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Henk F. Arnoldus*

Department of Physics and Astronomy, Mississippi State University, Mississippi, USA

(Received 12 October 2007; final version received 20 October 2007)

When electromagnetic radiation illuminates a perfectly-conducting metal, it
induces a current density on its surface. We consider a thin perfectly-conducting
sheet, possibly finite in extent and possibly with apertures in it, so that incident
radiation will induce a current density at both sides of the material. The sheet
current density is the sum of the current densities at both sides, and this effective
current density generates the scattered field. We show that when this sheet current
density is known, its splitting in surface current densities at both sides of the sheet
is unique, and determined by the incident field in a simple way. A set of two
coupled equations for this sheet current density is derived, which holds for any
spatial structure of the incident field. This approach to scattering by a sheet is
illustrated by considering a plane wave incident on a mirror and on the
Sommerfeld half-plane.
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1. Introduction

A layer made of perfectly-conducting metal with a flat surface and infinite in extent is
a mirror. An incident plane wave reflects in the specular direction, and a light wave with
an arbitrary spatial structure, which is emitted by a source in front of the mirror, reflects as
if the reflected field was emitted by a mirror source behind the surface. By employing an
angular spectrum representation of the source field, the current density of this image
source can be constructed explicitly [1]. From a different point of view, a field incident
upon a material induces a current density in the medium. For a perfect conductor, the
incident light does not penetrate the metal, and therefore all induced current is a surface
current which appears at the illuminated side of the metal. This surface current density
emits an electromagnetic field, which is the reflected field. Let the magnetic component of
the incident field have a harmonic time dependence with angular frequency !, e.g.

Bðr, tÞinc ¼ Re½BðrÞinc expð�i!tÞ�, ð1Þ
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with BðrÞinc the complex amplitude. Other time-dependent quantities will then have the
same time dependence. It can then be shown [2] that the induced surface current density
iðrÞ at point r on the surface of the mirror is given by

iðrÞ ¼ �
2

�o
ez � BðrÞinc, ð2Þ

with ez the unit normal on the surface, directed from the vacuum into the material.
A rather remarkable feature is that the current density iðrÞ in a mirror at point r is
determined entirely by the incident magnetic field BðrÞinc at that same point r. For a perfect
conductor of arbitrary shape, the current density at point r depends on the current density
at all other points r0 of the surface. The equation known as the Magnetic Field Integral
Equation is a linear integral equation for the current density iðrÞ on the surface, and it has
the incident magnetic field at the surface as an inhomogeneous term [3]. This equation,
which is due to Maue [4], is widely used in numerical calculations for scattering
of electromagnetic radiation off objects of arbitrary shape [5,6], and when applied to
a mirror it yields immediately the result (2).

The mechanism of image formation and reflection by a mirror is independent of the
thickness of the metal layer, provided we adopt the limit of perfect conductivity.

In particular, it holds for an infinite sheet of material which is very thin. We shall consider

a flat thin sheet S of perfectly-conducting metal, as in Figure 1. The sheet may be finite
in extent and it may have one or more apertures in it. In addition to its specular reflection,

the incident radiation will then pass through the aperture and diffract around the edges,

giving rise to an electromagnetic field at the dark side of the screen (side b in Figure 1).
The field at the illuminated side (a-side) will induce a current density iaðrÞ in the surface,

similar to the case of the mirror, and in addition, the field at the b-side will induce a surface

current density ibðrÞ at that side of the material. The situation, however, is now much more
complicated because the current densities at both sides will influence each other, and these

current densities will not be given by a simple relation as Equation (2). Since the sheet is
very thin, the effective surface current density iðrÞ at point r of S is

iðrÞ ¼ iaðrÞ þ ibðrÞ ð3Þ

a

b

S

inc

Figure 1. Radiation is incident upon a sheet S of perfectly-conducting metal. The sheet may have
apertures and may be finite in extent, and therefore the illuminating light can diffract around the
various edges. The radiation is incident upon the a-side of the material and the b-side is the shadow
side of the sheet.

