

with (θ,φ) the angles in a spherical coordinate system, and eφ the
unit vector into the direction of increasing φ. The first term on the
right-hand side of Eq. (7) is proportional to r̂, so this represents the
power outflow in the radially outward direction. The second term
is proportional to eφ , and this leads to a rotation of the field lines
around the z-axis. A typical field line is shown in Fig. 1. The field
line swirls around the z-axis numerous times, and then leaves the
near field along a smooth curve which asymptotically approaches
the straight line � in the figure. It can be shown [7] that all field
lines for a rotating dipole (for any β) have a similar appearance
as the field line in Fig. 1. Any field line lies on a cone, and a set
of field lines forms a vortex structure. For the field line in Fig. 1
we have β = 1. For larger and smaller values of β the vortex pat-
tern shrinks, until it reaches a point for β = 0 or β → ±∞. The
vortex in Fig. 1 is of sub-wavelength dimension, since a dimension-
less distance of 2π corresponds to one optical wavelength, and for
other values of β the spatial extend of the vortex is even smaller.

3. The image of a dipole

When viewed from the far field, the field line of Fig. 1 appears
to come from a point in the xy-plane which is displaced with re-
spect to the position of the dipole. Other field lines have a similar
rotation, and when an image is formed in the far field it will ap-
pear as if the location of the dipole is shifted with respect to the
radial direction, indicated by r̂0 in Fig. 1. In order to determine the
Fig. 1. The figure shows a field line of the Poynting vector for β = 1. Near the dipole
the field line has the appearance of an optical vortex, and in the far field the field
line approaches the straight line �. The coordinates are dimensionless, with x̄ = k0x,
etc.

Fig. 2. The figure shows a field line in the xy-plane of the Poynting vector for β = 1.
The field line approaches asymptotically a line parallel to the y-axis, and the image
plane is taken to be perpendicular to this field line.

image in the far field we consider a plane, perpendicular to vec-
tor r̂0 in Fig. 1, and at a distance r0 from the origin. The origin
O ′ of the image plane is represented by vector r0, and the an-
gles (θ0, φ0) represent the direction of r̂0, which is the direction of
observation. In this image plane we set up a Cartesian coordinate
system (λ,μ), such that the coordinate axes are directed along the
corresponding unit vectors eθ0 and eφ0 , respectively, in the spher-
ical coordinate system. Fig. 2 illustrates the setup for the case of
θ0 = φ0 = π/2, for which the observation plane is perpendicular
to the y-axis. We use dimensionless coordinates λ̄ = k0λ, μ̄ = k0μ
for points in the plane.

The experimentally observed quantity is the intensity on the
image plane, which is defined as

I(λ,μ;β) = S(r) · r̂0. (8)

Here, S(r) is the Poynting vector at point r in the image plane, and
r̂0 is the unit normal on the image plane. The intensity depends on
the coordinates (λ,μ) in the image plane, the parameter β of the
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Fig. 3. The figure shows the intensity distribution over an image plane, located at
θ0 = φ0 = π/2, for a circular dipole with β = 1. The maximum is located at λ̄ = 0,
μ̄ = −2/3, and its shift with respect to the origin of the image plane is due to the
vortex in the near field.

ellipse, and the coordinates (r0, θ0, φ0) of the origin of the image
plane. The intensity can be evaluated explicitly, and the result is

I(λ,μ;β) = I0

(
q0

q

)3{
1 − 1

q2

1

1 + β2

[
β2(ρ̄ cosφ0 − μ̄ sinφ0)

2

+ (ρ̄ sinφ0 + μ̄ cosφ0)
2]

− 1

q0q

(
1 + 1

q2

)
2β

β2 + 1
μ̄ sin θ0

}
, (9)

with q0 = k0r0 and I0 = 3P0/(8πr2
0). Here we have introduced the

abbreviation

ρ̄ = q0 sin θ0 + λ̄ cos θ0. (10)

Fig. 3 shows the intensity distribution over the image plane for
the same parameters as in Fig. 2. The central field line in Fig. 2
is displaced along the μ̄-axis and it crosses the axis at μ̄d = −2.
The intensity profile of Fig. 3 has a peak at μ̄ = −2/3 on the μ̄-
axis, which is a result of the shift of the field lines, which in turn
is a result of the rotation of the field lines near the dipole. It can
be shown [8] that the location of the peak is independent of the
distance q0 between the dipole and the observation plane, so this
shift is amenable to observation in the far field.

