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Subwavelength displacement of the far-field image
of a radiating dipole
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The field lines of the Poynting vector for light emitted by a dipole with a rotating dipole moment show a
vortex pattern near the location of the dipole. In the far field, each field line approaches a straight line, but
this line does not appear to come exactly from the location of the dipole. As a result, the image of the dipole
in its plane of rotation seems displaced. Secondly, the image in the far field is displaced as compared with the
image of a source for which the field lines run radially outward. It turns out that both image displacements
are the same. The displacements are of subwavelength scale, and they depend on the angles of observation.
The maximum displacement occurs for observation in the plane of rotation and equals � /�, where � is the
wavelength of the light. © 2008 Optical Society of America
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When a localized source of radiation near the origin
of coordinates emits light, a detector in the far field
can measure the intensity at observation angles �o
and �o in a spherical coordinate system, as shown in
Fig. 1. In the far field, the power per unit solid angle
is independent of the distance to the source, and it is
common to interpret this as a result of the fact that
the energy density propagates along a straight line
from the source to the observer. This notion is put on
firm grounds in the geometrical optics limit for solu-
tions of Maxwell’s equations [1]. In this limit, the
wavelength � of the light is assumed to be small,
which justifies the neglect of certain terms in Max-
well’s equations. The solutions for the electric and
magnetic fields then take the form of propagating
wave fronts, and the optical rays are defined as the
orthogonal trajectories to these wave fronts. In gen-
eral, these optical rays are curves, but for propaga-
tion in a homogeneous medium, like vacuum, the
rays are straight lines. On the other hand, the Poyn-
ting vector represents the transport of power per unit
area. It can then be shown [1] that in the geometrical
optics limit the field lines of the Poynting vector co-
incide with the optical rays, and this supports the
picture that energy propagates along straight lines
from the source to the detector. Especially when the
source is a point source, as in Fig. 1, this conclusion
seems obvious.

In this Letter we shall show that radiation emitted
by a point source may not propagate along a straight
line and that this may lead to an observable effect in
the far field. We shall consider an electric dipole, os-
cillating harmonically with angular frequency �. The
time-dependent dipole moment can be written as

d�t� = do Re�εe−i�t�, �1�

with do�0, and ε an arbitrary complex-valued con-
stant vector, normalized as ε ·ε*=1. The complex am-
plitudes E�r� and B�r� of the electric and magnetic
fields of the radiating dipole are well known [2], and

the time-averaged Poynting vector

0146-9592/08/131446-3/$15.00 ©
S�r� =
1

2�o
Re�E�r� � B�r�*� �2�

can be evaluated. For an electric dipole at the origin
of coordinates we then obtain

S�r� =
3

8�

Po

r2��1 − �r̂ · ε��r̂ · ε*��r̂

−
2

q�1 +
1

q2�Im�r̂ · ε�ε*� , �3�

with Po being the emitted power, and r̂ being the ra-
dially outward unit vector. We have set q=kr for the
dimensionless distance between the dipole and the
field point r. The wave number is k=� /c=2� /�, so a
dimensionless distance of 2� corresponds to one
wavelength. For a magnetic dipole the complex am-

Fig. 1. Source at the origin of coordinates emits light,
which is observed in the far field under angles ��o ,�o�.

Angle �o is not shown in the figure.
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plitudes E�r� and B�r� are different, but the resulting
expression for the Poynting vector is the same.

When vector ε is real, the dipole moment is d�t�
=doε cos��t�. Vector d�t� oscillates harmonically
along the direction of ε, with amplitude do. The ex-
pression for the Poynting vector simplifies to

S�r� =
3

8�

Po

r2 r̂ sin2	, �4�

with 	 the angle between ε and r̂. We see that S�r� is
proportional to r̂, and therefore the field lines are ra-
dially outward, as in Fig. 1. Such dipole radiation is
emitted in a 
m=0 electronic transition in an atom.
For a 
m= �1 transition, the vector ε is a spherical
unit vector with respect to the quantization axis
[3,4]. When taking this axis as the z axis we have ε

=−��ex+ iey� /	2, with �= ±1. From Eq. (1) it then fol-
lows that the dipole moment d�t� rotates in the xy
plane with angular velocity �, and the rotation is
counterclockwise (clockwise) for �=1 ��=−1� when
viewed from the positive z axis. For such a rotating
dipole moment, the Poynting vector becomes [5]

S�r� =
3

8�

Po

r2�
1 −
1

2
sin2��r̂ +

�

q�1 +
1

q2�sin �e�� .

