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Optical vortices and singularities
due to interference in atomic radiation

near a mirror
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We consider radiation emitted by an electric dipole close to a mirror. We have studied the field lines of the
Poynting vector, representing the flow lines of the electromagnetic energy, and we show that numerous sin-
gularities and subwavelength optical vortices appear in this energy flow pattern. We also show that the field
line pattern in the plane of the mirror contains a singular circle across which the field lines change direction.
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A singularity in an optical radiation field is a point
where the intensity is zero. A particular interesting
phenomenon is the optical vortex, which looks like a
whirlpool (2D) or a corkscrew (3D) of light, and such
a vortex has a singularity at its center. Optical vorti-
ces have been shown to exist in Laguerre–Gaussian
laser beams [1], and they have been observed in the
interference pattern of incident and reflected waves
near a planar interface. Many different ways to gen-
erate such interference vortices have been reported
[2–6]. In this Letter we shall consider the energy flow
pattern of light emitted by an atomic (point) source
close to a mirror. The emitted radiation interferes
with the reflected light, and as a result singularities
and interference vortices appear in the neighborhood
of the source and in the region between the source
and the surface of the mirror.

The field lines of energy flow are determined by the
time-averaged Poynting vector [7], which is defined
as

S�r� =
1

2�o
Re�E�r� � B�r�*�, �1�

with E�r� and B�r� the complex electric and magnetic
field amplitudes, respectively. The simplest example
of atomic radiation is electric dipole radiation, for
which the electric and magnetic field amplitudes are
well known [8]. The dipole moment dr�t� oscillates
linearly with angular frequency � along an axis
specified by the unit vector �r, so that we have dr�t�
=do�r cos��t�. As illustrated in Fig. 1, we take the
surface of the mirror as the xy plane, and the dipole
is located on the z axis, a distance h from the mirror.
We shall use the inverse wave number, c /�, as the
unit of length, and therefore a dimensionless dis-
tance of 2� corresponds to one optical wavelength.
The dipole moment oscillates in the xz plane under

an angle � with the z axis, so that we have �r
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=ex sin �+ez cos �. The reflected field in the region z
�0 is identical to the field of an image dipole, located
a distance h below the mirror, and with an image di-
pole moment given by di�t�=do�i cos��t�. The direc-
tion of oscillation of the image is �i=−ex sin �
+ez cos � [9]. The magnetic field radiated by the
source is

Br�r� = −
do�3

4��oc
4�1 +

i

qr
� eiqr

qr
�r � q̂r, �2�

with qr the distance between the dipole and the field

Fig. 1. We use an xyz coordinate system as shown in the
diagram. The distance between the source and the observa-
tion point is indicated by qr, and qi is the distance between

the observation point and the mirror dipole.
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point, in dimensionless coordinates, and q̂r is the
unit vector into the direction of the field point and
originating at the location of the dipole. The mag-
netic field of the image is identical in form, with qr,
�r, and q̂r replaced by qi, �i, and q̂i. The total mag-
netic field is then the sum B=Br+Bi. A similar ex-
pression can be obtained for the electric field, after
which the Poynting vector S�r� can be constructed.

The Poynting vector S�r� is a vector field, and the
corresponding field lines can be obtained by numeri-
cal integration. These field lines are the paths of flow
of electromagnetic energy. They will in general be
curves in three dimensions, originating from the lo-
cation of the source, and at a large distance they will
asymptotically approach the optical rays in the far
field. Because of the reflection symmetry in the xz
plane, a field line through a point in the xz plane will
remain in the xz plane, and hence the curve becomes
a 2D curve. Figure 2 shows the field line pattern in
the xz plane for a dipole located at a distance h=2�
from the mirror and oscillating under an angle of 45°
with the z axis. We see from the figure that the flow
line pattern contains three optical vortices and a
number of singular points. Field lines that leave the
dipole in the upward direction are smooth curves,
running from the dipole to the far field. The pattern
of the field lines leaving the dipole in the downward
direction and to the right of the z axis (not shown in
the figure) does not exhibit any vortices or other sin-
gularities. These field lines bounce off the mirror sur-
face and run to the far field.