The intensity profile in Fig. 3 is for observation perpendicular
to the y-axis, as in Fig. 2, and for the case of a circular dipole
withβ = 1. Fig. 4 shows the intensity distribution over the same
plane, but now for an elliptical dipole with β = 0.4. It appears that
the peak has turned into a hole, and it can be shown that this
hole is located at μ̄ = +2/3. Therefore, the rotation of the field
lines can result in a shifted peak or a shifted hole in the far field,
depending on the eccentricity of the ellipse. For other observation
directions (θ0, φ0) a variety of other intensity distributions are pos-
sible.

4. The difference profile

The shifts of the peak in Fig. 3 and the hole in Fig. 4 are
of the same order of magnitude as the spatial extend of the
dipole vortex in Fig. 1. On one hand, this shift leads to a pos-
sible observation of the dipole vortex through a measurement
Fig. 4. The figure shows the intensity distribution for an elliptical dipole moment
with β = 0.4, and for observation in the same image plane as in Fig. 3. The mini-
mum of the hole is located at λ̄ = 0, μ̄ = 2/3, but that cannot be seen in the figure.

in the far field, but on the other hand, this shift is extremely
small. It also requires a precise calibration of the experimental
setup, since the shift is measured with respect to the origin O ′
of the image plane. Furthermore, the profile has a large back-
ground, as can be seen from the figures, and the shape of this
background (peak, hole or a more complicated distribution) de-
pends on the observation angles θ0, φ0, and on the parameter β of
the ellipse.

The shift of the peak or hole depends on the sign of β . The
peak in Fig. 3 moves to μ̄ = +2/3 when we reverse the direction
of rotation of the dipole, so when we change the sign of β . This is
obvious from Fig. 2, since changing the direction of rotation results
in the field lines swirling around the z-axis in the opposite direc-
tion. The asymmetry in the intensity distribution comes from the
rotation of the field lines near the source. In an experiment, chang-
ing the direction of rotation can be accomplished by changing the
helicity of the driving laser, and this would result in the moving of
the peak or hole to the opposite direction. We now introduce the
difference profile


I(λ,μ;β) = I(λ,μ;β) − I(λ,μ;−β). (11)

The idea is that in this difference the large background will cancel,
and only the asymmetry due to the rotation of the field lines will
contribute to this profile. Therefore, any observation of 
I �= 0 in
the far field would confirm the rotation of the field lines in the
near field.

From Eq. (9) we find


I(λ,μ;β) = − ς

q4

(
1 + 1

q2

)
μ̄, (12)

with

ς = 3P0k2
0

2π

β

β2 + 1
sin θ0, (13)

and

q =
√

q2 + λ̄2 + μ̄2, (14)
0
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Fig. 5. The difference profile 
I in the (λ̄, μ̄) plane is shown for q0 = 20 and β

positive. The maxima and minima are located on the μ̄-axis at μ̄ = −11.5 and
μ̄ = 11.5, respectively.

as the dimensionless distance between the dipole and the observa-
tion point in the image plane. The difference profile is independent
of the observation angle φ0, and the dependence on θ0 only en-
ters through sin θ0 in the overall factor ς . Therefore, 
I = 0 for
observation on the z-axis. The parameter β of the ellipse only ap-
pears in the overall constant ς . Consequently, apart from an overall
constant, the difference profile is independent of the observation
angles and is the same for any ellipse.