1668 H.F. Arnoldus
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as illustrated in Figure 2. This total current density is sometimes referred to as the sheet
current density [7]. We shall derive an integral equation for iðrÞ, which has the incident
electric field at the surface as an inhomogeneous term. The equation is reminiscent of the
Magnetic Field Integral Equation in that it is an equation for the current density in terms
of the given incident field. However, the Magnetic Field Integral Equation is formulated in
terms of the physical current densities iaðrÞ and ibðrÞ on the separate surfaces of the
material, and its application to the situation where the separation between the two current
densities becomes infinitesimally small is nontrivial [8]. The integral equation for iðrÞ
involves the values of iðr 0Þ at all other points r0 on the surface, and the solution of this
equation will also not be as simple as the solution given by Equation (2) for a mirror.
However, we shall show that for a sheet S of arbitrary geometry and an incident field of
arbitrary spatial dependence a generalization of Equation (2) can be derived.

2. Boundary conditions

The electromagnetic field is the sum of the incident (inc) field and the field
generated by iðrÞ, which we shall call the scattered (sc) field. For the total magnetic field
we then write

BðrÞ ¼ BðrÞinc þ BðrÞsc ð4Þ

and similarly for the total electric field. The xy-plane is taken as the plane containing the
sheet S, and the positive z-axis is directed from the a-side to the b-side, as depicted in
Figure 2. The general boundary condition for the magnetic field at an interface relates the
values of BðrÞ at two sides of the interface to the surface current density on the interface.

b

a

+ z 

inc

ib 

i = ia + ib
ia

i = 0 

xy-plane

S

Figure 2. The incident radiation induces a surface current density iaðrÞ on the a-side of the sheet S,
and due to diffraction around the edges, there will be a current density ibðrÞ at the b-side as well.
The sheet current density iðrÞ is the sum of both current densities, as shown in the diagram. It is also
indicated that iðrÞ ¼ 0 inside an aperture and outside of the sheet. This simple observation leads to
the condition expressed by Equation (43). The sheet S is part of the xy-plane, and the z-axis is
directed from the a-side to the b-side. The origin of coordinates O can be chosen arbitrarily in the
plane of the sheet.

Journal of Modern Optics 1669
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 Inside the material of the thin sheet there is no magnetic field, so when considering a point

r in the sheet the boundary condition at the a-side can be written as

BðrÞa ¼ ��oiaðrÞ � ez, ð5Þ

where it is understood that BðrÞa is the value of the magnetic field near point r of the sheet,
and just outside the medium. The boundary condition at the b-side is

BðrÞb ¼ �oibðrÞ � ez: ð6Þ

The usual boundary conditions [9] at an interface are formulated in terms of the parallel
(k) and perpendicular (?) components with respect to the interface. In Equation (5),
iaðrÞ � ez is a vector in the xy-plane, so it has no perpendicular component.
Therefore, Equation (5) is equivalent to the set of two equations BðrÞa,? ¼ 0 and
BðrÞa, k ¼ ��oiaðrÞ � ez, and similarly, Equation (6) can be written as a set of two
equations. The boundary conditions for the electric field at the a-side and b-side are,
respectively,

EðrÞa ¼ �
�aðrÞ

"o
ez, ð7Þ

EðrÞb ¼
�bðrÞ

"o
ez, ð8Þ

which involve the surface charge densities �aðrÞ and �bðrÞ. These equations can also be split
into their parallel and perpendicular components, so that Equations (7) and (8) become
a set of four equations.