Without the mirror, all field lines in Fig. 2 would be
straight lines. The curving of the field lines and the
appearance of singularities are results of interference
between the radiation emitted by the dipole and the
radiation reflected at the interface. A particular in-
teresting feature of the flow line pattern is that there
are field lines that start at vortex a and end at vortex

Fig. 2. Field line pattern in the xz plane for radiation
emitted by a dipole oscillating under an angle of �=� /4
with the z axis and located a distance of h=2� above the

interface.
b; so these field lines do not originate from the loca-
tion of the dipole, and they do not run to the far field.
Furthermore, in the neighborhood of a, all field lines
swirl outward, and near b all field lines end at the
vortex. This may seem to violate conservation of en-
ergy. We have verified numerically that in a 3D graph
around the neighborhood of a there are field lines
running toward a, providing the inflow of energy at
this vortex. Some of the field lines coming out of a
run to b, and others run to the far field. This leads to
a splitting of the field lines at the singularity labeled
e. Similarly, some of the field lines ending at b come
from the dipole, and some come from the vortex a.
The transition point is again singularity e. At singu-
larity f, the field lines coming from the dipole split.
The ones curving upward swing around vortex a and
then run to the far field, whereas the field lines that
curve down end at vortex b.

For different values of h and �, the field line pat-
tern is similar, but it may have more or fewer singu-
larities. An exception is the case �=0 (dipole oscillat-
ing along the z axis), in which case all singularities
disappear, except for the singularity directly below
the dipole, at the mirror surface (point g in Fig. 2). At
a singularity, the Poynting vector vanishes. This can
be due to E=0, B=0, E�B*=0, or E�B* imaginary.
For a field point in the xz plane, B is in the y direc-
tion and E is in the xz plane. The condition E=0
would require that both the x and y components of E
vanish simultaneously, and this would be an unlikely
coincidence. For B=0 we have only By=0, but since
By is complex this imposes the condition that both
the real part and the imaginary parts become zero si-
multaneously. From Eq. (2), and a similar expression
for the image field, we find for Re By=0 and Im By
=0,

qr cos qr − sin qr

qr
3 �x cot � − z + h�

+
qi cos qi − sin qi

qi
3 �x cot � + z + h� = 0, �3�

qr sin qr + cos qr

qr
3 �x cot � − z + h�

+
qi sin qi + cos qi

qi
3 �x cot � + z + h� = 0, �4�

respectively. Here, qr and qi are defined in Fig. 1.
Equations (3) and (4) define two sets of curves in the
xz plane, shown in Fig. 3, and at each intersection
point we have B=0. Comparing Fig. 2, we see that at
the three vortices the Poynting vector is zero because
of the vanishing of B. We have verified numerically
that at the other singularities the Poynting vector is
zero because E�B* becomes imaginary.

At point d in Fig. 3 we also have B=0, but we see
from Fig. 2 that there is no vortex at this point, so

this is a singularity of a different nature. It can be
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shown from the boundary conditions at a perfect con-
ductor that the Poynting vector at the surface of the
mirror is parallel to the mirror, and hence a field line
of S�r� through a point on the mirror surface stays on
the surface. Figure 4 shows the field line pattern of
the energy flow along the mirror surface for the same
parameters as in Fig. 2. It appears that all field lines
are straight, and that there is a singular circle in the
xy plane across which the field lines change direction.
The intersection of this circle with the negative x axis
is the singularity d from Figs. 2 and 3. It can be
shown that this circle goes through the origin of co-
ordinates, and it follows from Eqs. (3) and (4) that the
singularity d on the x axis is located at

x = − h tan �. �5�

All field lines in the xy plane are straight lines, and
when viewed from a location outside the circle, they
all appear to come from the singular point d. How-
ever, inside the circle they reverse direction, and the
field lines run from a point on the singular circle to
the singularity d.

We have shown that interference between dipole
radiation and its own reflection at a mirror leads to
intricate field line patterns of energy flow, including
the appearance of optical vortices with dimensions of
the order of the wavelength of the light. When nano-
scale resolution of transport of electromagnetic en-
ergy is of concern, as for instance in nanophotonics

Fig. 3. The solid (dashed) curves represent the solutions of
Re By=0 �Im By=0� in the xz plane. At the intersections we
have By=0, and therefore B=0 and S=0.
device technologies, then it should be taken into con-
sideration that the presence of an interface will dra-
matically alter the energy flow pattern in the near
field, as was illustrated in this Letter for the simple
case of a mirror.
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Fig. 4. Energy flow pattern in the xy plane for the same
parameters as in Figs. 2 and 3.


