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Energy flow lines for the radiation emitted by a dipole
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An oscillating electric dipole emits radiation, and the flow of energy in the
electromagnetic field is represented by the field lines of the Poynting vector. In the
most general state of oscillation the dipole moment vector traces out an ellipse.
We have evaluated analytically the field lines of the Poynting vector for the
emitted light, and it appears that each field line lies on a cone, which has its axis
perpendicular to the plane of the ellipse. The field lines exhibit a vortex structure
near the location of the dipole, and they approach a straight line in the far field.
It is shown that due to the spiraling of the field lines near the source, the
asymptotic limit of a field line is displaced as compared to a ray which would
come directly out of the source. Both the spatial extent of the vortex in the near
field and the magnitude of the displacement of the image in the far field are of
nanoscale dimension.

Keywords: dipole radiation; Poynting vector

1. Introduction

The most elementary type of electromagnetic radiation is electric dipole radiation. On one
hand, when a source of radiation is small compared to the wavelength of the emitted light,
the source is in first approximation an electric dipole, and on the other hand, the radiation
emitted by atoms and molecules is usually electric dipole radiation. In particular, when an
atom is in an excited electronic state it will decay to a lower state and such that the change
in magnetic quantum number is �m¼�1, or 1, according to the dipole selection rules.
The electric and magnetic fields of an electric dipole are well known [1], and the emitted
power per unit solid angle can be obtained easily, giving the familiar lobe structure for
a linearly-oscillating dipole moment. This radiation pattern changes dramatically when the
dipole is located near an interface with a dielectric or metallic medium. The reflected
radiation adds to the directly-emitted dipole radiation, leading to an interference pattern,
and for a dielectric interface the transmitted radiation is typically strongly peaked around
a cone at the critical angle [2–12]. These calculated and measured intensity distributions
assume that the radiation is observed in the far field, e.g. at a distance from the source
which is much greater than an optical wavelength. When viewed from the far field, the
light appears to be emanating from the location of the dipole, and it propagates as
a spherical outgoing wave centered around the dipole. The corresponding optical rays
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(the orthogonal trajectories of the wave fronts) are therefore straight lines which appear to

come from the location of the source.
In the geometrical optics limit of light propagation certain terms in Maxwell’s

equations are neglected under the assumption that the wavelength of the light is small

compared to other relevant distances. It can then be shown [13] that the light rays in

a homogeneous medium are straight lines, irrespective of the source of the radiation, and

that the light rays coincide with the field lines of the Poynting vector. In this limit, the field

lines of the Poynting vector are straight lines at any distance from the source, and in

particular in the near field. However, when the structure of dipole radiation is resolved on

the scale of a wavelength, the field lines of the Poynting vector are in general curves [14],

and they may exhibit a vortex structure near the location of the dipole. In the far field, the

field lines are asymptotically straight, but we shall show that when the direction of the

emission of radiation is detected with an accuracy of a wavelength or less, the field lines

appear to be displaced as compared to the optical rays. With contemporary near-field

optical microscopy techniques, these precise details of a radiation pattern have become

amenable to experimental observation [15,16], and such measurements with nanoscopic

precision may have an impact on novel imaging devices in microbiology and medical

applications.

2. The Poynting vector for dipole radiation

When the current density in a localized source of radiation oscillates harmonically with

angular frequency !, it has an electric dipole moment given by

dðtÞ ¼ Re ðde�i!tÞ, ð1Þ

where the complex amplitude d is a complex-valued vector, which is determined by the

current distribution of the source. It will be assumed that higher order multipole moments

of the current density contribute negligibly to the radiation field, when compared to the

electric dipole moment contribution. The radiated electric field will also have a harmonic

time dependence, and can therefore be written as

Eðr, tÞ ¼ Re ½EðrÞexpð�i!tÞ�, ð2Þ

with E(r) the complex amplitude, and the radiated magnetic field B(r, t) can be represented

similarly. The complex amplitudes of the electric and magnetic fields of an electric dipole