In the boundary condition BðrÞa,? ¼ 0, which follows from Equation (5), the magnetic
field is the total magnetic field just outside the sheet S, and at the a-side. When we split the
field as in Equation (4), this boundary condition can also be written as

BðrÞa, sc,? ¼ �BðrÞinc,?, ð9Þ

relating the perpendicular component of the unknown scattered field at the a-side to the
perpendicular component of the given incident field at the same point. For the incident
field on the right-hand side we have dropped the subscript ‘a’, since the incident field is
continuous across the sheet. In the same way we find from Equation (7)

EðrÞa, sc, k ¼ �EðrÞinc, k: ð10Þ

Then, Equations (9) and (10) also hold if we replace ‘a’ by ‘b’, as follows from
Equations (6) and (8), and therefore we obtain

BðrÞa, sc,? ¼ BðrÞb, sc,?, ð11Þ

EðrÞa, sc, k ¼ EðrÞb, sc, k: ð12Þ

Interestingly, the perpendicular (parallel) components of the scattered magnetic (electric)
field are the same at both sides of the sheet, even though the current densities at both sides
are different.

1670 H.F. Arnoldus
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 Since the current density vectors iaðrÞ and ibðrÞ lie in the xy-plane, we have the identity

ez � ½ia, bðrÞ � ez� ¼ ia, bðrÞ, ð13Þ

which allows us to invert Equations (5) and (6) as

iaðrÞ ¼ �
1

�o
ez � BðrÞa, ð14Þ

ibðrÞ ¼
1

�o
ez � BðrÞb: ð15Þ

These current densities are determined by the total magnetic field at the a-side and b-side,
respectively. The sum of iaðrÞ and ibðrÞ is the sheet current density iðrÞ, which becomes

iðrÞ ¼
1

�o
ez � ½BðrÞb, sc � BðrÞa, sc�, ð16Þ

where we have used that the incident field is continuous across the sheet. We see that the
total current density iðrÞ can be expressed in terms of the scattered field only.

3. The scattered field

The current density iðrÞ generates the scattered field, and the magnetic component
is given by

BðrÞsc ¼
�o

4p
r �

Z
dS0iðr0Þgðr� r0Þ, ð17Þ

in terms of the Green’s function for the scalar Helmholtz equation

gðr� r0Þ ¼
expðikojr� r0jÞ

jr� r0j
, ð18Þ

where ko ¼ !=c. The electric component of the scattered field follows from the magnetic
component as

EðrÞsc ¼
ic2

!
r � BðrÞsc, ð19Þ

according to one of Maxwell’s equations.
Particularly useful for the present problem is Weyl’s representation of the Green’s

function [10]

gðr� r0Þ ¼
i

2p

Z
d2kk

1

�
exp ikk � ðr� r0Þ þ i�jz� z0j

� �
: ð20Þ

Journal of Modern Optics 1671
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 The integral runs over the entire kk-plane, and the parameter � is defined as

� ¼

k2o � k2k

� �1=2
, kk < ko,

i k2k � k2o

� �1=2
, kk > ko:

8>><
>>:

ð21Þ

Equation (20) is an angular spectrum representation of the Green’s function. For � real,
a partial wave is a traveling wave, whereas for � imaginary the partial wave is evanescent
in both the positive and negative z-directions. Since iðr0Þ in Equation (17) is in the
xy-plane, we only need gðr� r0Þ for z0 ¼ 0. We then introduce the notation

K� ¼ kk � �ez, ð22Þ

with � ¼ sgnðzÞ. So in the following equations we use the upper (lower) sign for the region
z > 0 (z < 0). When we substitute Weyl’s representation (20) into Equation (17) we obtain
for the scattered magnetic field

BðrÞsc ¼ �
�o

8p2

Z
d2kk

1

�
expðiK� � rÞK� � IðkkÞ, ð23Þ

where the transformed current density IðkkÞ is defined as

IðkkÞ ¼

Z
dSiðrÞ expð�ikk � rÞ: ð24Þ

The scattered electric field then follows from Equations (19) and (23), and we find

EðrÞsc ¼
1

8p2"o!

