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Far-field detection of the dipole vortex
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The energy flow lines (field lines of the Poynting vector) of electric dipole radiation exhibit a vortex structure
in the near field when the dipole moment of the source is in circular rotation. The spatial extend of this
vortex is smaller than a wavelength and may not be observable by a measurement in the near field. We show
that the rotation of the field lines close to the source affects the image of the dipole in the far field, and this
opens the possibility for observation of this vortex by a measurement in the far field. © 2008 Optical Society
of America
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Radiation emitted by a localized source appears to
travel along straight lines when observed in the far
field, and these optical rays are the field lines of the
Poynting vector of the electromagnetic field. In the
geometrical optics limit of light propagation [1], the
optical rays run radially outward from the source as
straight lines, no matter the distance to the source.
In the exact solution of Maxwell’s equations for the
radiation from a localized source, the field lines of the
Poynting vector only approach straight lines asymp-
totically, e.g., in the far field. In the vicinity of the
source the field lines of the Poynting vector, repre-
senting the direction of energy flow, will in general be
curves. Each curve will approach a straight line in
the far field (many wavelengths from the source), and
the corresponding field line runs in the radial direc-
tion. In this Letter we shall show by example that the
curving of the field lines near the source affects the
image of the source in the far field, and this leads to
the possibility of observing a near-field property of
radiation through detection in the far field. In [2] it
was shown that a near-field singularity in the diffrac-
tion through a slit may be observed in the far field.

We shall consider an electric dipole at the origin of
coordinates, oscillating with angular frequency �.
The time-dependent dipole moment can be written as

d�t� = do Re��e−i�t� �1�

with vector � normalized as � ·�*=1 and in general
complex. When � is real, we have d�t�=do� cos��t�,
and the dipole moment oscillates along the � direc-
tion (linear dipole). For a complex-valued �, the vec-
tor d�t� traces out an ellipse in a plane [3], and this is
the most general state of oscillation of a dipole. When
� is taken as the spherical unit vector

� = −
1

�2
��ex + iey�, �2�

the ellipse reduces to a circle, and the parameter � is
the helicity of the rotation (circular dipole). For �=1
the dipole moment d�t� rotates counterclockwise in
the xy plane when viewed from the positive z axis,

and for �=−1 the rotation is clockwise. When an atom
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is placed in a circularly polarized laser beam the in-
duced dipole moment of an electronic transition is a
circular dipole moment, provided the atomic reso-
nance � is close to the laser frequency. The emitted
resonance fluorescence by such an atom is electric di-
pole radiation.

With the known expressions for the electric and the
magnetic fields for an electric dipole [4], the time-
averaged Poynting vector S at the field point r can be
evaluated. For a linear dipole, S at point r is propor-
tional to r̂, the unit vector in the radial direction.
Therefore, the field lines of the vector field S�r� are
straight lines, emanating from the location of the di-
pole. For a circular dipole, the Poynting vector is
found to be [5]

S�r� =
3Po

8�r2��1 −
1

2
sin2 ��r̂ +

�

q�1 +
1

q2�e� sin �� ,

�3�

where Po is the emitted power, � is the angle with the
z axis, and e� is the unit vector in the � direction in a
spherical coordinate system. We have set q=kor, with
ko=� /c as the wavenumber, for the dimensionless
distance between the dipole and the field point. The
term proportional to e� in Eq. (3) gives rise to a swirl-
ing of the field lines around the z axis. A typical field
line is shown in Fig. 1, and we see that close to the
source, in the near field, the field lines exhibit a vor-
tex structure. We have called this the “dipole vortex”
[5]. This vortex structure manifests itself on a sub-
wavelength scale near the location of the dipole.

At a large distance from the dipole, compared to a
wavelength, the term proportional to e� in Eq. (3)
vanishes and S�r� becomes proportional to r̂. Each
field line of S�r� approaches a straight line, which is
indicated by l in Fig. 1. However, due to the rotation
near the source, the line l does not go through the ori-
gin of coordinates but is displaced slightly over a dis-
tance comparable to the dimension of the vortex.
Therefore, when viewed in the far field, the field line
does not appear to come from the site of the dipole,
which would be along the direction of line m in Fig.

(1), and this will lead to a shift of the image of the
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dipole. To investigate this shift quantitatively, we
consider the image that is formed on an observation
plane in the far field as shown in Fig. 2. For a given
observation direction with spherical coordinates
��o ,�o�, we take the observation plane perpendicular
to the corresponding vector r̂o, and we set up a rect-
angular coordinate system with coordinates � and �
in this plane as shown in the Fig. 2 We shall use di-
mensionless coordinates �̄=ko�, �̄=ko� in this plane.

Fig. 1. Shown is the field line of the Poynting vector for
�o=� /4, �o=�, and �=1. The field line lies on the cone �o
=� /4. Near the origin, the field line swirls around the z
axis numerous times, and far away from the origin it ap-
proaches the line �. The line m is parallel to the line � and
intersects the xy plane at the origin. When viewed from the
far field, the field line appears to be displaced over vector
qd as compared to a ray that would come from the location
of the dipole. This displacement gives a shift of the image of
the dipole.