at the origin of coordinates can be represented most compactly as

EðrÞ ¼
1

4p"o
½k2odþ ðd � rÞr�gðrÞ, ð3Þ

BðrÞ ¼
i!�o

4p
d�rgðrÞ, ð4Þ

with ko¼!/c, and

gðrÞ ¼
expðikorÞ

r
, ð5Þ
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is the free-space Green’s function for the scalar Helmholtz equation. Working out the

derivatives gives explicitly

EðrÞ ¼
k3o

4p"oq
d� ðd � r̂Þr̂þ d� 3ðd � r̂Þr̂½ �

i

q
1þ

i

q

� �� �
expðiqÞ, ð6Þ

BðrÞ ¼ �
k3o

4p"ocq
d� r̂ 1þ

i

q

� �
expðiqÞ, ð7Þ

where we have set

q ¼ kor, ð8Þ

for the dimensionless distance between the dipole and the field point r.
The Poynting vector for a time-harmonic field is given by

SðrÞ ¼
1

2�o
Re½EðrÞ � BðrÞ��, ð9Þ

where terms that oscillate at twice the optical frequency have been dropped since they

average to zero. The direction of S(r) at the field point r indicates the direction of energy

flow, and its magnitude equals the power transported per unit area. The Poynting vector

S(r) determines a vector field around the dipole, and the field lines of this vector field

represent the flow pattern of the radiated energy. When we substitute the right-hand sides

of Equations (6) and (7) for the complex amplitudes of the electric and magnetic fields,

respectively, we obtain

SðrÞ ¼
ck4o

32p2"or2
½d � d� � ðr̂ � dÞðr̂ � d�Þ�r̂�

2

q
1þ

1

q2

� �
Im ½ðr̂ � dÞd��

� �
: ð10Þ

We then set

d ¼ doe, do 4 0, e � e� ¼ 1, ð11Þ

for the complex amplitude of the dipole moment and introduce the function

�ð�,�Þ ¼ 1� ðr̂ � eÞðr̂ � e�Þ, ð12Þ

where � and � are the angles of the field point r in spherical coordinates. This yields the

expression

SðrÞ ¼
3Po

8pr2
�ð�,�Þr̂�

2

q
1þ

1

q2

� �
Im ½ðr̂ � eÞe��

� �
, ð13Þ

for the Poynting vector. Here we have set

Po ¼
ck4o

12p"o
d2o, ð14Þ
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which equals the total radiated power by the electric dipole. For a magnetic dipole, the

electric and magnetic fields are different, but it can be shown that the resulting expression

(13) for the Poynting vector is the same.
When the vector e in Equation (11) is real, as for instance in a �m¼ 0 transition in

an atom, the dipole moment given by Equation (1) becomes d(t)¼ doe cos(!t). This

corresponds to a linear dipole moment, oscillating back and forth along the direction of e,

and the Poynting vector becomes

SðrÞ ¼
3Po

8pr2
r̂ sin2 �, ð15Þ

where � is the angle between vector e and the observation direction r̂. The Poynting vector

is in the radial direction for all field points r, and therefore the field lines of S(r) are

straight lines which run radially outward from the location of the dipole. The power per

unit solid angle is proportional to sin2�, and this gives the common lobe pattern for dipole

radiation.
At a large distance from the dipole, the Poynting vector is approximately

SðrÞ �
3Po

8pr2
�ð�,�Þr̂, ð16Þ

which is in the radial direction. Therefore, in the far field the field lines approach a straight

line, and they have the appearance of running from the location of the dipole directly to

the far field. A more careful consideration (below) will show that this only holds when

spatial variations on the scale of a wavelength in the far field are neglected.

3. Elliptical dipole moment

When an atom in an excited electronic state decays to a lower state in a �m¼�1

transition, the vector e in Equation (11) is the spherical unit vector

e�1 ¼ �
1

21=2
ð�ex þ ieyÞ: ð17Þ

The dipole moment d(t) then traces out a circle in the xy-plane, and the rotation is positive

(counterclockwise when viewed from the positive z-axis) for e¼ e1 and negative for e¼ e�1.