Z
d2kk

1

�
expðiK� � rÞK� � ½K� � IðkkÞ�: ð25Þ

4. The scattered field near the sheet

It should be noted that the scattered magnetic and electric fields, given by Equations (23)
and (25), respectively, are a solution of Maxwell’s equations for any current distribution
iðrÞ in the sheet. For a particular problem, like a sheet with an aperture or an edge, we need
to consider the boundary conditions. The sheet is in the xy-plane, so we set z¼ 0, and this
gives expðiK� � rÞ ¼ expðikk � rÞ in Equations (23) and (25). With some vector identities we
then split the magnetic and electric fields into their perpendicular and parallel components,
which yields

BðrÞsc,? ¼ �
�o

8p2

Z
d2kk

1

�
expðikk � rÞkk � IðkkÞ, ð26Þ

1672 H.F. Arnoldus
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 BðrÞsc, k ¼ �

�o

8p2
ez �

Z
d2kk expðikk � rÞIðkkÞ, ð27Þ

EðrÞsc,? ¼ �
1

8p2"o!
ez

Z
d2kk expðikk � rÞkk � IðkkÞ, ð28Þ

EðrÞsc, k ¼
1

8p2"o!

Z
d2kk

1

�
expðikk � rÞfkk½kk � IðkkÞ� � k2oIðkkÞg, ð29Þ

for the scattered fields just off the sheet. The � and � signs in Equations (27) and (28) refer
to the two sides of the screen, with the upper (lower) sign holding for the a- (b)- side.
Therefore, BðrÞsc, k and EðrÞsc,? are discontinuous across the screen. Equations (26) and
(29) do not have such a � sign, and therefore BðrÞsc,? and EðrÞsc, k are the same for the
a-side and the b-side. This is just what is expressed by Equations (11) and (12), so these
boundary conditions are fulfilled automatically for any current density iðrÞ in the sheet.

The appearance of the � sign in Equation (27) implies that

BðrÞb, sc, k ¼ �BðrÞa, sc, k: ð30Þ

In Equation (16) we can replace BðrÞaðbÞ, sc by BðrÞaðbÞ, sc, k since ez � BðrÞaðbÞ, sc,? ¼ 0.
Then we substitute the right-hand side of Equation (30) for BðrÞb, sc, k and then we drop
the k again. This yields for the sheet current density

iðrÞ ¼ �
2

�o
ez � BðrÞa, sc: ð31Þ

It is interesting to compare this expression to the result (2) for a mirror. The surface
current density on the mirror is determined by the local incident field, whereas the surface
current density at the illuminated side of a sheet is determined by the local scattered field
by an otherwise identical expression.

The transformed current density, IðkkÞ, is defined by Equation (24). This equation can
be inverted as

1

4p2

Z
d2kk expðikk � rÞIðkkÞ ¼

iðrÞ, r in S,
0, r not in S,

�
ð32Þ

for r in the xy-plane. This follows from the representation of the two-dimensional delta
function

1

4p2

Z
d2kk exp½ikk � ðr� r0Þ� ¼ �ðr� r0Þ: ð33Þ

The integral in Equation (27) is the same as in Equation (32), and therefore we find

BðrÞsc, k ¼
�
1

2
�oez � iðrÞ, r in S,

0, r not in S,

8<
: ð34Þ

Journal of Modern Optics 1673
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 for r in the xy-plane. For r in S, the upper sign holds for the a-side, and when we take the

cross product with ez this yields again Equation (31). The sheet charge density �ðrÞ follows
from the sheet current density through the continuity equation

�ðrÞ ¼ �
i

!
r � iðrÞ ð35Þ

and it is easily verified that Equation (28) can be simplified to

EðrÞsc,? ¼
�

1

2"o
ez�ðrÞ, r in S,

0, r not in S,

8<
: ð36Þ

for r in the xy-plane.

5. The current densities

The sheet current density can be found from the scattered magnetic field at the illuminated
side, according to Equation (31). For a given incident field, however, the scattered field is
an unknown. We now derive an equation between the current densities and the incident
field. To this end, we first notice that in Equations (14) and (15) we can replace the
magnetic fields at each side of the sheet by their parallel components, since the cross
products between ez and the perpendicular components yield zero. We then find for the
difference between the current densities

iaðrÞ � ibðrÞ ¼ �
1

�o
ez � BðrÞa, k þ BðrÞb, k

� �
: ð37Þ

At the right-hand side we find the parallel components of the total magnetic fields at
sides a and b of the sheet. When we split these in their incident and scattered parts, then we
see from Equation (30) that the contributions from the scattered parts cancel. The incident
field at the a-side and b-side is the same, so we obtain