Fig. 2. Image plane in the observation direction ��o ,�o� is
perpendicular to the radial unit vector r̂o. The Cartesian
coordinates �� ,�� in this plane are defined as shown. The
field line of the Poynting vector that runs into this direction
intersects the image plane at the point indicated by the dis-
placement vector qd, which is along the � axis (and is in

the direction shown for �=1).
The field line that runs into the direction ��o ,�o� will
intersect this plane at a point represented by the dis-
placement vector qd in Figs. 1 and 2. Since the rota-
tion of the field lines is around the z axis this vector
will be along the � axis, and such that for positive he-
licity the displacement is in the negative � direction.
If we set qd= �̄de�o

, then it can be shown that [6,7]

�̄d = −
2� sin �o

1 + cos2 �o
. �4�

The magnitude of the displacement is maximum for
observation along the xy plane for which we have �o
=� /2, so ��̄d�=2, and the displacement vanishes for
observation along the z axis. In dimensionless coordi-
nates, a distance of 2� corresponds to an optical
wavelength, and this shows that the displacement of
the field lines in the far field is of a subwavelength
order. The displacement is independent of the angle
�o.

The field line of S�r� that runs asymptotically into
the ��o ,�o� direction crosses the observation plane at
coordinates �� ,��= �0,�d�, and we may expect that
the image of the dipole on this plane is located near
this point. Since the image is formed by a bundle of
field lines passing through the plane, rather than a
single field line, we consider the intensity distribu-
tion over the image plane. The intensity at a point r
in the plane, indicated by the point X in Fig. 2, is
given by I�r�=S�r� · r̂o since r̂o is the unit normal on
the plane, and this expression can be evaluated with
Eq. (3) for the Poynting vector. The intensity I�r� de-
pends on the angle �o between the observation direc-
tion and the z axis and on the helicity � of the dipole
but not on the angle �o. This is due to the rotational
symmetry around the z axis. Figure 3 shows the in-
tensity distribution in the �� plane for �=1 and for
an observation point in the xy plane ��o=� /2�. The
�� plane is then parallel to the z axis. We find that
I�r� has a maximum near the origin in the �� plane,
and it falls off to zero for � and � large. Therefore,
this peak represents the brightness of the image spot
of the dipole in the �� plane. If the field lines would
run radially outward from the dipole, as in the ray
picture of light propagation, the intensity would have
its maximum at the origin of coordinates in the ob-
servation plane (for �o=� /2), but we see from Fig. 3
that the peak is slightly shifted in the negative �̄ di-
rection. This shift is due to the rotation of the field
lines near the site of the dipole as can most easily be
understood from Fig. 1. We furthermore notice an
asymmetry in the �̄ direction in Fig. 3, which is also
a result of the displacement of the field lines in the �
direction.

The maximum of the intensity distribution in the �̄
direction appears at the value

�̄p = −
2� sin �o

3 + 5 cos2 �o
. �5�

Therefore, the location of the peak depends on the

angle �o between the z axis and the observation di-
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rection and on the helicity � of the dipole but not on
angle �o. Equation (5) for the peak position is similar
to Eq. (4) for the displacement of the field line in the
observation direction ��o ,�o�. Figure 4 shows both �̄d
and �̄p as a function of �o, for �=1. Both the displace-
ment and the shift of the peak are in the same direc-
tion along the �̄ axis, but they are not identical. The
maximum shift is −2/3, which occurs at �o=� /2,
whereas the displacement at this angle is −2.

Fig. 3. Shown is the intensity distribution I�r� in the �̄�̄
plane for �o=� /2 and �=1. The peak of the distribution is
at the negative side of the �̄ axis, and this is a result of the
spiraling of the field lines in the counterclockwise direction
near the position of the dipole.

Fig. 4. Shown is the displacement �̄d of the field line in
the observation direction ��o ,�o� and the location of the
peak �̄p of the intensity distribution in the same direction,
both as a function of the polar angle of observation �o and
wise the same.
The shift �̄p of the peak in the far-field image is
due to the presence of the vortex in the near field,
and this implies the possibility of observing the exis-
tence of the dipole vortex by a measurement in the
far field. However, a direct measurement of the shift
�̄p of the peak may not be feasible since it requires a
precise calibration of the location of the origin of co-
ordinates in the observation plane. When an atom ra-
diates dipole radiation in a �m=−1 electronic transi-
tion, the helicity of the dipole moment is �=1,
whereas for a �m=1 transition the helicity is �=−1.
The �m value of the transition is determined by the
polarization of the driving laser. Therefore, if we
change the helicity of the laser during an observa-
tion, for instance by inserting a half-wave plate in
the beam, the value of � changes sign and so does the
location �̄p of the peak. This effect is illustrated in
Fig. 5. By changing the helicity of the laser, the peak
in the intensity distribution moves over ±2�̄p, which
is 	4/3 for the case shown in Fig. 5. The observation
of such a shift would not require the exact determi-
nation of the location of the observation plane. There-
fore, such a procedure may allow for the detection of
the dipole vortex in the far field.
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Fig. 5. Graph shows the intensity I�r� as a function of �̄

for �̄=0. The value of the observation angle is �o=� /2. For
�=1 and �=−1 the maxima are at �̄p=−2/3 and �̄p=2/3,
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for �=1. For �=−1, both curves change sign but are other-