In general, however, the complex amplitude d of the dipole moment can be any

complex-valued vector. It can then be shown [17] that the most general state of rotation of

d(t) is an ellipse. We can then take the plane of this ellipse as the xy-plane, and parametrize

vector e as

e ¼ �
1

ð�2 þ 1Þ1=2
ð�ex þ ieyÞ, ð18Þ

with � real. With Equation (1) this yields

dðtÞ ¼ �
do

ð�2 þ 1Þ1=2
½�ex cosð!tÞ þ ey sinð!tÞ�, ð19Þ

2460 J. Shu et al.
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and this ellipse is shown in Figure 1. For �40 (�50) the rotation is positive (negative) and

for �¼� 1, vector e becomes e�1, and the ellipse reduces to a circle. Furthermore, for �¼ 0

and �!1 we recover the case of a linear dipole, oscillating along the y-axis and x-axis,

respectively.
With e given by Equation (18), the Poynting vector from Equation (13) becomes

SðrÞ ¼
3Po

8pr2
�ð�,�Þr̂þ

2

q
1þ

1

q2

� �
�

�2 þ 1
sin �e�

� �
, ð20Þ

with

�ð�,�Þ ¼ 1�
1

2
sin2 � 1þ

�2 � 1

�2 þ 1
cosð2�Þ

� �
: ð21Þ

The term proportional to r̂ in Equation (20) is the same as the right-hand side of

Equation (16), so this term corresponds to the far-field solution. The term proportional to

e� is dominant in the near field, since it is proportional to r�5, and it will give rise to

a rotation of the field lines around the z-axis. For �¼ 0 and �!1 this term vanishes, and

the field lines are in the radial direction at any distance from the dipole.

4. Field lines of the Poynting vector

Expression (20) for S(r) defines a vector field in space, and a field line of S(r) is a curve

for which at any point along the curve the vector S(r) is on its tangent line. Let r(u)

be a parametrization of a field line, with u a dummy variable. Since a field line is

d (0)

d (t )

x

y

b 2 + 1

b 2 + 1

1 do

do 
β

Figure 1. The figure illustrates the most general state of oscillation of an electric dipole moment d(t).
As time progresses, vector d(t) traces out an ellipse, and we take the plane of the ellipse as the
xy-plane. The ellipse is parametrized with �, as in Equation (19), and the figure shows the
dependence on � of the semi-major and semi-minor axes. For �¼ 0, the oscillation becomes linear
along the y-axis, and for �¼ 1 the ellipse reduces to a circle. For �41 the major axis is along the
x-axis, and for �!1 the oscillation becomes linear along the x-axis. For � positive, as in the figure,
the rotation is counterclockwise and for � negative the rotation becomes clockwise.
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only determined by the direction of S(r), and not its magnitude, the field lines are

solutions of

dr

du
¼ f ðrÞSðrÞ ð22Þ

with f(r) an arbitrary positive function of r. In spherical coordinates (q, �,�), Equation (22)

becomes

dq

du
¼ kof ðrÞr̂ � SðrÞ, ð23Þ

q
d�

du
¼ kof ðrÞe� � SðrÞ, ð24Þ

q sin �
d�

du
¼ kof ðrÞe� � SðrÞ, ð25Þ

which is a set of equations for q, � and � as functions of u. We then take

f(r)¼ 8�r2/(3Poko), and with Equation (20) for S(r) we then obtain

dq

du
¼ �ð�,�Þ, ð26Þ

d�

du
¼ 0, ð27Þ

d�

du
¼

2

q2
1þ

1

q2

� �
�

�2 þ 1
: ð28Þ

The solution of Equation (27) is �¼ �o, with �o a constant. Therefore, any field line lies

on a cone �¼ �o. Then in Equation (26) we can replace �(�,�) by � (�o,�), and when

combined with Equation (28) this yields

d�

dq
¼

2

q2
1þ

1

q2

� �
1

�ð�o,�Þ

�

�2 þ 1
, ð29Þ

which is an ordinary first-order nonlinear differential equation for �(q). We shall solve this

equation in the next section.