iaðrÞ � ibðrÞ ¼ �
2

�o
ez � BðrÞinc, ð38Þ

where we have left out again the subscripts ‘a’ and k. The right-hand side of Equation (38)
is identical to the right-hand side of Equation (2) for the mirror. Since the mirror is a
special case of a sheet with openings and edges, Equation (38) is the generalization of
Equation (2). For a mirror, the incident radiation can not go around the edges or through
an aperture, so we must have ibðrÞ ¼ 0. Current only appears at the illuminated side,
and we have iaðrÞ ¼ iðrÞ. We find that for a sheet the local incident magnetic field at point
r determines the difference between the current densities at the same point r, rather than
the sheet current density iðrÞ.

1674 H.F. Arnoldus
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 By combining Equations (3) and (38) we can write the current densities at each side of

the sheet as

iaðrÞ ¼
1

2
iðrÞ �

1

�o
ez � BðrÞinc, ð39Þ

ibðrÞ ¼
1

2
iðrÞ þ

1

�o
ez � BðrÞinc: ð40Þ

In this form it seems that each side of the sheet acquires half of the sheet current iðrÞ, and
at each side there is a correction which is determined by the local incident field.
Or, from another point of view, when the sheet current is known, its splitting in the
separate iaðrÞ and ibðrÞ is determined uniquely by the local incident field and is independent
of the geometry of the sheet. By writing Equation (38) as

iaðrÞ ¼ �
2

�o
ez � BðrÞinc þ ibðrÞ, ð41Þ

we arrive at yet another interpretation. The first term on the right-hand side is what the
current density at the illuminated side would be if the sheet were a mirror. The second
term, ibðrÞ, is a correction due to apertures and edges. Since the b-side has the current
density ibðrÞ, which would be zero for a mirror, we conclude that the current densities
at both sides of the sheet gain the same additional ibðrÞ, as compared to the mirror.
The sheet current density is therefore what the current density would be for a mirror,
plus twice the current density at the shadow side.

6. The sheet current density

From Equations (39) and (40) we see that the current densities iaðrÞ and ibðrÞ can be found
as soon as we know the sheet current density iðrÞ. In order to obtain an equation for iðrÞ,
we first consider the boundary condition given by Equation (10). Comparison with
Equation (29) gives immediately

1

8p2"o!

Z
d2kk

1

�
expðikk � rÞfk

2
oIðkkÞ � kk½kk � IðkkÞ�g ¼ EðrÞinc, k, r in S, ð42Þ

a linear integral equation for the unknown transformed current density IðkkÞ, with the
incident electric field on the right-hand side as an inhomogeneous term. The equation has r
as a parameter, and the solution IðkkÞ has to satisfy Equation (42) for every r in the sheet S.
The left-hand side of Equation (42) has the appearance of a two-dimensional Fourier
transform of a function of kk, and the parameter r is the variable of the transformed
function. Equation (42) is one of the boundary conditions at point r in S, but the left-hand
side defines a function of r for all r in the xy-plane. When r is, for instance, a point of the
aperture, obviously Equation (42) does not hold, since this equation expresses that the
a-side of S is the boundary between vacuum and a perfect conductor. Therefore, we need

Journal of Modern Optics 1675
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 to supplement Equation (42) with a condition relating to the transform of IðkkÞ for a point

r in the xy-plane, but not in S. From Equation (32) we have

Z
d2kk expðikk � rÞIðkkÞ ¼ 0, r not in S, ð43Þ

which expresses that the sheet current density is zero for r in the xy-plane but not in S.
The function IðkkÞ, defined on the entire kk-plane, has to satisfy Equation (42) and (43)
simultaneously.