�5�

In addition to the radial part, it now has a component
proportional to e�, which gives the field lines a rota-
tion about the z axis. Figure 2 shows a typical field
line. Close to the dipole the field line pattern exhibits
a vortex structure, and in the far field each field line
approaches a straight line. The extent of the vortex is
well below a wavelength, because a dimensionless
distance of 2� corresponds to one optical wavelength
�. Since S�r� has no component in the e� direction, a

Fig. 2. For a rotating dipole moment at the origin of coor-
dinates, a field line of the Poynting vector has a vortex
structure close to the source. Far away from the dipole, the
field line approaches a straight line. The dimensionless
Cartesian coordinates are defined as x̄=kx, ȳ=ky, and

z=kz.
field line lies on a cone �=�o, with �o the angle of ob-
servation in the far field.

When viewed from the far field under angles
��o ,�o�, as shown in Fig. 3, the curved field line of the
Poynting vector approaches the straight line l, and
for an observer it appears as if the radiation comes
from a point in the xy plane, which does not exactly
coincide with the location of the source. Let qd be the
position vector of the image in the xy plane. To find
this displacement vector, we need a representation
for the line l, which is the asymptote of the field line
that is observed under angles ��o ,�o�. A field line of
the vector field S�r� is the curve through a given
point for which S�r�, given by Eq. (5), is on the tan-
gent line at each point along the curve. When we use
spherical coordinates �q ,� ,�� for an arbitrary point
on a field line, then a field line that runs to the ob-
servation direction ��o ,�o� for q large can be param-
etrized as

� = �o, ��q� = �o − �Z��o�
1

q�1 +
1

3q2� , �6�

where the dimensionless distance q to the source is
the free parameter. Here we have introduced the ab-
breviation Z��o�=1/ �1− 1

2 sin2�o�, which is a constant
along a field line. By considering q large, the field
line goes over in its asymptote l, and the intersection
between l and the xy plane can be obtained. We find
for the displacement vector of the image

qd = � sin �oZ��o��ex sin �o − ey cos �o�. �7�

The magnitude of qd, which equals qd=sin �oZ��o�,
depends only on angle �o, and is limited by 0
qd

2. For observation along the z axis the displace-
ment vanishes, whereas for observation along the xy
plane the displacement is at its maximum of qd=2.
The corresponding radial distance to the dipole is
� /�, showing that this virtual displacement of the
image is of subwavelength order. Figure 4 shows a
field line in the xy plane, and we see that the image is
on the y axis when observed from the side of the posi-
tive x axis. The direction of qd is determined by angle
�o, and by the helicity � of the dipole. With q a posi-
tion vector of a point on l, the equation for the line l

Fig. 3. When a field line of the Poynting vector for a ro-
tating dipole moment is observed in the far field, it appears
that the image of the dipole in the xy plane is displaced

over vector qd.
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can be written as q=qd+�r̂o, with � the free param-
eter, from which we see that qd is perpendicular to
the observation direction vector r̂o.

Let us now consider the displacement of the image
in the far field. Figure 5 shows the local coordinate
system of an observer, located under angles ��o ,�o�. If
the light would travel along a straight line (ray) from
the source to the plane of the observer, the image
would be at the origin O� of the coordinate system.
However, owing to the rotation near the source, the
image will be displaced, and the field line will inter-
sect the observation plane at a point indicated by the
position vector qf in this plane. In the far field, this is
the same point as the intersection between the plane

Fig. 4. Field line of the Poynting vector for a rotating di-
pole moment at the origin of coordinates, which is observed
along the x axis. For this case the image in the xy plane has
its maximum displacement of � /�, which corresponds to
qd=2 in dimensionless units.
and line l, and we find this displacement vector to be
qf = − � sin �oZ��o�e�o
. �8�

The displacement is in the −e�o
direction for positive

helicity and in the e�o
direction for negative helicity.

Comparison with Eq. (7) shows that qf=qd, so the
displacement in the far field is the same as the dis-
placement of the image in the xy plane. Unlike for a
conventional image, the position of the image in the
far field depends on the angles of observation ��o ,�o�.
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Fig. 5. Image of the dipole in an observation plane in the
far field is displaced over vector qf. It turns out that this
displacement vector is the same as qd in Fig. 3.
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