5. Solution for the field lines

A point on a field line has spherical coordinates (q, �,�). Along a field line, �¼ �o, and the

coordinates � and q are related by Equation (29). This equation is separable, and with the

explicit form (21) for �(�o,�) we find as integral

ð1�
1

2
sin2 �oÞ��

1

4
sin2 �o sinð2�Þ

�2 � 1

�2 þ 1
¼ �

2�

�2 þ 1

1

q
1þ

1

3q2

� �
þ C: ð30Þ

2462 J. Shu et al.
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In order to determine the integration constant C, we first notice that d�/dq is positive

(negative) for � positive (negative), since the function �(�o,�) is non-negative. Therefore,
� increases (decreases) monotonically with q for � positive (negative). On the other hand,

we have d�/dq! 0 for q!1, and consequently � reaches a final value. When we set

�o¼�(q!1), we find from Equation (30)

C ¼ ð1�
1

2
sin2 �oÞ�o �

1

4
sin2 �o sinð2�oÞ

�2 � 1

�2 þ 1
, ð31Þ

for the integration constant. We then obtain

ð1�
1

2
sin2 �oÞð�� �oÞ �

1

4
sin2 �o½sinð2�Þ � sinð2�oÞ�

�2 � 1

�2 þ 1

¼ �
2�

�2 þ 1

1

q
1þ

1

3q2

� �
, ð32Þ

relating implicitly � and q along a field line. Apart from �, the free parameters are �o and �o.
A field line lies on the cone �¼ �o, and the values of � along a field line are in the range

�15�5�o, �4 0, ð33Þ

�o 5�51, �5 0, ð34Þ

as follows from the arguments above.
Equation (32) can be solved explicitly, provided we consider � as the independent

variable rather than q. For a given �, Equation (32) is a cubic equation in q, and the

solution is

qð�Þ ¼
1

ð1þ 1
4Að�Þ

2
Þ
1=2
þ 1

2Að�Þ
� �1=3

� ð1þ 1
4Að�Þ

2
Þ
1=2
� 1

2Að�Þ
� �1=3 , ð35Þ

where we have introduced the function

Að�Þ ¼
3

8
��

1

�

� �
sin2 �o½sinð2�Þ � sinð2�oÞ� �

3

2
�þ

1

�

� �
1�

1

2
sin2 �o

� �
ð�� �oÞ: ð36Þ

The dimensionless Cartesian coordinates of a point on a field line are therefore

parametrized by

�x ¼ qð�Þsin �o cos�, ð37Þ

�y ¼ qð�Þsin �o sin�, ð38Þ

�z ¼ qð�Þcos �o, ð39Þ

with �x ¼ kox, �y ¼ koy and �z¼ koz, and the parameter � is chosen as in Equation (33)

or (34), depending on the sign of �.
Figure 2 shows several field lines for different values of �o, and for each we have �¼ 1

and �o¼�/2. Each field line lies on a cone with its axis as the z-axis, and the field lines turn
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around the z-axis with a positive orientation. Asymptotically, the field lines run into the

direction of the positive y-axis since we have �o¼�/2. For the dimensionless coordinates

we have �x ¼ kox, etc., so a dimensionless distance of 2� corresponds to one optical
wavelength. We then see from the figure that the spatial extent of this optical vortex is

a fraction of a wavelength. For optical radiation, with a wavelength of several hundred

nanometers, the vortex manifests itself on a scale of less than 100 nm. With contemporary

high-precision nanoscale experimental techniques, such a vortex should be accessible to
detection. For the field lines in the region z40 in Figure 3 we have chosen �¼ 1 and