The profile in the image plane is a function of the dimen-
sionless coordinates λ̄ and μ̄, with q0 as the only parameter. The
function 
I is symmetric in λ̄ and antisymmetric in μ̄. It is eas-
ily verified from Eqs. (12) and (14) that 
I has two extrema on
the μ̄-axis, symmetrically located with respect to the origin. Fig. 5
shows 
I for q0 = 20, and β positive. For β negative, the overall
constant ς changes sign and the maximum and minimum switch
positions. If we indicate the positions of the extrema by ±μ̄e, then
for the far field, where q0 � 1, we obtain

μ̄e = q0√
3
. (15)

The location of the peak in Fig. 3 is at μ̄ = −2/3, and this is a
displacement of about one-tenth of a wavelength with respect to
the origin. The extrema of the difference profile are proportional
to q0, so their location is proportional to the distance between
the dipole and the image plane. Therefore, these extrema are at
macroscopic distances from the origin, even though they are a re-
sult of the microscopic vortex near the dipole. Fig. 6 shows the
location of the extrema with respect to the dipole. As viewed from
the dipole, they appear under an angle γ , with tanγ = μ̄e/q0, and
this gives γ = 30◦ .

The expression for the difference profile holds for all dis-
tances q0. If 
I would be measured in the near field, for which
q0 
 1, we would have μ̄e/q0 = 1/

√
5, and this would give γ =

24◦ . Therefore, the angular positions of the extrema are in the
range 24◦ < γ < 30◦ .

In a recent experiment [9] the difference profile was measured
for a small polystyrene sphere with a diameter of 4.6 μm in a cir-
cularly polarized laser beam with a wavelength of 532 nm. The
observation angle was θ0 = π/2. The experimental results are in
good qualitative agreement with Fig. 6. In the experimental data
Fig. 6. The extrema on the μ̄-axis are located at μ̄e and −μ̄e. For β > 0, as in the
figure, the maximum is at the negative side of the μ̄-axis. Both extrema appear un-
der angle γ as seen from the location of the dipole. For the figure we took q0 = 20,
which is just over three optical wavelengths. Here, γ = 30◦ , and when we increase
q0 this angle remains 30◦ .

there are some small oscillations in the wings which are probably
due to the finite size of the object.

5. Conclusions

Radiation emitted by a rotating electric dipole moment exhibits
a vortex pattern in the energy flow lines. This vortex is present in
the near field of the source, and is of sub-wavelength dimension. In
the far field, the field lines approach asymptotically straight lines,
but these field lines are slightly displaced with respect to the radi-
ally outward direction. This gives the perception that the location
of the dipole is displaced with respect to its actual position. When
the intensity is measured on an observation plane, perpendicular
to the radial direction, the image of the dipole is slightly shifted
with respect to the origin, and this is a result of the rotation of
the field lines in the near field. In this fashion, the vortex in the
near field could be observed as a shift of the image in the far field.
This shift, however, is of sub-wavelength order, which may be dif-
ficult to detect.

We propose to detect the vortex in the near field through a
measurement of the difference profile in the far field. The intensity
for a rotating dipole is measured at a given point in the observa-
tion plane. Then the helicity of the driving laser is reversed, and
the new intensity is subtracted from the first. We have shown
that this difference profile is a universal function, with only the
distance between the dipole and the observation plane as a free
parameter. Apart from an overall factor for a given observation
plane and state of rotation of the dipole (the β of the ellipse),
any profile has a peak and a hole as shown in Fig. 5. The loca-
tion of the extrema is independent of the angular position (θ0, φ0)

of the observation plane, and independent of the magnitude of β .
When β changes sign, the peak and the hole reverse positions. The
most important property of the difference profile is that the loca-
tions of the extrema are not of sub-wavelength order. The angular
location γ of the extrema, as shown in Fig. 6, is 30◦ when the pro-
file is observed in the far field (a few wavelengths or more from
the dipole). The distance between the peak and the hole is pro-
portional to the distance between the dipole and the observation
plane, since γ remains constant. Therefore, the separation between
the extrema is of macroscopic order, even though they are a result
of the nanoscopic vortex near the source. Without the vortex, the
difference profile would be identically zero, and consequently any
macroscopic far-field observation of a 
I as in Fig. 5 would con-
firm the existence of this vortex.
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