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Current density in a perfect mirror
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Electromagnetic radiation incident upon a perfect mirror induces a current density on the surface of the
conducting material of the mirror. It is shown that this surface current density can be expressed directly in
terms of the source current density, which generates the incident field, without evaluating the electric and
magnetic fields first. © 2008 Optical Society of America

OCIS code: 240.0240.
When electromagnetic radiation is incident upon a
perfectly conducting object, it induces a current den-
sity i�r , t� on its surface. This surface current density
generates electromagnetic radiation, and for a point
outside the object this is observed as the reflected
field. For a point inside the material the field gener-
ated by the surface current density exactly cancels
the incident field. A common approach to the scatter-
ing of light is to consider the general solution of Max-
well’s equations outside the object, in a suitable mode
expansion, and then impose the boundary conditions
at the interface [1]. The boundary conditions for a
perfect conductor are that the tangential component
of the electric field and the normal component of the
magnetic field vanish just outside the material. Once
the reflected field is obtained, the surface current
density can be found from [2]

i�r� =
1

�o
n̂�r� � B�r�, �1�

where n̂�r� is the unit normal at point r on the sur-
face, directed from the material into the vacuum. We
assume a harmonic time dependence with angular
frequency �,

i�r,t� = Re�i�r�e−i�t�, �2�

and similarly B�r� in Eq. (1) is the complex ampli-
tude of the total magnetic field at r, just outside the
object. In an alternative approach, integral equations
for the electric or magnetic field are considered,
which have the incident field as inhomogeneous term
[3]. After solving such an integral equation, the cur-
rent density on the object follows again from Eq. (1).
When the material is a perfect conductor, an integral
equation for the current density i�r� can be derived
[4], which is due to Maue [5] and is known as the
magnetic field integral equation. It has the incident
magnetic field at the surface as inhomogeneous term.
By using this equation, the current density can be
found without considering the solution for the mag-
netic field first. After solving for i�r�, the magnetic
and electric fields can be obtained by integration with
the Green’s function. This method has been applied
numerically to the scattering of plane waves off ob-

jects of a complicated shape [6,7].
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In this Letter the reflection by a flat perfect mirror
is considered, but the incident field is allowed to be
emitted by a source with an arbitrary volume current
density j�r�. The induced surface current density
i�r , t� can then have intriguing field line patterns, in-
cluding vortices, singular points, singular circles, and
loops, even for very simple sources such as an electric
or a magnetic dipole [8,9]. As schematically illus-
trated in Fig. 1, the surface of the mirror is taken as
the xy plane, and the unit normal is ez, which is di-
rected towards the side of the incident field. The
magnetic field integral equation for a mirror can be
solved, with the result [10] that

i�r� =
2

�o
ez � B�r�inc. �3�

As compared with Eq. (1), here the right-hand side
involves the incident magnetic field, rather than the
total magnetic field, so when the incident field is
known, we immediately obtain the current density in
the surface. It is worth noting that the current den-
sity at point r is determined by the incident field at
the same point r, regardless of the current density
i�r� at other points on the surface. We now show that
the surface current density in the mirror can be ex-
pressed explicitly in terms of the volume current den-

Fig. 1. A volume current density j�r� represents a source
of radiation in front of a mirror. The surface of the mirror is
the xy plane, and the z axis is directed towards the source.
A surface current density i�r� is induced on the surface of
the mirror, and this vector field can be represented by a

pattern of field lines.

2008 Optical Society of America



January 15, 2008 / Vol. 33, No. 2 / OPTICS LETTERS 163
sity j�r� of the source. To this end, we recall that the
incident magnetic field, emitted by the current
source, is given by

B�r�inc =
�o

4�
� �� d3r�g�r − r��j�r��, �4�

with g�r�=exp�ikr� /r, r= �r�, the free-space Green’s
function of the Helmholtz equation, and k=� /c. Com-
bination of Eqs. (3) and (4) then yields

i�r� =
1

2�
ez �� d3r�f�r − r���r − r�� � j�r��, �5�

where the function f�r� is defined as

f�r� =
1

r2�ik −
1

r�eikr. �6�

In Eq. (5), the integral runs over the source of the ra-
diation, and the point r is a given point in the mirror.
This shows that the surface current density i�r� at
any point r of the mirror can be obtained directly
from the given source current density j�r�.