�o¼�/4, and each field line has a different value of �o. For the field lines below the

xy-plane, we have �¼ 1 and the values of �o are the same as for the region z40, but �o is
equal to 3�/4. The orientation of the field lines with respect to the z-axis is the same in z40
and in z50. The dependence of the vortex structure on the value of � is illustrated in

Figure 4 for �o¼�/4 and �o¼�/2. For �¼ 1, Figure 4(a), shows a similar vortex as in

Figures 2 and 3. When the value of � decreases, as in Figures 4(b) and (c), we find that

the structure of the vortex remains similar, but its spatial extent diminishes. For �! 0 the
field lines of the Poynting vector should become straight lines, running from the site of the

dipole to the far field, and Figure 4 shows that this transition occurs through a decreasing

size of the optical vortex.

6. Asymptotic limit of the field lines

Every field line of the Poynting vector approaches a straight line in the far field, which is

reminiscent of the optical rays picture for the emission of radiation. Due to the rotation of

the field lines near the location of the source, however, these straight lines do not appear to
come exactly from the site of the dipole, as depicted in Figure 5. In order to obtain the

y 

0

1

2

–3

0

3–2 –1 0 1 2 3

x

x

z

Figure 2. Shown are three field lines of the Poynting vector for �¼ 1 and �o¼�/2, with �o¼�/8,
3�/8 and �/2. Each field line lies on the corresponding cone, and leaves in the positive y-direction.
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asymptotic limit of the field lines, we consider Equation (29) for d�/dq. For q large, we can
expand �(q) in an asymptotic series as

�ðqÞ ¼ �o þ
�1
q
þ
�2
q2
þ � � � : ð40Þ

For the function �(�o,�) on the right-hand side of Equation (29) we obtain �(�o,�)¼
�(�o,�o)þO(1/q), and the expansion of Equation (29) becomes

d�

dq
¼

1

q2
Yð�o,�o; �Þ þ O

1

q3

� �
ð41Þ

where we have introduced the abbreviation

Yð�o,�o; �Þ ¼
1

�ð�o,�oÞ

2�

�2 þ 1
: ð42Þ

–2

–1

0

1

2

–2

–1

0

1

2

–1

0

1

2

x

y

z

Figure 3. The figure shows field lines of the Poynting for �¼ 1 and �o¼�/4 and 3�/4, and for
a variety of values of �o. The orientation of the field lines in both z40 and z50 is the same as the
direction of rotation of the dipole moment (positive).
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0.0

0.5

1.0

(a)

(b)

(c)

–1.0

–0.5

0.0

0.5

1.0–0.5
0.0

0.0
0.5 1.0

b = 1

z

y

x

0.0

0.5

1.0

–1.0

–0.5

0.0

0.5

1.0–0.5 0.0 0.5 1.0

b = 0.1

z

y

x

0.0

0.5

1.0

–1.0 

–0.5

0.0

0.5

1.0–0.5 0.0 0.5 1.0

b = 0.001

z

y

x

Figure 4. Parts (a)–(c) illustrate the dependence of the field lines on �. The observation direction is
(�o,�o)¼ (�/4,�/2) for each. (a) For which �¼ 1, corresponds to a circular dipole. When � decreases,
the dipole approaches a linear dipole, oscillating along the y-axis, for which the field lines are
straight, and run radially outward. It appears that this limit is reached in such a way that the spatial
extent of the vortex reduces, until it reaches a point for �! 0, as can be seen from (c).
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Integration of Equation (41) then yields the first two terms of the asymptotic series