We have not yet considered the boundary condition for the magnetic field, given by
Equation (9). With Equation (26) this boundary condition becomes

�o

8p2

Z
d2kk

1

�
expðikk � rÞkk � IðkkÞ ¼ BðrÞinc,?, r in S, ð44Þ

as a possible alternative to Equation (42). However, the incident field obeys Maxwell’s
equation

BðrÞinc ¼ �
i

!
r � EðrÞinc ð45Þ

and if we apply the operation

@

@x
ey � ð:::Þ �

@

@y
ex � ð:::Þ ð46Þ

on both sides of Equation (42), then Equation (42) goes over into Equation (44).
Therefore, any solution of Equation (42) is also a solution of Equation (44). Equation (44)
is dependent, and does not provide any additional information.

7. Plane wave incident upon a mirror

The solution IðkkÞ of Equations (42) and (43) will depend on the incident field, due to the
term EðrÞinc, k on the right-hand side of Equation (42), but it will also depend on the
geometry of the sheet S. Once this solution is obtained, the scattered magnetic and electric
fields follow from Equations (23) and (25), respectively. The sheet current density iðrÞ
follows from Equation (32), after which the current densities iaðrÞ and ibðrÞ can be
obtained from Equations (39) and (40), respectively. In order to illustrate this approach
we now consider the case where the sheet S is a mirror, and the incident field is taken as the
plane wave

EðrÞinc ¼ Ee expðiko � rÞ: ð47Þ

The amplitude E and polarization vector e are arbitrary and complex-valued, and the wave
vector is

ko ¼ ko, k þ �oez: ð48Þ

1676 H.F. Arnoldus
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 We shall assume that ko, k is real and given, and since ko ¼ !=c is given, this yields for the

z-component

�o ¼

k2o � k2o, k

� �1=2
, ko, k < ko,

i k2o, k � k2o

� �1=2
, ko, k > ko:

8>><
>>:

ð49Þ

The two possibilities correspond to a traveling and evanescent incident wave, just as in
Equation (21) for the partial waves in the angular spectrum representation of the Green’s
function.

We only need to consider Equation (42), because the mirror covers the entire xy-plane.
We substitute Eek expðiko � rÞ for the right-hand side, multiply through by expð�ik0k � rÞ,
and integrate over the xy-plane. With the representation

Z
dS exp½iðkk � k0kÞ � r� ¼ 4p2�ðkk � k0kÞ ð50Þ

and similarly with kk replaced by ko, k, the integral Equation (42) goes over into

1

8p2"o!
1

�
fk2oIðkkÞ � kk½kk � IðkkÞ�g ¼ Eek�ðkk � ko, kÞ, ð51Þ

after dropping the prime on k0k. Equation (51) is now an algebraic equation for IðkkÞ.
Due to the delta function on the right-hand side, we can replace the two kk’s on the
left-hand side by ko, k, and � by �o. With some vector manipulations, Equation (51) can be
solved, and the result is

IðkkÞ ¼ 8p2"ocE�ðkk � ko, kÞp, ð52Þ

where we introduced the abbreviation

p ¼ ez � ðe� k̂oÞ ð53Þ

with k̂o ¼ ko=ko. The sheet current density follows from Equation (32), and we obtain

iðrÞ ¼ 2"ocEp expðiko, k � rÞ: ð54Þ

The incident magnetic field is

BðrÞinc ¼
E

c
k̂o � e expðiko � rÞ, ð55Þ

which has as its polarization vector

e0 ¼ k̂o � e, ð56Þ
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 and the value of BðrÞinc at z¼ 0 follows from replacing expðiko � rÞ by expðiko, k � rÞ.

From Equations (53)–(55) we then find the relation

iðrÞ ¼ �
2

�o
ez � BðrÞinc, ð57Þ

which is the same as Equation (2). When we substitute the right-hand side
into Equations (39) and (40) we see that iaðrÞ ¼ iðrÞ and ibðrÞ ¼ 0. Therefore, for
an infinite sheet without apertures all current appears at the illuminated side, as could
be expected.