An object in front of a mirror has an image behind
the mirror, and when the object is viewed as a cur-
rent distribution, the image can be viewed as being
emitted by a mirror-image current distribution be-
hind the mirror [11]. The total electromagnetic field
in front of the mirror is then the sum of the incident
field and the field of the image source, and with Eq.
(1) the surface current density in the mirror can be
found. As an example we consider an electric dipole
with dipole moment d�t�=Re�d exp�−i�t��, in which
the complex amplitude d is an arbitrary constant
vector. When we write d=d�+d	, where the sub-
scripts � and 	 refer to the perpendicular and paral-
lel parts of the vector with respect to the xy plane,
then the image source is again an electric dipole, and
it has dim=d�−d	 as its complex amplitude. The co-
ordinates of the image dipole are �x ,y ,−z�, when
�x ,y ,z� are the coordinates of the source dipole. With
the known expression for the magnetic field emitted
by an electric dipole, the surface current density can
then be found from the boundary condition (1). On
the other hand, when the dipole is located at position
ro in front of the mirror, as shown in Fig. 2, it has a
current density

j�r� = − i�d��r − ro�, �7�

and with Eq. (5) we immediately find

i�r� =
i�

2�
f�r − ro�ez � �d � �r − ro�� �8�

for the complex amplitude of the current density on
the surface.

As an illustration, let us consider a dipole located
on the z axis, at a distance H from the mirror, and
with d=doez ,do�0. Then the dipole moment oscil-
lates harmonically along the z axis as d�t�
=do cos��t�ez, and with Eqs. (2) and (8) we obtain for

the current density
i�r,t� =
ck3do

2�

q

q1
2�cos�q1 − �t� −

1

q1
sin�q1 − �t��e�. �9�

Here we have introduced q=kr for the dimensionless
distance between the origin of coordinates and the
field point r in the xy plane, and q1=k�r2+H2�1/2 rep-
resents the dimensionless distance between the di-
pole and the field point r. The direction of i�r , t� is
along the radial unit vector e� in the xy plane, so the
current is flowing radially outward or inward, de-
pending on the sign of the expression in square
brackets. For values of q for which tan�q1−�t�=q1
the current density is zero. The solutions q of this
transcendental equation correspond to circles in the
xy plane, and across these circles the current density
changes from flowing inward to flowing outward. Fig-
ure 3 shows the resulting field line pattern for the
vector field i�r , t� in the xy plane for a given value of

Fig. 3. Field lines of the current density in the mirror in-
duced by a dipole oscillating along the z axis. The current is
in the radial direction, and it reverses its orientation across
each of the thin circles. There is an infinite set of these
circles, which are spaced by about half an optical wave-
length. As time progresses these circles expand, and new

Fig. 2. An electric dipole d is located at position ro in front
of the mirror. The current density at point r of the surface
depends on vector r−ro, which is the field-point vector r,
relative to the position of the dipole.
circles emanate from the origin of coordinates.
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time t. When time progresses, the circles expand at
near the speed of light, and the field line picture
changes accordingly.

Equation (5) shows that the surface current den-
sity i�r� in the mirror can be obtained as an integral
over the source region, involving the volume current
density j�r� of the source. This surface current den-
sity can be evaluated without considering the radia-
tion field explicitly, as would be necessary if i�r� had
been computed from Eq. (1) or Eq. (3), and there is
also no need to consider the image source. The
method has been illustrated by the simple example of
an electric dipole near the mirror, but the approach
applies equally well to sources of a more complex
structure.
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