�ðqÞ ¼ �o �
1

q
Yð�o,�o; �Þ þ � � � : ð43Þ

The dimensionless Cartesian coordinates for a point on a field line are given by

Equations (37)–(39), in which q is considered a function of �. We now view � to be

a function of q, and we expand cos� and sin� in Equations (37) and (38) for q large by

means of Equation (43). This gives

cos�ðqÞ ¼ cos�o þ
1

q
Yð�o,�o; �Þsin�o þ � � � , ð44Þ

sin�ðqÞ ¼ sin�o �
1

q
Yð�o,�o;�Þcos�o þ � � � : ð45Þ

In Equations (37) and (38) the factors cos� and sin� are multiplied by q, and therefore the

second terms on the right-hand sides of Equations (44) and (45) become a constant,

independent of q. The higher-order terms vanish for q!1, and therefore the asymptotic

limit for the dimensionless Cartesian coordinates becomes

�x ¼ sin �o½� cos�o þ Yð�o,�o;�Þsin�o�, ð46Þ

0

1

2

3

4

–2

–1

0

1

2

–1
0

1
2

x

y 

z

r̂o

qd

Figure 5. A field line approaches asymptotically a line ‘ at a large distance. When the radiation is
detected by an observer in the far field, the field line appears to come from a point in the xy-plane
with position vector qd. Therefore, the source of the radiation appears to be displaced over vector qd.
The figure illustrates this displacement for a circular dipole with �¼ 1, and observation direction
(�o,�o)¼ (�/4, 0.95�).
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�y ¼ sin �o½� sin�o � Yð�o,�o;�Þcos�o�, ð47Þ

�z ¼ � cos �o, ð48Þ

where we have replaced q by �, since this free parameter does not have the significance of

the dimensionless distance to the origin anymore in the asymptotic limit. When we let

�15�51, Equations (46)–(48) represent a straight line ‘, which is the asymptote of the

corresponding field line of the Poynting vector. When we set

qd ¼ Yð�o,�o; �Þsin �oðex sin�o � ey cos�oÞ, ð49Þ

for given (�o,�o), then the equation for the line ‘ can be written as

‘ : q ¼ �r̂o þ qd, ð50Þ

with q¼ kor the dimensionless position vector for a point on the line ‘, and r̂o the radial

unit vector into the direction of observation (�o,�o). The intersection between the line ‘
and the xy-plane follows by setting �¼ 0, and therefore we see that vector qd is the virtual

displacement of the source in the xy-plane, when viewed from the far field. This result is

illustrated in Figure 5. It also follows from Equation (49) that qd � r̂o ¼ 0, and therefore the

displacement qd is perpendicular to the direction of observation r̂o.

7. Displacement in the far field

When a field line is observed in the far field, it appears to come from the point with

position vector qd in the xy-plane, as shown in Figure 5. From a different point of view, the

observation plane of an observer in the far field, located at angular position (�o,�o), is
a plane perpendicular to r̂o, at a large distance from the source. When a field line would

run straight from the source to the observer, it would intersect the observation plane at the

local origin of coordinates O0, as shown in Figure 6, but due to the rotation of the field

lines near the source the field line intersects this plane at a different point. At a large

image

qd

eqo

efo

r̂o

Figure 6. The figure shows the observation plane for an observer located in the direction r̂o with
respect to the source. The plane is perpendicular to r̂o and far away from the source. If a field line
would be a straight line (ray) from the source to the far field, it would intersect the observation plane
at the origin O0. Due to the rotation of the field line near the source, the intersection point, which is
the location of the image, is displaced over vector qd in the observation plane. For a positive � the
rotation near the source is in the positive direction with respect to the z-axis, and this leads to
a displacement in the �e�o direction, as shown.
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distance, this point is the same as the intersection of the plane with the line ‘.
The displacement vector qd from Equation (49) can be written as

qd ¼ �e�oYð�o,�o; �Þsin �o, ð51Þ

with e�o the local unit vector e� in a spherical coordinate system, and evaluated at the

observation angle �o. From Equations (50) and (51) it then follows that the displacement

of this intersection point with respect to the local origin of coordinates is also given by qd,

since vector qd is a vector in the observation plane. Therefore, the apparent displacement

of the image in the far field is the same as the virtual displacement of the source in the

xy-plane.
The displacement in the far field depends on the observation direction (�o,�o), and on

the parameter � of the ellipse. For �40, the displacement is in the �e�o direction, as in