In this approach, the scattered magnetic and electric fields can be evaluated easily. We
substitute the result (52) for IðkkÞ into Equations (23) and (25). Due to the delta function,
the vector kk is replaced by ko, k, so that � becomes �o and vector K� from Equation (22)
becomes ko, k � �oez. Let us first consider the equations with the upper sign, which hold for
z > 0. The value of Kþ at ko, k is just the wave vector ko of the incident wave from
Equation (48). With

ko � p ¼ �ok̂o � e, ð58Þ

which can be derived from Equation (53), we find for the scattered magnetic field

BðrÞsc ¼ �
E

c
e0 expðiko � rÞ, z > 0, ð59Þ

and with

ko � ðko � pÞ ¼ �ko�oe, ð60Þ

the scattered electric field becomes

EðrÞsc ¼ �Ee expðiko � rÞ, z > 0: ð61Þ

Comparison with Equations (47) and (55) shows that the scattered fields are the opposite
of the incident field and therefore the total electric and magnetic fields vanish behind the
mirror. The equations with the lower sign hold for the scattered field in front of the mirror,
so this is the reflected (specular) field. The value of K� at ko, k is the wave vector kr of the
reflected wave, which follows from ko by reversing the sign of the z-component:

kr ¼ ko, k � �oez: ð62Þ

The reflected fields can then be represented as

BðrÞsc ¼
E

c
e0r expðikr � rÞ, z < 0, ð63Þ

EðrÞsc ¼ Eer expðikr � rÞ, z < 0, ð64Þ
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 and their polarization vectors are defined as

e0r ¼ �
1

�o
kr � p, ð65Þ

er ¼
1

ko�o
kr � ðkr � pÞ: ð66Þ

It can be verified that the polarization vectors of the reflected fields are related to the
polarization vectors of the corresponding incident fields as

e0r ¼ e0k � e0?, ð67Þ

er ¼ e? � ek: ð68Þ

In the usual approach to reflection by and transmission through an interface, the cases of
an s-polarized and a p-polarized incident field are considered separately. It is interesting to
notice that with the present formalism no such distinction is necessary. The result for any
polarization is covered by a single derivation.

8. The Sommerfeld half-plane

An exactly solvable case is the scattering of a plane wave by the Sommerfeld half-plane.
The sheet S is the part x > 0 of the xy-plane, so the y-axis is the edge of the sheet. The
scattered magnetic and electric fields can be found in closed form [11–13], and the sheet
current density can be obtained by applying Equation (31) to the solution BðrÞsc. As an
illustration, we consider an incident wave of the form (47) under normal incidence, so that
ko ¼ koez. For the polarization of the electric field we take e ¼ ex, and with Equation (56)
this gives e0 ¼ ey for the polarization of the magnetic field. Figure 3 shows the directions
of the various vectors with respect to the half-plane. The value of the incident magnetic
field in the plane z¼ 0 follows from Equation (55) and is BðrÞinc ¼ ðE=cÞey. If the sheet
were a mirror, the induced sheet current density would be

iðrÞ ¼ 2"ocEex (mirror), ð69Þ

according to Equation (57). The current density is in the x-direction and has a constant
complex amplitude. By solving Equations (42) and (43) simultaneously for the half-plane
configuration, with methods similar to those applied in [13], it follows that the current
density has the form

iðrÞ ¼ 2"ocE�ðxÞex ð70Þ

and the function �(x) is found to be

�ðxÞ ¼ 1�
F ðkoxÞ

1=2
� �
Fð0Þ

, ð71Þ
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with F(�) the modified Fresnel integral, defined as

Fð�Þ ¼

ð1
�

dt expðit2Þ: ð72Þ

The solution for the half-plane is similar in form as for a mirror, but the complex
amplitude of the current density depends on x through the function �(x). We see
that Fð� ! 1Þ ¼ 0, and therefore the function �(x) approaches unity for x large.
Then Equation (70) goes over into Equation (69) for the mirror. In other words, any
deviation from �ðxÞ ¼ 1 is due to the presence of the edge along the y-axis. We also notice
that �ð0Þ ¼ 0, so the sheet current density at the edge vanishes in amplitude.