Figure 6, and for �50 the displacement is in the e�o direction. The magnitude of the

displacement is

qd ¼
2j�j

�2 þ 1

sin �o
�ð�o,�oÞ

, ð52Þ

with �(�o,�o) given by Equation (21). For �o¼ 0 or �o¼� we have �(�o,�o)¼ 1 and

qd¼ 0. When a field line is observed along the z-axis, the displacement is zero. We see

from Figure 2 that in the z-direction a field line swirls around the z-axis and stays

close to the z-axis, which results in a vanishing displacement in the far field. For a given

� and �o we find from Equations (52) and (21) that qd is maximum for �o¼�/2,
so for an observation direction in the xy-plane. When considering the dependence on �o,
we find from Equation (21) that qd is maximum for cos (2�o)¼ 1 when j�j41, and for

cos(2�o)¼�1 when j�j51. This corresponds to �o¼ 0 or � and �o¼��/2, respectively.
From Figure 1 we then see that both cases correspond to an observation direction along

the major axis of the ellipse. When viewed in this direction, the magnitude of the

displacement is given by

qd ¼

2j�j, j�j4 1,

2

j�j
, j�j5 1,

8<
: ð53Þ

which is the maximum value of qd, given �. For a circular dipole we have j�j ¼ 1, and the

maximum dimensionless displacement is qd¼ 2, corresponding to a distance rd¼ �/�,
with � the wavelength of the radiation. When the eccentricity of the ellipse increases, the

value of qd along the major axis increases. For �!1 (�! 0), the oscillation of the

dipole becomes linear along the x-axis ( y-axis), and from Equation (53) it follows that in

this limit the maximum displacement grows without bounds. This is due to the fact that

along the major axis we have �(�o,�o)! 0 for both �!1 and �! 0, resulting in

a division by a small number in Equation (52). On the other hand, it follows from

Equation (16) that �(�,�) is proportional to the radiated power per unit solid angle in

the direction (�,�). We conclude that in the limit of a linear dipole the displacement is

maximum for the direction into which the emitted power vanishes. This phenomenon is

illustrated in Figure 7.
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8. Conclusions

In its most general state of oscillation, an electric dipole moment of a source of radiation

traces out an ellipse in a plane, taken to be the xy-plane. The field lines of the Poynting

vector of the emitted electromagnetic field represent the direction of energy flow, and we

have obtained an analytical solution for these field lines. It was found that for a given

observation direction (�o,�o) in the far field, the corresponding field line lies entirely on the

cone specified by the polar angle �o. Near the location of the dipole the field lines have

a vortex structure, in which each field line swirls around the z-axis numerous times. In the

far field, each field line approaches asymptotically a straight line, resembling an optical

ray. The parameter equation of this line is given by Equation (50) for a given observation

direction (�o,�o). This line does not go through the origin of coordinates, where the dipole

is located, and therefore it appears that the position of the dipole in the xy-plane is shifted.

This apparent displacement of the source is represented by the position vector qd, given by

Equation (49). The magnitude of vector qd is of the same order as the spatial extent of the

vortex near the source, which is of sub-wavelength dimension. However, when the

radiation is observed along the major axis of the ellipse, the magnitude of the displacement

increases with increasing eccentricity of the ellipse. When a field line is viewed from

a location in the far field, the image point is displaced by the same vector qd, with respect

to the origin of coordinates in the observation plane. In this fashion, the nanoscale

6

4

2

0

–2
–2 0 2 4

qd

x

y

Figure 7. When a field line is observed along the major axis of the ellipse traced out by the rotating
dipole moment, the displacement of the image in the xy-plane increases with increasing eccentricity
of the ellipse. Shown is such a field line for �¼ 0.5. The displacement vector is along the positive
x-axis, and its magnitude is equal to qd¼ 4. For a circular dipole, with j�j ¼ 1, the maximum
displacement is qd¼ 2.
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structure of the radiation pattern near the source is reflected in a measurable, although
small, effect in the far field.
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