The physical currents appear on the a- and b-sides of the sheet. If we write

ia, bðrÞ ¼ 2"ocE�a, bðxÞex, ð73Þ

then we find from Equations (39) and (40)

�aðxÞ ¼ 1�
F ðkoxÞ

1=2
� �
2Fð0Þ

, ð74Þ

�bðxÞ ¼ �
F ðkoxÞ

1=2
� �
2Fð0Þ

ð75Þ

and these functions are shown in Figure 4. Far from the edge we have �aðxÞ � 1 and
�bðxÞ � 0, indicating that the current densities at the illuminated side and the shadow
side approach their values for a mirror. An interesting feature of this solution is that at the
edge we have

�að0Þ ¼
1

2
, �bð0Þ ¼ �

1

2
, ð76Þ

x

y

ez 

i(r)

ko

e

e′

Figure 3. The figure illustrates the setup of the Sommerfeld half-plane example from Section 8.
The half-plane is the part x > 0 of the xy-plane, and the z-axis is directed towards the shadow side of
the sheet. The y-axis is the edge of the sheet. The incident plane wave is under normal incidence, as
indicated by the wave vector ko, and the polarization vectors of the incident electric and magnetic
fields are e and e0, respectively.

1680 H.F. Arnoldus



D
ow

nl
oa

de
d 

B
y:

 [M
is

si
ss

ip
pi

 S
ta

te
 U

ni
ve

rs
ity

] A
t: 

19
:1

2 
10

 J
ul

y 
20

08
 

e.g. the current densities are finite and opposite in sign. The sheet current density is zero at
the edge, but this is a consequence of the exact cancellation of the current densities at the
two sides.

9. Conclusions

When light illuminates a flat thin perfectly-conducting sheet with edges, it induces surface
current densities iaðrÞ and ibðrÞ at the lit and shadow sides of the material, respectively.
Since the sheet is very thin, the effective sheet current density iðrÞ ¼ iaðrÞ þ iaðrÞ generates
the scattered field. By applying the boundary conditions and an angular spectrum
representation for the scattered field, we have shown that the difference between the
current densities at both sides satisfies Equation (38), which has the incident magnetic field
at the right-hand side. Therefore, if the sheet current density iðrÞ is known, the splitting in
the separate surface current densities iaðrÞ and ibðrÞ is uniquely determined by the incident
field. Equation (38) generalizes Equation (2) for a mirror, for which all current density is at
the a-side, and Equations (39) and (40) give iaðrÞ and ibðrÞ explicitly in terms of the sheet
current density and the incident magnetic field.

It was also shown that the Fourier transform of the sheet current density, IðkkÞ, must

be a simultaneous solution of Equations (42) and (43). Once these equations are solved,

the sheet current density iðrÞ can be found by inversion, as shown in Equation (32), after

which the scattered magnetic and electric fields can be found, in principle, by integration.

In Section 7 we have considered this approach for the simplest case of a plane wave

incident upon a mirror. Equation (42) was solved explicitly, and it followed that the

current densities and the reflected electric and magnetic fields could be obtained.

In particular, the familiar splitting in s- and p-polarization could be avoided with the

present formalism. In Section 8 we considered a plane wave incident upon the Sommerfeld

half-plane, a case for which Equations (42) and (43) can be solved in closed form.

Far away from the edge, the solution is approximately the solution for the mirror.

−0.5

0

0.5

1

1.5

5 10 15

Real part

kox

h(x)

ha(x)

hb(x)

Figure 4. Shown are the real parts of the functions �aðxÞ and �bðxÞ, which are proportional to the
corresponding current densities in the Sommerfeld half-plane at t¼ 0. Also shown is their sum �(x),
representing the total sheet current. For a mirror with the same incident field we would have
�aðxÞ ¼ 1 and �bðxÞ ¼ 0.
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 When the light is under normal incidence and polarized as depicted in Figure 3, it

appeared that the current densities iaðrÞ and ibðrÞ at the edge are each others opposite, and
therefore the sheet current density at the edge vanishes.
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